The direct photon puzzle and the weak magnetic photon emission

Li Yan

Institute of Modern Physics at Fudan University Mar. 23, 2023 @ USTC

with Jing-An Sun, arXiv: 2302.07696

Outline

- Direct photons and direct photon puzzle in heavy-ion experiments.
- Magnetic field in heavy-ion collisions.
- Weak magnetic photon emission (WMPE).

Standard picture of Heavy-ion collisions

• QCD phase diagram

Standard picture of Heavy-ion collisions

• Different stages in one heavy-ion collision event

initial stage (pre-equilibrium) $+$ QGP $+$ Hadron Gas $+$ freeze out

Hadron probes

• Hadron spectra: pions, kions, protons, etc.,

$$
E\frac{dN}{d^3\vec{p}} \propto \frac{dN}{dp_T dy} [1+2v_1\cos(\phi_p - \Psi_1) + 2v_2\cos 2(\phi_p - \Psi_2) + 2v_3\cos 3(\phi_p - \Psi_3) + \dots]
$$

where v_n (n-th order flow) contains information of QGP collective flow. v_n of charged hadrons has been measured precisely for n<6. Flow provides probes of transport properties of QGP, e.g., η/s , ζ/s .

Hadron probes from hydro (*standard model*)

- Hydro: initial condition + hydro $EoM + QCD EoS + hadronization$
- Hadron spectra and flow paradigm: medium response to geometry

Loizides et al, 1408.2549]

Flow paradigm

• Anisotropic flow developped as system expands,

Initial density has an elliptic geometry (overlapped region in collisions)

• A finite time scale is required.

Direct photons in hadron colliders: e.g., $pp \rightarrow \gamma X$

- Photons from partonic scatterings (subtract secondary decays).
- Can be calculated via pQCD,

- cross-section $\sim \sum f_a \otimes f_b \otimes \hat{\sigma}_{ab}$, access to gluon PDF in hadron
- Isotropic emmission.

Direct photon cross section in pp

Direct photons in heavy-ion collisions

• Produced during the whole system evolution (exclude hadron decay)

probe access to information of different evolution stages! "historian"

Direct photon production in heavy-ion collisions

Direct photon production in heavy-ion collisions

Direct photon production in heavy-ion collisions

Direct photon yields from heavy-ion collisions

- Hard process dominates at large p_T
- Excess of direct γ above pQCD scaled expectation at small p_T : thermal radiations.
- Non-prompt (direct pQCD scaled photons) spectrum used to estimate QGP temperature.
- We focus on the QGP thermal radiation

Direct photon yields from heavy-ion collisions

- Hard process dominates at large p_T
- Excess of direct γ above pQCD scaled expectation at small p_T : thermal radiations.
- Non-prompt (direct pQCD scaled photons) spectrum used to estimate QGP temperature.
- We focus on the QGP thermal radiation

Thermal radiation from equilibriated QGP

- Leading order radiation: $q\bar{q} \rightarrow g\gamma$ and $qg \rightarrow q\gamma$
- Production rate: $E\frac{dR}{d^3n} \propto \frac{1}{e^{E/T}-1}$ Im $\Pi_{\mu}^{R,\mu} \propto T^4$
- Photon spectrum requires space-time integral: require medium info.

$$
E\frac{d^3N^{\gamma}}{d^3p} = \int_{tV} E\frac{dR}{d^3p} \propto \frac{dN^{\gamma}}{dp_T} (1 + 2v_2^{\gamma} \cos 2\phi + \ldots)
$$

Direct photon elliptic flow (before 2011)

• Naive expectation: $v_2^{\gamma} < v_2^{\text{hadron}}$

Direct photon elliptic flow (after 2011)

• Experimental observation: $v_2^{\gamma} \approx v_2^{\text{hadron}}$

Direct photon elliptic flow (after 2011)

• Confirmation at the LHC: $v_2^{\gamma} \approx v_2^{\text{hadron}}$

Experiments vs theories

[PHENIX, 1509.07752, R. Ryu et al, PRL 115 132301(2015), J. Paquet et al, PRC 93 044906 (2016), O. Linnyk et al, PRC 92, 054914 (2015)] 20 20

Direct photon puzzle

• PHENIX collarboration, PRL 109, 122302 (2012):

anisotropy is interpreted in terms of a path-length dependence for parton energy loss. In this measurement with the PHENIX detector at the Relativistic Heavy Ion Collider we find that for $p_T > 4$ GeV/c the anisotropy for direct photons is consistent with zero, which is as expected if the dominant source of direct photons is initial hard scattering. However, in the $p_T < 4$ GeV/c region dominated by thermal photons, we find a substantial direct-photon v_2 comparable to that of hadrons, whereas model calculations for thermal photons in this kinematic region underpredict the observed v_2 .

