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AdS/CMT: a correspondence between condensed
matter theory and gravity

e Gravity: black holes

["-«.\ electron-positron
L 5 \ pairs

glactron-positron
poirs

WOR 1 Zow




AdS/CMT: a correspondence between condensed
matter theory and gravity

* Condensed matter physics: condensed phases of matter
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AdS/CFT correspondence

(Maldacena, 1997; Gubser, Klebanov, Polyakov; Witten, 1998)

e Gravity in d+1 dimensional
anti-de Sitter spacetime

* Conformal field theory in
d dimensions




AdS/CMT

CMT: systems at finite density

AdS/CMT: application of AAS/CFT
correspondence to condensed matter physics

Developments:

First contact (2007, S. Sachdev, D. T. Son et al.)
Holographic superconductor (2008, HHH)
Holographic (non-) Fermi liquid (2009, MIT, Leiden)
Holographic lattice (2012, Horowitz, Santos, D. Tong)

State of art: it is suggestive but not decisive
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Motivation: towards a more realistic holographic superconductor

e Superconductivity: zero electrical resistance below Tc

Normal state:  Fermi liquid / strange metal (marginal FL)
Ordered state: superconductor
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* Ingredients in common: High Tc superconductors

FS in normal state; Pairing of fermions in ordered state



Motivation: towards a more realistic holographic superconductor

AdS/CMT: application of AAS/CFT correspondence
to condensed matter physics

CMT: systems at finite density. Strongly coupled
finite density system is difficult from QFT
approach.

Dictionary for finite density system
CMT _d AdS_ d+1
Many body system <& Classical gravity
Finite temperature <>  Black hole

Finite density @)  gauge field



Motivation: towards a more realistic holographic superconductor

CMT: systems at finite density

Simplest holographic finite density system

1 6 1 D
L= 3.2 (R + ﬁ) 102 — F,,, "Y'+ charged matter

Ai(r > 00) =

Achievements: holographic superconductor,
holographic (non-)Fermi liquid, holographic lattice etc...



Motivation: towards a more realistic holographic superconductor

Holographic superconductor: (Hartnoll, Herzog, Horowitz, 2008)

ot (R+ 6) L P P (9, — iqA)él — V()

T 2k? L2)  4e2

a charged scalar field ¢z==) order parameter

At finite temperature, 2nd order mean-field
phase transition

Normal state AdS RN black hole
Ordered state Hairy black hole



Motivation: towards a more realistic holographic superconductor

Holographic superconductor: (Hartnoll, Herzog, Horowitz, 2008)

1 6 1 ) .
L=353 (f” 2 ) — 23 PP =10, — iqA)ol* =V (9)

Ordered phase: hairy black hole

* Bulk: all the charges carried by the order parameter and the horizon
* Boundary: a superconducting ground state with no fermionic charge density

The ordered state in BCS: Cooper pairing near the Fermi surface

Holographic superconductor: No clear relation between
condensate and paired fermions.

Aim |: Holographic superconductor with paring of fermions



Motivation: towards a more realistic holographic superconductor

Holographic superconductor: (Hartnoll, Herzog, Horowitz, 2008)
1 6 1 n : 2
L = 2—/£2 R -+ ﬁ — 4—62F,u1/F _|(au _ ZqAM)¢| o V(QZS)

Normal state: AdS RN black hole

Probe fermions in AdS RN background --- holographic (non-) Fermi liquids
(MIT, Leiden, 2009)

Problems with this RN black hole as a model for holographic (non-) Fermi
liquids

» Charge carried by the horizon at T=0;
 Properties of Fermi surface relying on the probe while not the background
* Nonzero entropy at T=0, indicating a possible new ground state

New ground states at zero temperature, corresponding to the normal state.



