Heavy Charged Higgs@LHC

晏启树 Qi-Shu Yan GUCAS

In collaboration with 杨硕 Shuo Yang (Peking U & Dalian U) arXiv: 1111.4530; Published in JHEP1202(2012)074

16:30pm, May 17, 2012, USTC, HeFei

Outline

1. Why A Heavy Charged Higgs Boson?
2. What is jet/Substructure/top taggers?
3. Feasibility at the LHC with a Hybrid-R method
4. Conclusions

Collecting data 7TeV~5/fb, 8TeV~1.5/fb

2009		Startup	
2010		Phase-0 We just began!	
2011 2012 2013 2014	LS1	ATLAS: new inner pixel layer (IBL) with new Be beampipe, refurbish present pixel, new evaporative cooling CMS: reduced radius beampipe in preparation for new pixels	~10 fb⁻¹
2015		Phase-1 ILC Construction	
2016 2017 2018	LS2	ATLAS: fast track trigger input to high level trigger (FTK) new pixel if proven necessary in 2013-14	~50 fb ⁻¹
2019 2020 2021		Phase-2 ATLAS & CMS: Phase-2 trackers. Higher granularity for	~300 fb⁻¹
2022 2023 2030?	LS3	higher occupancy, improved radiation hardness, maybe with layers giving level 1 trigger.	~3000 fb ⁻¹

j	Jet	Cluster in EM and hadronic calorimeters (and inner tracker)
γ	Photon	EM cluster without matching track

- e Electron EM cluster with matching track
- μ Muon Matching tracks in inner and muon trackers
- τ Tau lepton Narrow jet with matching track(s)

MET Missing E_T pT required to balance all of the above (and more)

CMS Detector as an example

 $\delta\eta \times \delta\phi = 0.1 \times 0.1$

A typical display of events @ LHC

1. Why A Heavy Charged Higgs Boson?

Whether the Higgs is SM-like? What's is the Higgs Sector?

Hints for beyond minimal SM?

1. Why Charged Higgs Boson(s)?

- Charge Higgs boson(s) are predictions of most of extension of the SM, i.e. 2HDM, MSSM, mutli-Higgs model, little Higgs models.
- Discovery charged Higgs boson(s) is the herald of New Physics.
- Discovery/Ruling-out of charged Higgs boson(s) is helpful to pinpoint the Higgs sector (EW symmetry breaking).

Conferences:

Charged Higgs Discovery at Colliders 2006(08)(10)

bench mark model (2HDM),0805.2141,Haisch

1. Why Heavy Charged Higgs Boson?

A Heavy Charged Higgs can dominantly decay to t+b (i.e. 2HDM-II) if m>800 GeV

• H^{\pm} decay modes $M_{H^{\pm}} < m_t + m_b$, $M_{H^{\pm}} > m_t + m_b$: • $H^{\pm} \rightarrow \tau \nu_{\tau}$ $H^{\pm} \rightarrow cs$ $H^{\pm} \rightarrow t^*b \rightarrow W^{\pm}\bar{b}b$ $H^{\pm} \rightarrow A^0 W^{\pm}$ $H^{\pm} \rightarrow h^0 W^{\pm}$ $H^{\pm} \rightarrow tb$

Bound to a charged Higgs boson(2HDM) from direct search from Tevatron&LEP

ATLAS,1201.5886

CMS, 1201.4983

Bounds for doubly charged Higgs boson

1. Why A Heavy Charged Higgs Boson?

An example in a nonuniversal MSSM X.J.Bi,Q.S.Yan,P.F.Yin 111.2250 Phys.Rev. D85 (2012) 035005

BMP 2

1. Why A Heavy Charged Higgs Boson? Charged Higgs boson search

- For $m_{H^+} < m_t$, search for $t \to H^+ b$ in top pair decay. Tevatron set a limit for charged Higgs mass up to ~ 160.
- At LHC, the main production mechanism gb → tH⁻. Previous studies for charged Higgs search mainly forcus on 300-600GeV gb → tH⁻ → tτν̄ gb → tH⁻ → tt̄b → bqqτ(hadronic)νbb gb → tH⁻ → tt̄b → bqqbℓνb

