

Emergent Spacetime

Bin Chen

Department of Physics, Peking University

bchen01@pku.edu.cn

Emergent Spacetime

1. Quantum Gravity

- 2. Spacetime in String theory
- 3. Emergent Spacetime

1 Quantum Gravity

• Four kinds force in Nature:

- Gravity; Newton, Einstein
- Electromagnetic force;Maxwell
- Strong interaction force;
- Weak force;

访问主页	
标题	题 页
••	••
•	►
第 4 页	共 <mark>20</mark> 页
返	回
全屏	显示
<u></u>	闭
18	ж
返	щ

• Two revolutionary discoveries in 20th century:

- General relativity Einstein 1915: A theory of gravitation.
 - Spacetime is dynamical: the interaction between spacetime and matter is nonlinear;
 - Black Hole, Cosmology, GPS, ...;
- Quantum principle: uncertainty principle, wave-function,
 High energy physics: QED, QCD, SM, GUT, SUSY
 Condensed matter physics,

访问。	访问主页	
标题	标题页	
••	••	
•	•	
第5页	失 20 页	
返	回	
全屏。	显示	
*	ني ل	
	LIA	
退	出	

• Unification: Einstein's dream

- Gravity with EM: Kaluza-Klein;
- Electro-Weak plus Strong interaction: unified in Standard model;
 - * In the framework of Quantum Field Theory;(SR+QM)
 - \star Gauge principle play the central role;
 - * Gauge group: $SU(3) \times SU(2) \times U(1)$;
 - \star Gauge bosons as the mediators of forces: Gluon, W^{\pm}, Z, Photon;
 - * The best theory we have; (Higgs in LHC?)
 - * The background geometry is Minkowski spacetime;

• Three questions:

- How to quantize gravity?
- How to unify gravity with other forces?
- Why quantum gravity?

• Answers:

- Graviton is massless spin-2 particle; (Gravitational wave?LIGO, LISA,)
- Gravity is non-renormalizable; ($\mathcal{N} = 8$ supergravity finite?)
- Gravity is special: nonlinear, background and dynamical; (Background independence essential?)
- Canonical quantum gravity, loop quantum gravity, spin foam, ...;
- String theory: unify the gravity with others in a natural way. The most promising candidate of quantum gravity;
- Quantum black hole, cosmological singularity and various questions in particle physics and cosmology; (A better understanding of QM?)

访问	访问主页	
标 是	题 页	
44	••	
•	•	
第 <mark>6</mark> 页	共 20 页	
返	回	
	显示	
¥		
~	рэ <u>э</u>	
返	斑	

2 Spacetime in String theory

• Spacetime near Planck scale l_p

- $\star l_p \sim 10^{-33} cm;$
- Important question: physics near the cosmological singularity.
 Singularity resolved? Initial condition for inflation? DE?...
- * Quantum effect of gravity important;
- \star Usual concept of spacetime by metric make sense?

• Quantum foam?John Wheeler 1960's

- * Spacetime subject to the kinds of uncertainty required by QM;
- \star Spacetime has foaminess: geometry has complex shapes and textures.
- * Quantum BH appear at l_p and then evaporate in 10^{-43} seconds;
- * Wormhole would form and dissolve;
- * Baby universe?

访问	主页
+= #	а <u>т</u>
17/17 2	型 贝
••	>>
◀	▶
第 <mark>9</mark> 页	共 <mark>20</mark> 页
	_
返	回
返 	回显示
返 全 <i>屏</i>	回显示
返 全 <i>屏</i> 关	回 显示 闭
返 全 <i>屏</i> 关	回 显示 闭
返 全 <i>屏</i> 关 退	回 显示 闭 出
返 全 屏 关 退	回 显示 闭 出

• Noncommutative Geometry(NCG)

- Operator algebra in QM;
- Quantum spacetime as operator algebra;
- Noncommutative geometry; A. Connes 1994
- In string theory, NCG has natural realization:
 - * Open String Field Theory; E. Witten 1986
 - * D-brane with B_2 field; Seiberg & Witten 1999, ...