Motivation: towards a more realistic holographic superconductor

A better normal state:

Charge totally carried by fermions, no finite size horizon at zero
temperture

 Backreactions of fermions

Electron star: Thomas-Fermi approximation
(S. Hartnoll et al., 2010; de Boer et al. 2009)
Quantum electron star: fermions being treated quantum
mechanically (S. Sachdev, 2011, J. McGreevy et al., 2013)

Aim ll: Consider a holographic superconductor whose normal
state is an electron star



Motivation: towards a more realistic holographic superconductor

Construct a holographic superconductor combining “fermion
paring” and “ordering”

Normal state: electron star
Ordered state: with pairing of fermions

BCS star: BCS interaction in the bulk. A superconducting
instability of an electron star induced by Cooper paring.

BCS instabilities of electron stars to “holographic
superconductors”



Outline:

* A simple review of BCS in condensed matter
* Construction of the holographic BCS star

* Properties of the dual field theory:

- Gap in the spectral function of the dual theory
- Charge density

- Conductivity

* A more generalized construction

« Summary



BCS theory in Condensed Matter Physics

BCS theory: by Bardeen, Cooper and Schrieffer, 1957

An attractive interaction between electrons is introduced. This
interaction induces an instability forming Cooper
pairs.

The attractive interaction is induced by phonons,
introducing a UV scale: Debye frequency

Effective Hamiltonian for interacting fermion within
thin shell:
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BCS theory in Condensed Matter Physics

Start from the Hamiltonian:

A
H = Z GkCI{O_CkO- — V Z CL—I—qTCT—ki,C_k/‘Fq\LCk/T
ko kaklaq
Define A — 2 > (s Qpcs)
= — C_k|C
7 BCS|C—k|Ckt|$2BCS

k

We get the mean field BCS Hamiltonian

_ A2
H — pN ~ Z |:€kCLUCkJ - (Ackwm + ACLTCTM)] + Vﬁ
k

EoM for A gives (Gap Equation)
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BCS theory in Condensed Matter Physics

Bogoliubov transformation

akt \  (cosfx  sinfx Ckt
oaJr_ki - \sinfy — cos 0Oy ch_k¢

Diagonal form:
2

A
H — ,uN = ZE‘kOﬁT{gaka + Z(fk — Ek) —+ Vﬁ
ko k

BCS vacuum state:

Q5cs) = [ [ oxra—iy Q) ~ [ [(cos bk — sinfyclic’ ) |0Q)
k k

Energy of excitations:
Ex = \/A2 + &

COS(Q@k) = fk/Ek, sin(29k) = —A/Ek,




BCS theory in Condensed Matter Physics

An illustration picture
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ES and BCS star

When we couple locally free fermion gas (or BCS system) to
Einstein-Maxwell gravity, we get electron star (BCS star).

Free Fermi gas BCS vacuum

free
fermions

free
fermions

pairing region

sin? 6
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BCS Star: A holographic superconductor

Normal phase: electron star (Hartnoll, Tavanfar, 2010; de Boer et al.
2009)

 Electron star solution:

- Charged version of neutron star

- Fermions in Thomas-Fermi limit
- Fermions populating within an edge
in the radial direction

/

Hartnoll, Hofman, Vegh, 2011

. . N.lgbal, H.Liu, M.M i, 2011
 Properties of dual field theory: Y Cuborvio, YL Sehalm. Sun.

Zaanen, 2011

- Near horizon geometry becomes Lifshitz

- FL with Multiple and closely
spaced Fermi surfaces ks

- Luttinger’s theorem satisfied




BCS Star: A holographic superconductor

Now we focus on the ordered state at zero temperature

Einistein-Maxwell +BCS in the bulk to model the pairing:

1 §) 1
L=—|R+—|—-—<=F, F*" + L
QK2 ( * L2) 4e2” + LBCs

A relativistic BCS interaction (D. Bertrand, 2005)

_ A — _
Lpcs = =iV (T*D, —m)W + §(qfcr5xp)T(qfcr5xp)

Electron star solution recovered at A\ = ().

Previous studies: by Hartnoll&Harman, 2010 in the probe limit.
Backreaction is crucial in some limit.



BCS Star: A holographic superconductor

Following the electron star construction, we work at the Thomas-Fermi
approximation with the assumption:

Oppy < 7 and 9. A < A?