• Direct photon puzzle: "*Not too much of a puzzle left for yields.*"

[K. Reygers, Quark Matter 2022 plenary talk] 21

Up-to-date (conventional) hydro prediction [C. Gale et al, 2016.00216]

- Chemical equilibration in QGP 0.20 $\frac{1}{2}$ centrality 20-40%
- EbE 2+1D hydro for medium expansion $\frac{25}{5}^{0.15}$
- NNLO pQCD for prompt photons $_{0.05}$
- LO thermal rate (AMY) with also 100 dissipative corrections: $f + \delta f$

Hadron gas γ production
 $\frac{G}{G}^{0.15}$
- Hadron gas γ production
- But, no magnetic field!

Electromagnetic field in heavy-ion collisions

• From the relativistic motion of nucleus

- B field is dominated out of plane, $\vec{B} \parallel \hat{y}$
- B field is extremely strong *initially*,

 $eB/m_{\pi}^2 \sim \begin{cases} O(1) & \text{RHIC} \\ O(10) & \text{LHC} \end{cases}$

which has lead to many novel effects.

[Skokov and Bzdak 2012, Deng and Huang 2012, Kharzeev 2008, Tuchin 2010, Skokov and Mclerann 2013, ...

• Life time of B is crucial, but unknown.

Theoretically expected decay of magnetic field

A brief summary:

- A brief summary:

 Vacuum evolution of B is well solved, as well $B(z = 0)$

 Vacuum evolution of B is well solved, as well as B before tau_0.
- Medium contribution is uncertain, due to the electrical conductivity, as well as B after tau_0.
- tau 0 is related to chemical equilibration of QGP, approximately, tau $0 \sim 1$ fm/c.
- Life time of B is extremely short unless with a unreasonbly large conductivity.

[A. Huang et al, 2212.08579, J-J. Zhang et al, 2201.06171, U. Gursoy et al, 1401.3805, L Yan and X. Huang, 2104.00831, K. Hattori and X. Huang, 1609.00747, and many others]

Strong Magnetic field and direct photon v_2

• Conformal anomaly [G. Basar et al., 2012] • Quark with Landau level excitations

- Some other mechanism involving induced inelastic emission (synchrotronlike), etc. [K. Tuchin, PRC 91, 014902., 2015, B. Zakharov, EPJC 76 (2016)]
- Strong magnetic field only exists at very early times: tau~0.1fm/c.
- Charged carriers in QGP (quarks) needs time to generate: tau>tau 0. 25

Magnetic field: strong vs weak

• Strong B leads to MHD: B becomes hydro d.o.f.

$$
|eB|\gg T^2\sim \sqrt{\epsilon}
$$

• Strong B alters dynamics of quark scattering amplitudes, (Landau levels)

$$
|eB| \gg g^2 T^2 \sim m_T^2
$$

• In realistic HIC, these conditions reduce to a criterion, $|eB| \sim m_{\pi}^2$, thus weak field condition,

$$
eB| \ll m_{\pi}^2
$$

- Weak field strength assumption: $|eB|/m_{\pi}^2 \ll 1$
- Dynamical evolution of QGP follows hydro, instead of MHD.
- However, QGP is slightly off-equilibrium due to weak B field.
- Photon production via quark scatterings not changed substantially.
- Our goal:
- find a novel mechanism of photon emission in weak B field.
- photon emission must be significantly anisotropic.
- 3. do not change direct photon yields substantially.

1. Start with the production rate from kinetic theory*:

$$
R^{\gamma} \propto \sum_{i} \int d\Phi |\mathcal{M}_{i}|^{2} f_{q/g} f_{q/g} (1 \pm f_{q/g}) \propto \alpha \alpha_{s} I_{c} f_{q}
$$

* small angle approximation is not a necessary step, but good for illustration

2. Shift in f_q due to the presence of a weak B field:

$$
f_q \to \bar{f}_q + f_{\text{EM}} \qquad \Rightarrow \quad R^\gamma = \bar{R}^\gamma + R_{\text{EM}}^\gamma
$$

where in background rate quark distribution also gets corrected by viscosities.