1. Why A Heavy Charged Higgs Boson?What's New?

Difficulties in previous study:

• Combinatorics is huge

• Lack of powerful observables to suppress background

New Things 800–1500GeV

 $pp \rightarrow tH^- \rightarrow t\bar{t}b$ $pp \rightarrow tH^-b \rightarrow t\bar{t}bb$ Test Field: the full hadronic channel

Combinatorics can be greatly reduced if the charged Higgs boson is heavy

• Powerful observables can be found after the full reconstruction Although there are 7 or more objects in the final states (at parton level for our signals)

- The top from heavy charged Higgs boson decay will be captured by using top tagger(s). A larger cone
- The b quark from heavy charged Higgs boson is more energetic than jets from the associated top quark.
- The rest of jets will be used to reconstruct the associated top quark

A smaller cone

Combinatoric issue can be overcome and mass bumps can be reconstructed.

Towards Jetography: 0906.1833, G.P. Salam

2.What's a Jet??

Towards Jetography: 0906.1833, G.P. Salam

^A Cone algorithms

Sternman, Weinberg, 1977

$$\Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2 < R^2$$

$$\frac{\sigma_2}{\sigma} = 1 - \frac{32}{3} \frac{\alpha_s}{2\pi} \log \frac{1}{\delta} \log \frac{1}{\epsilon}$$

Intuitive, but not infrared safe.

2. What's a Jet??

^B Sequential recombination jet algorithms

Jade
$$y_{ij} = \frac{2E_iE_j(1-\cos\theta_{ij})}{Q^2}$$
K_t
$$y_{ij} = \frac{2\min(E_i^2, E_j^2)(1-\cos\theta_{ij})}{Q^2}$$
C/A
$$v_{ij} = 2(1-\cos\theta_{ij})$$
Anti-K_t
$$d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p})\frac{\Delta R_{ij}^2}{R^2}$$

P=-1,anti-Kt 2.What's a Jet??

Compute the smallest "distance" d_{ij} or d_{iB} and either cluster i and j together or identify i as a jet

$$d_{ij} = \min\{k_{Ti}^{p}, k_{Tj}^{p}\}\Delta R_{ij}/R, \qquad d_{iB} = k_{Ti}^{p}$$
$$\Delta R^{2} = \Delta \eta^{2} + \Delta \phi^{2}$$

Algorithm	p	clusters first	comment
k _T /Durham	> 0	softest	leads to very irregular jets includes a lot of underlying event hard to get jet energy scale right
Cambridge/Aachen	= 0	closest	still leads to very irregular jets similar problems to kT algorithm
anti-k _T	< 0	hardest	shape of jet insensitive to soft particles √ cone-like jets √ may be easier to get jet energy scale right √

2.What's a Jet??

2.What's a Jet??

Towards Jetography: 0906.1833, G.P. Salam

2.1 btagging The layout of Si tracker @ CMS $\delta L \sim \mu m$

3. Charge multiplicity, b jet is massive, more charged particles can be produced.

- by underlying processes pruning
 - W must be highly boosted need larger mass of heavy quarks $m_{t'} > 500 \text{GeV}$

2.2 Jet mass/sub.

Jet Substructure study entered into a new era.

Higgs tagger (BDRS): 0802.2470 J.M. Butterworth, A.R. Davison, M.Rubin, G.P. Salam

Optimized R =1.2

2.2 subjet.

Higgs tagger (BDRS): 0802.2470 J.M. Butterworth, A.R. Davison, M.Rubin, G.P. Salam

p		$\simeq 500 { m ~GeV}$	$p_T \simeq 1000 \text{ GeV}$	$p_T \simeq 1500 \text{ GeV}$
W	W 76%		77	72
h		59	61	62
		W-H	liggs tagger rate	
		$p_T \simeq 500 \text{ GeV}$	$V \qquad p_T \simeq 1000 \text{ GeV}$	$p_T \simeq 1500 \text{ GeV}$
quark \rightarrow	W	6.5%	6.5	5.9
quark –	$\rightarrow h$	6.8	5.6	5.8
gluon \rightarrow	W	10.4	8.3	7.4
gluon \rightarrow	$\rightarrow h$	10.5	8.8	7.4
		QC	CD mistag rate	2.2 sub j

A.Katz, M. Son, B.Tweedie, 1010.5253

Top quarks can be involved into most new physics processes.