The adiabatic limit allows us to study the fermionic contributions in a
locally tangential spacetime

1 B
7,505 = (i1, D,) ¥ - i0D (L)) T) + g (Lros),
JMBCS — _Q<\TJFM\D>7

A = N I°0)

Expectation values are taken on the BCS vacuum state.



BCS Star: A holographic superconductor

Various backreaction parameters:

T,UJV — (:0 =+ p)u,uuv + PYuv,

J, = —qnuy,

P = P1 T PII

P =PI

— P11

n = N1 + NI1

local chemical
potential

region |



BCS Star: A holographic superconductor

Various backreaction parameters:

pir = (Qses|T11|2Bcs)
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BCS Star: A holographic superconductor

Rewrite these parameters in the difference between the BCS vacuum
and the free fermions:

2 2 2
0 Ptotal = QIL;Z mgf = ;
(up —m3) 2
2 2 9
(Sntotal — 2’1'%2 m]; A )
(g — mf) 2A
5ptotal = 0.

5(107 n7p)total — (,07 n,p) — (,0, n,p)FL

A = ZwDe_l/(Z)"/O)



BCS Star: A holographic superconductor

Solve the system:

Parameter rescaling

el - 1 1 212 .
A= —A, (p,p)zﬁ

K

€, . .
(mfhul) — E(mfvﬂ)v (AawD) —

Leaving [3,m and A
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BCS Star: A holographic superconductor

Solve the system:
ds® = L*( — f(r)dt* + g(r)dr® + r?(da® + dy?)), A, = h(r),

Near horizon: Lifshitz geometry

f=r**(1+ fir®),

gO e ~ _
g= "3+, Wp = ¢
h = ho?"z(l + hl?“a>,

fi = fio(1+ par®).

Boundary: AdS
Edge of the BCS star: ,&(7“8) — T?Lf

Four parameters: (f,g,h,mu) where mu is determined from energy-
momentum conservation.



BCS Star: A holographic superconductor

e A typical BCS star:
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BCS Star: A holographic superconductor

* Free energy of the stars compared to electron star
(lambda=0)
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BCS Star: A holographic superconductor

e Remarks:

More stable than electron star
Interaction driven phase transition, (BKT?)

It inherits a lot of properties of electron star: multiple and closely
located Fermi surfaces, fields not visible at the boundary

* The properties of the dual field theory

A new ingredient: gap in the dual spectral function
Luttinger theorem

Conductivity



Properties of the dual field theory

e Gap in the dual field theory

Probe with the same fermion that constitute the BCS star
(Faulkner et al. 2009):

_ 1 . - 1, -
Sprobe = /d4x\/_—g [ —iU(THD,, — ms)¥ + §A*\IICF5\IJ — iAxprwc]
Dirac equation:
i(T*D,, —ms)¥ + AT ¥, = 0.
(= V970’0, FTivg™ o’k + (w+ AV gtto —my)ro(r k,w) £ il s (r, =k, —w) =0

Y1 (r, k,w) is coupled to 5(r,—k,—w) due to BCS interaction and they
have the same spectrum at w = 0.

There is a gap



Properties of the dual field theory

Infalling boundary condition can be chosen independently for Y1(r k,w)
and 5 (r, —k, —w)

B{ B{I o GOIOI GO;LOQ AII AIII
B3t Bxt) — Goior Goto, —Ast AL
Without BCS coupling: matrices A and B are diagonal and
Al (kp,0) =0 AN (—kp,0) =0

With BCS coupling, the sources matrix

I I1
A%RMN(GW %A)+O@%ﬁ)

*1 *]1
—a5s A —asw



Properties of the dual field theory

In a more detailed form: (1. Faulkner, et al. 2009, H. Liu, et al, 2009)

o~ (4 5)

where
= [ dry/ge €V gD (-1)°,
Q1 :/dr\/gjf (O)Zﬁﬁ(o) O _ (ke 0)
2 3

Q2 = /dT\/grrﬁz(O)iAéo)

The gap scale: vQ1Q2/Pi Ps

The gap is of the order A taking value at the horizon.