• String theory:

- The elementary particles are not really point-like. They are "TINY" strings;
- There are two kinds of strings: open and closed;
- Unify the gravity with the other forces in a natural way;
- The string has constant tension $T = \frac{1}{2\pi\alpha'}$;
- There exists an intrinsic length scale:

$$l_s^2 = \alpha' \tag{1}$$

- α' as Planck constant in the string worldsheet action;
- String coupling constant g_s govern the string interaction;

- **T-duality**: The closed string on a circle with radius R is equivalent to the one on a circle with radius α'/R ;
 - \star Momentum \leftrightarrow Winding;
 - * Winding conservation is a stringy symmetry;
 - * Background geometry is ambiguous: what is the background metric?
 - \star Due to the extensive nature of the string;
 - * String probe cannot detect the features in the geometry which are smaller than l_s ;
 - * Generalized to "Mirror symmetry" in Calabi-Yau manifolds;

• S-duality

- * Quantum nature: D-brane ...;
- * D-brane probe: Nonperturbative. Matrix model;
- * Strong/Weak duality: highly quantum/semiclassical backgrounds;
- ★ Breakdown of small distance/high energy connection: as we try to increase the energy of a probe, it becomes bigger;

访问主页

标题页

第 13 页 共 20 页

返回

全屏显示

关闭

退出

44

◀

• Locality in String theory:

- * QFT: local, keep causality, S-matrix analytic;
- * String theory: causal, S-matrix is analytic, but might not be local;
- ★ Dualities suggest non-locality;

访问主页

标题页

第 14 页 共 20 页

返回

全屏显示

关闭

退出

••

44

• Spacetime in String theory:

- * Ambiguity in geometry;(Stringy geometry in mathematics)
- * Ambiguity in topology: topology transition;
- * Fuzziness: locality lost;
- Matrix cosmology? Matrix degrees of freedom to describe the physics near the cosmological singularity;

3 Emergent Spacetime

- Space and time are not fundamental, they are emergent concepts;
- The concept of locality cannot be fundamental;
- General covariance is a derived and useful concept at long distances;
- A fundamental theory should not have an underlying spacetime;

访问主页

标题页

第 16 页 共 20 页

返回

全屏显示

关闭

退出

••

▲

• Examples of emergent Space:

- 1. Myers effect: fuzzy space; R. Myers 1999
- 2. Matrix QM: 2D noncritical string theory; M. Douglas 1991, ...
- 3. Emergent space in BFSS matrix model; BFSS 1997
- 4. AdS/CFT correspondence.

访问	访问主页	
标题	题页	
44	••	
•	•	
第 <u>17</u> 页	 .共 20 页	
返	回	
全屏	显示	
关	闭	
退	н Н	

• AdS/CFT correspondence:

- String theory in Anti-de-Sitter spacetime and a CFT at its boundary;
- A definition of string theory;
- The best studied one: IIB superstring in $AdS_5 \times S^5$ is dual to the $\mathcal{N} = 4$ Super-Yang-Mills in the large N limit; $(AdS_5/CFT_4 \text{ correspondence})$ Maldacena 1997
- Gravity/Gauge correspondence;
- String states/operators;(Beyond gravity/gauge correspondence)
- Strong/Weak duality;

访问主页

标题页

第 18 页 共 20 页

返回

全屏显示

关闭

退出

44

◀

• The ideas behind AdS_5/CFT_4 :

- Large N_c gauge theory is a string theory;'t Hooft 1974, A. Polyakov, ...
- Holographic principle; 't Hooft 1992, L. Susskind 1993
- Open/Closed string duality;

访问主页		
标题	标题页	
44	••	
•	•	
第 19 页	, 并 <mark>20</mark> 页	
返	回	
全屏	显示	
关	闭	
退	出	
-		

Physical implications

- String theory side:
 - * Black hole physics: entropy, quasi-normal mode, unitary evolution;
 - * Background independence and emergent space: LLM 2004 Half-BPS states in SYM correspond to various supergravity configurations, which are asym. to $AdS_5 \times S^5$;
- Gauge theory side:
 - * AdS/QCD: strong coupling, meson spectrum, ...;
 - * RHIC (Relativistic Heavy Ions Collider) physics: QGP,...;

访问主页
标题页
•• ••
第 <u>20</u> 页 共 <u>20</u> 页
返回
全屏显示
关闭
退出

• Emergent time:

- If space emerges, why not time?
- No example;
- Locality in time? Violation of causality?
- What does it mean to have a theory without fundamental time?"Dynamics"?
- Wavefunction?Unitarity?
- Implications: the physics of space-like and null singularities (BH singularity and the cosmological singularity), the wave-function of the Universe, initial conditions for the Universe,...;