Hadronic Top tagger: 0806.0848, D.E. Kaplan, K. Rehermann, M.D. Schwartz, B. Tweedie

A hadronic top tagger exploits masses of top and W boson and helicity of W inside the top jet

Hadronic w helicty

Top tagger: 0806.0848 D.E.Kaplan,K.Rehermann,M.D.Schwartz,B.Tweedie

Mt, mw, Hw, tagging efficiency

Hadronic Top tagger: 0806.0848 D.E.Kaplan,K.Rehermann,M.D.Schwartz,B.Tweedie

≜UCL

First boosted massive objects... Miguel Villaplana

Boosted Top event at ATLAS Top Tagging, T. Plehn and M. Spannowsky, 1112.4441

2.2 Subjet.

Color-Flow

2.2 Subjet.

Color octet

J. Gallicchio, M. Schwartz,1001.5027 M.Janowiak,A.Hook,J.Wacker,1102.1012

H.N.Li, Z.Li, C.P.Yuan, 1107.4535

2.2 Subjet.

$$\left\langle m_{j}^{2} \right\rangle \simeq C_{i} \, \alpha_{s} \, p_{T,j}^{2} \, \Delta R_{j_{1}j_{2}}^{2}$$

Gluon jet can be more massive than quark jet

S.D.Ellis, J.Huston, K.Hatakeyama, P.Loch, M.Tonnesmann, Prog. Part. Nucl. Phys. 60, 484

$$\left\langle \delta m_j^2 \right\rangle \simeq \Lambda_{\rm UE} \ p_{T,j} \ \left(\frac{R^4}{4} + \frac{R^8}{4608} + \mathcal{O}(R^{12}) \right)$$

The larger the cone size, the larger the contribution of underlying event. Pruning should be introduced to remove it.

M. Dasgupta, L.Magnea, G.P. Salam, JHEP0802,055

We propose a Hybrid-R method

- CA jet algorithm with a larger cone and top tagger to capture a highly boosted top t_1 .
- Recluster the pseudo-jets in the event with a small cone with anti- $K_t R = 0.4$ and get a jet list L_0 .
- If small-size jets are within the larger cone of the direction of the tagged top jet, remove them and get a new jet list L_1 .
- Identify the most energetic jet in L_1 as the b_3 jet. The rest of unused jets form a jet list L_2 .
- There are at least 3 jets in the L_2 . Reconstruct the second top and W by $\chi^2 = \frac{|m(j_1, j_2) - m_W^{PDG}|^2}{\sigma_W^2} + \frac{|m(j_1, j_2, j_3) - m_t^{PDG}|^2}{\sigma_t^2}$

 $\mathcal{L} = \mathcal{L}_{SM} + \partial_{\mu}H^{+}\partial^{\mu}H^{-} - m_{H^{\pm}}^{2}H^{+}H^{-}$ $+H^{+}\bar{t}(Y_{L}P_{L} + Y_{R}P_{R})b + h.c. .$

 $Y_{L} = Y_{R} = 1$

Must be tagged!

Conventions:

$$pp \to t_2 H^- \to t_2 t_1 b_3 / pp \to t_2 H^- b_4 \to t_2 t_1 b_3 b_4$$

R	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4
k_t algorithm	16%	22%	25%	28%	29%	29%	28%	27%
CA algorithm	13%	19%	24%	27%	29%	30%	30%	30%

$m_{H^+} = 1 \text{ TeV}$

R	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4
k_t algorithm	25%	27%	28%	28%	27%	26%	24%	22%
CA algorithm	23%	27%	29%	30%	30%	30%	30%	29%
$m_{TT} - 15 \text{TeV}$								

$m_{H^+} = 1.5$ TeV

Top tagger is better with larger mass when R fixed. CA algorithm is chosen for hadronic top tagger. Cone Size shall be optimized for S/B.