Properties of the dual field theory
* Luttinger’'s theorem violated

Electron star: Luttinger’s theorem satisfied, a filled Fermi sea
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Properties of the dual field theory

e Conductivity

Consider the time dependent fluctuations:

L : . .
A, = e 5%(7“)6_“‘”5, Gto = L25gm (T)e_z“t, Uy = L5ux(7“)e_wt.
K

The small frequency behavior can be obtained analytically

Re 0 o §(w) + w?

No hard gap; The same happens for holographic superconductor.
Same behavior in the normal phase.



Properties of the dual field theory

Evidence that BCS star corresponds to a superconducting
state:

* Fermionic spectrum with a gap

e Luttinger’s theorem not satisfied

e Conductivity?



A more generalized construction

 We introduce a dynamical scalar field in the bulk which causes
the pairing of fermion

1 6 1 1 1
_ L R o A — 2igA)AZ — —|AJ?
£= 5 (B4 13) - g b iz 00~ 2004, A - 1A

_ 1., - 1 -
—iU(TH*D, —ms)W + §A*x110r5x11 - §A\IIF5\IJC.

* Itis nolonger the condensate field

A=AV T°0 = LQ (VH — 2igA*) (V,, — 2igA,) A

M,

e Kinetic term of Delta: scalar field could be visible at the
boundary.



A more generalized construction

We solve this systemat Kk — 0.

All the parameters and fields can be rescaled to eliminate K,
however, there is no scaling limit that can keep all the terms in the
Lagrangian.

An interesting scaling limit:

1 e e? .

| . A A
(pap) - ?(10729)) n = Ena (AM,,LLl,mf,A,CUD) — E(A,unuamfaAawD)a A= EA

the gap equation becomes

A /T 1 .Geff 4 .Geff 7 A
A — MU T = W(w — QZﬁAM)(Vﬂ — QZﬁAM)A

b
with geg = /73"



A more generalized construction

A S /T 1 .Geff 7 .Geff 7 A
A= MU I0) = —(VF - 2i == A")(V, — 2i—=A,)A
m? N # N

Depending on the scaling of m?b, we can have three kinds of system
« When mj =r""""m; with § > (: the bulk BCS Lagrangian.

1

- When mj =k~ ' : Bulk BCS + charged scalar

2 —1—-9 2

* When mMg==kK Mg with 0 < 0: Charged scalar with kinetic
term, neutral fermions.



A more generalized construction

Bulk BCS+ charged scalar in more detail:

Gap equation: A _ X(\TICFE’\P) 2
, VB
/B

Wlth S = ~ 9
Mg,

AFALA

In Thomas-Fermi approximation:
A = 90 e~ =247/ iy /B2 =)

Different from the BCS Lagrangian: scalar no longer meaning
condensate.

The charged scalar enhance the system to condensate.



A more generalized construction

 Bulk geometry: star structure

 Normal phase: ES
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It is much stabler than
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A more generalized construction

 Fermionic spectrum function -- still a gap

 Enhancement of charge density:

102 ——————

Coupling goes larger, more bosons =
in the bulk

S R S S S R
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A more generalized construction

* The resulting system is quite similar to

BCS Sta rl 0'307 T T T T T T T T T T T T T T T T T T T T T ]
. | :
S 028} i
= [ ]
rs , Q% 0.26}
Qcom :/ drr \/ 9rrTlcom £ i |
0 S 0241 i
Ql f ]
\o il
& 022/
) I
000 o2 o4 06 o0s 10
e Enhancement of the Mg\ fig> = g

susceptibility of the system towards
superconductivity and also the charge density.



Summary

e What we did
- BCS star: pairing in the bulk; More stable than electron star
- gap in the fermion spectral function

- Scaling limits of a more generalized construction

e Drawbacks

- Star limit: Multiple FS, Fermions and pairing not visible at the boundary
- No hard gap in the conductivity

Future Direction
- Finite temperature
- Lattice, d-wave, to make it more realistic

- Other scaling limit



Thank you!



