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1. Quantum Chromodynamics (QCD)

What is QCD? The answer is quite simple in the short distance (high en-

ergy).

The Lagrange is:

L = −1
4
F a

µνF
µνa + ψ̄I [iγµ(∂µ − igT aAa

µ)−mI ]ψI , (1)

[T a, T b] = ifabcT c. (2)

Non-abelian gauge theory (Yang and Mills, 1954). Perturbative expansion

is OK because of Asymptotic Freedom (1973).
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3) The intermediate expressions are quite complicated but the final result

is comparatively simple. This is quite important for numerical calculations.

(Instability at higher energy if you do numerical calculation by hand.)

Expressions like ∑
i

Di

Ni
, (5)

with very big Di and Ni must be simplified, especially at high energy (where

Di and Ni are big).

And also the final results are not so simple:





The era of “testing QCD” is finished. Now we

can do the following 2 things:

1) precision test of QCD;

2) discovering new physics.

Either way, we need to understand QCD better. Now the theory is behind

the experiment. As an example, CDF find from their Run I data:

αs(Mz) = 0.1178± 0.0001(stat)+0.0081
−0.0095(sys)+0.0071

−0.0047(scale)± 0.0059(pdf). (6)





Because of the coming experiments (LHC in 2007 or 500GeV NLC there-

after), we do need more precise theoretical calculations. So it is mandatory to

understand perturbative QCD better.

NNLO (next-to-next-to-leading) order

or 2-loop calculations are needed.



The promise

1) Reduced renormalization scale dependence;

2) Event has more partons in the final state hence closer to real word;

3) Better description of pT of final state due to double radiation off initial

state;

4) Reduced power correction as higher perturbative powers of 1/ ln(Q/Λ)

mimic genuine power corrections like 1/Q;

5) Full NNLO global fits of PDF’s should also reduce the factorization scale

uncertainty.



The various methods used:

1) Color decomposition;

2) Spinor helicity;

3) Recursive relations;

4) Supersymmetric identities;

5) String theory techniques (one-loop);

6) Unitarity (one- and two-loops) and educated guess, · · · .





Spinor helicity: the Chinese magic

A clever choice for the (external) polarization vector in helicity basis:

ε+µ (k, p) =
µαλ̄α̇

〈λ, µ〉
,

ε−µ (k, p) =
λαµ̄α̇

[λ̄, µ̄]
, (10)

for the particle momentum kµ = λαλ̄α̇ and the reference momentum pµ =

µαµ̄α̇.

The helicity amplitude is defined as An(khi
i ) = An(ki, ε

hi
i ).



By choosing this helicity basis, we have:

A5(1+, 2+, 3+, 4+, 5+) = 0, (11)

A5(1−, 2+, 3+, 4+, 5+) = 0, (12)

A5(1+, · · · , j−, · · · , k−, 5+) =
〈j, k〉4

〈12〉〈23〉〈34〉〈45〉〈51〉
, (13)

where 〈ij〉 ≡ 〈λi, λj〉 = λα
i λjα = εαβλ

α
i λ

β
j .

The Parke-Taylor MHV (maximally helicity violating) amplitudes:

An(1+, · · · , j−, · · · , k−, n+) =
〈j, k〉4∏n

i=1〈i, i+ 1〉
. (14)



2-loop superstring amplitude is also simple:

AII = cII K(ki, εi)
∫ ∏6

i=1 d2ai/dVpr

T 5
∏

i<j |ai − aj |2
4∏

i=1

d2zi

|y(zi)|2
∏
i<j

exp [−ki · kj G(zi, zj)]

×|s(z1z2 + z3z4) + t(z1z4 + z2z3) + u(z1z3 + z2z4)|2, (15)

where

dVpr =
d2aid2ajd2ak

|aijajkaki|2
, (16)

G(z, w) = − ln |E(z, w)|2 + 2π Im
∫ w

z

ωI (ImΩ)−1
IJ Im

∫ w

z

ωJ , (17)

y2(z) =
6∏

i=1

(z − ai), (18)

T =
∫

d2z1d2z2
|z1 − z2|2

|y(z1)y(z2)|2
. (19)



2. String Theory

You need to learn from the following 4 books:

Green-Schwarz-Witten, Superstring Theory, Cambridge University Press, 1987.

Vol. 1: Introduction, 469 pages;

Vol. 2: Loop amplitides, anomalies and phenomenology, 596 pages.