$pp \rightarrow Ht^-$ with s = 14 TeV K factor included

The decay width $Br(H^+ \rightarrow tb) = 100\%$

The cross section is large enough, and the resonance is narrow enough to be resolved by detectors.

- Cone size and algorithm are crucial for the performance of the hadronic top tagger
- Charge Higgs mass bump can be approximately reconstructed.
- The detector effect and the decay width effect can not wash out signal

	signal	$t\bar{t} + jets$	QCD
	$m_{H^{\pm}} = 1 \text{ TeV}$		$n_j \ge 4$
Cross Section x Br (pb)	0.053	553	9186.8
After JH tagger & $H_T > 400 \text{GeV}$	29%	7%	4.8×10^{-3}
Two <i>b</i> -taggings	10%	4.2×10^{-4}	4.8×10^{-7}
The number of jets in jet list $L_0, n_j \ge 6$	10%	3.7×10^{-4}	3.4×10^{-7}
$H_T > 700 \text{GeV} \& C > 0.3$	9.6%	2.1×10^{-4}	3.0×10^{-7}
The leading jet $E(j_1) > 350 \text{GeV}$	8.9%	1.6×10^{-4}	2.5×10^{-7}
The second leading jet $E(j_2) > 250 \text{GeV}$	7.9%	$1.3 imes 10^{-4}$	2.2×10^{-7}
$P_t(b_3) > 300 \text{ GeV } \& P_t(t_1) > 300 \text{ GeV}$	5.3%	$4.5 imes 10^{-5}$	7.7×10^{-8}
$ m_{W_2} - m_W^{\rm PDG} < 20 {\rm GeV}$	3.1%	2.6×10^{-5}	2.3×10^{-8}
$ m_{t_2} - m_t^{\text{PDG}} < 30 \text{ GeV}$			
$ m_{H^{\pm}} - m_{H^{\pm}}^{\text{assumed}} < 200 \text{ GeV}$	2.5%	1.5×10^{-5}	1.5×10^{-8}
Events in 100 fb^{-1}	133	830	13.8

A Cuts based method can work but ...

A Show Case $m_{H^+} = 1$ TeV why we use those cuts?

Considering the small number of signal compared with huge background we resort to the heavy machine gun: MVA

Why MultiVariate Analysis? To improve sensitivity of analysis when luminosity is limited and to reduce luminosity when budget fixed.

Neural Network Discrimination

	signal	$t\bar{t} + jets$	QCD
	$m_{H^\pm} = 1.0~{\rm TeV}$		$n_j \ge 4$
After simple cuts	2.5%	1.5×10^{-5}	1.5×10^{-8}
After NN cut $(NN > 0.6)$	5.5%	2.0×10^{-5}	3.0×10^{-8}
After BDT cut $(BDT > 0.5)$	5.7%	2.1×10^{-5}	3.2×10^{-8}

Significance can be enhanced 100% or so by TMVA.

A closer and intuitive look at a signal event.

Conventional top reconstruction method fails for tagging top

$m_{H^{\pm}}$ (TeV)	0.8	0.9	1	1.1	1.2	1.3	1.4	1.5
σ (fb)	324	192	118	75	49	33	22	15
$\frac{S}{\sqrt{B}}$ (with two <i>b</i> taggings & TMVA)	19.4	13.3	9.5	7.0	5.1	4.0	3.1	2.6
lower bound on $\sigma(fb)$	33	29	25	21	19	16	14	11
$\frac{S}{\sqrt{B}}$ (with two <i>b</i> taggings without TMVA)	9.3	6.5	4.6	3.4	2.5	1.9	1.5	1.3
lower bound on $\sigma(fb)$	70	59	51	44	39	35	29	23

4. Conclusion

• We propose a hybrid-R method to detect heavy charged Higgs boson with hadronic top tagger(s).

• The full hadonic mode is used as a test field and the method does work.

• The heavier the charged Higgs boson, the better performance is our method.

 The heavy charged Higgs (from 0.8 TeV to 1.5 TeV) can be covered with 14 TeV and a 100 fb⁻¹ dataset just by using hadronic mode!

Thanks you!