3. Determining f_{EM} according to electrical conductivity of QGP,

$$
f_{\rm EM} = \frac{c}{8\alpha} \frac{\sigma_{\rm el} n_{\rm eq} (1 - n_{\rm eq})}{T^3 p \cdot u} eQ_f F^{\mu\nu} p_\mu u_\nu \qquad \propto \frac{|eB|}{T^2}
$$

3. Determining f_{EM} according to electrical conductivity of QGP,

Origin of photon elliptic emission anisotropy

• External B field naturally contains a dipole moment,

 $\cos \phi_p \in F^{\mu\nu} p_\mu u_\nu$

• An extra dipole moment comes from $\frac{3}{5}$ background QGP, e.g., a tilted fireball, [P. Bozek et al., 1101.3354]

$$
A(\tau, p_T, \eta_s, Y) \cos \phi_p \in n_{\text{eq}} \quad \leftrightarrow v_1
$$

• Coupled effects give rise to

 $\cos 2\phi_p \sim v_2^{\rm EM}$

[STAR collaboration, PRL 101, 252301 (2008)]

Origin of photon elliptic emission anisotropy

• External B field naturally contains a dipole moment,

 $\cos \phi_p \in F^{\mu\nu} p_\mu u_\nu$

• An extra dipole moment comes from background QGP, e.g., a tilted fireball, [P. Bozek et al., 1101.3354]

$$
A(\tau, p_T, \eta_s, Y) \cos \phi_p \in n_{\text{eq}} \quad \leftrightarrow v_1
$$

• Coupled effects give rise to

 $\cos 2\phi_p \sim v_2^{\rm EM}$

WMPE on top of Bjorken flow

• Bjorken flow: boost invariant along z, analytical but unphysical.

 $u^{\mu} = (\cosh \eta_s, 0, 0, \sinh \eta_s)$ $n_{\text{eq}} = A_0(\tau, \eta_s, p_T, Y) + A_1(\tau, \eta_s, p_T, Y) \cos \phi_p$

• Correction of quark distribution due to B field,

$$
f_{\rm EM} \propto QB_y \frac{\tau_R}{T} \frac{\sinh \eta_s}{\cosh(y - \eta_s)} \left[\frac{A_1}{2} + A_0 \cos \phi + \frac{A_1}{2} \cos 2\phi \right]
$$

which implies already $v_2^{EM} = 0.5$, irrespective of magnitude of B_y

• After integral over space-time and even rapidity window as experiments, only odd components remain, so here for photons $v_1=0$.

WMPE under realistic conditions

- Electrical conductivity $=$ LO pQCD evaluation (AMY), to be consistent with background photon results.
- One tilted fireball initial condition, which has been used to reproduce charged hadron *v*₁: *single-shot* \sim
- Solving medium evolution using 3+1 D hydro (MUSIC), with finite shear/bulk viscosities, from tau0= 0.4 fm/c.

WMPE under realistic conditions

Space-time profile of external B field as in vacuum: "worst-case" scenario [K. Hattori and X. Huang, 1609.00747]

$$
eB_y(\tau,\eta_s) = eB_y^0 \Gamma(\tau,\eta_s)
$$

here eB_v^0 is the initial field strength when QGP evolves hydrodynamically. 36

Ideal hydro and weak field condition

$$
|eB_y^0|/m_\pi^2<0.1
$$

• Weak B field indeed gives rise to a large elliptic flow of direct photons!

Viscous hydro and WMPE

- Detailed shape of elliptic flow is sensitive to viscosity.
- Experimental data of elliptic flow can be reproduced!
- Direct photon yields receive small enhancement $(\sim 10\%)$.

Confronts experiment at RHIC $\sum_{0.25 \atop 0.20 \leq t \leq n_{\text{HENIX}}} \frac{1}{\left|\frac{m}{\pi} \pi n_{\text{HENIX}}\right|}$

- Good agreement for all centralities.
- Initial field strength extracted and grows as centrality increases: correct trend!

Confronts experiment at LHC

- Good agreement for all centralities.
- Initial field strength extracted and grows as $\int_{0.10}^{0.15}$ centrality increases: correct trend!

Event-by-event simulations (preliminary)

- Extract initial field strength is reduced significantly: $|eB_u^0|/m_\pi^2 \approx 0.007$
- Surprisingly, vacuum evolution of B(t=0.4 fm/c) gives $|eB_y|/m_{\pi}^2 \approx 0.007$

Summary

- Weak magnetic photon emission can be a solution to "direct photon puzzle"!
- A weak magnetic field evolves along with QGP in HIC.
- Direct photon spectrum can be used to extract B field strength at early time.