J. Polchinski, String Theory, Cambridge University Press, 1998.

Vol. 1: An Introduction to the Bosonic String, 402 pages;

Vol. 2: Superstring and Beyond, 531 pages.

(All are in the Cambridge Monographs on Mathematical Physics. Other

series include Particle Physics, Nuclear Physics and Cosmology.)



Why Strings?

1. Gravity

2. A consistent theory of quantum gravity, at least in perturbation theory

3. Grand unification

4. Extra dimensions

5. supersymmetry

6. chiral gauge couplings

7. no free parameters

8. uniqueness

It’s the only know generalization of standard QFT that makes any sense.







String theory is:

1) a new framework for physics that goes beyond QFT;

2) a new framework for unifying forces of nature (gravity + quantum theory

in a consistent way)

3) based on a new kind of geometry, going beyond standard differential

geometry, that we do not yet understand well. There is no analogue of Einstein’s

equivalence principle.

4) yielding many new insights about physical theories of an established kind.

Gauge/Gravity correspondence.

Various dualities







Maldacena conjecture: the AdS/CFT correspondence (1997)

and its extensions (holographic principle) make it clear that gauge/string du-

ality is correct and is useful at least for large g2N .

This is the wrong limit for asymptotically free QCD, where g2N << 1 at

small distances. To make gauge/string duality useful for QCD, we need to

understand it for all g2N .

The goal: Find a string theory construction that is relevant to 4-dimensional

gauge theory at small g2N , i.e.

interpret perturbative gauge theory in 4 dimensions as a string theory.

weak/weak duality



E. Witten, Perturbative Gauge Theory as a String Theory in Twistor Space,

hep-th/0312171.

studied the topological B model on supertwistor space CP 3|4 and conjectured

that:

the perturbative expansion of N = 4 super Yang-Mills theory is equivalent to

the D-instanton expansion of a certain string theory, namely the topological B

model whose target space is the Calabe-Yau supermanifold CP 3|4.

can’t promise that it is useful in a string description of QCD, but at

least that there appears some interesting things about perturbative

gauge theory.



The evidence:

a) Helicity amplitudes and twistor space

Ân(λi, λ̃i, hi) = i(2π)4δ(4)An(λi, λ̃i, hi), (23)

and for MHV:

An(r−, s−) = gn−2 〈j, k〉4∏n
i=1〈i, i+ 1〉

. (24)

b) Scattering amplitudes in twistor space: (λi, µi)

An(λi, λ̃i) = ign−2

∫
d4x eixαα̇

∑n
i=1 λα

i λ̃α̇
i f(λi), (25)

for MHV amplitudes.



By doing a Fourier transformation to twistor space:

f̃(µ) =
∫

d2λ̃

(2π)2
exp(i[µ, λ̃])f(λ̃), (26)

Ã(λi, µi) = ign−2

∫
d4x

n∏
i=1

δ(2)(µiα̇ + xαα̇λ
α
i )f(λi). (27)

So all the points (λi, µi) are on the same straight line in the twistor space. The

moduli of the line is parametrized by xαα̇.

And Witten proved:

the twistor version of the n particle scattering amplitude Â(λi, µi) is nonzero

only if the points Pi = (λi, µi) are all supported on an algebric curve (of degree

d = q − 1 + l) in twistor space.



c) Interpretation as a string theory

Â(λ, µ, ψ) =
∫

d4d+4ad4d+4βdnσ

vol.(GL(2))
J

n∏
i=1

δ(3)
(
zI
i

zJ
i

− P I(σ − i)
P J(σi)

)

×
n∏

i=1

δ(4)
(
ψI

A

zJ
i

− GA(σ − i)
P J(σi)

)
, (28)

where

J =
n∏

i=1

1
σi − σi+1

, (29)

P I(σ) =
d∑

k=0

aI
kσ

k, I = 0, 1, 2, 3, (30)

GA(σ) =
d∑

k=0

βA
Aσ

k, A = 1, 2, 3, 4. (31)

The P I and GA represent a degree d curve in the supertwistor space CP 3|4.







In the above there is only a single quartic vertex. The rests consists of only

tri-vertex and are given as follows:

Vn+1 =
p2
1

φ2φn+1

1
[2, 3] · · · [n, n+ 1]

, (34)

where p1 is the off-shell momentum (all the rest momenta are on-shell).

The above rules can also be used to derive a closed formula for NMHV

(with 3 negative helicities) amplitude. It can also be used to derive a set of new

recursive methods to compute the more general NMHV amplitudes.

It can be extended to include fermions.




