Some applications of integral geometry in AdS/CFT

Xing Huang

Northwest University

Nov 2nd @ USTC

Outline

- Review of integral geometry
- OPE block and reconstruction of bulk operators
- Entanglement renormalization

Entanglement entropy S_{A} : missing information by restricting to measurement in system A

$$
\rho_{A}=\operatorname{Tr}_{B} \rho_{A B}=\operatorname{Tr}_{B}\left|\psi_{A B}\right\rangle\left\langle\psi_{A B}\right|
$$

$$
S_{\mathrm{EE}}=-\operatorname{Tr} \rho_{A} \log \rho_{A}
$$

Ryu-Takayanagi formula

$$
S_{\mathrm{EE}}=\frac{A(\gamma)}{4 G}
$$

γ : minimal surface ending on $\Sigma=\partial A$

Crofton's formula

$$
\frac{\sigma(\gamma)}{4 G}=\frac{1}{4} \int_{\gamma \cap \Gamma \neq \varnothing} N(\gamma \cap \Gamma) \epsilon_{\mathcal{K}}
$$

The length $\sigma(\gamma)$ of a curve γ can be expressed in terms of an integral over the geodesics Γ that have nonvanishing intersection number $N(\gamma \cap \Gamma)$ with γ

The measure $\epsilon_{\mathcal{K}}$ is given by the second derivative of the entanglement entropy

$$
\epsilon_{\mathcal{K}}(u, v)=\frac{\partial^{2} S(u, v)}{\partial u \partial v} \mathrm{~d} u \wedge \mathrm{~d} v
$$

Hence we can obtain the geometry from the entanglement structure of the field theory on the boundary

Kinematic space

$$
-\gamma_{2}-\gamma_{3}-\gamma_{1}
$$

Hyperbolic space:

$$
\mathrm{d} s^{2}=\frac{1}{z^{2}}\left(\mathrm{~d} z^{2}+\mathrm{d} x^{2}\right)
$$

de Sitter:

$$
\mathrm{d} s^{2}=\frac{1}{\alpha^{2}}\left(-\mathrm{d} \alpha^{2}+\mathrm{d} x^{2}\right)
$$

Point curve and distance

A (blue): (x, z), B (red): $(x, z+\delta)$

A (blue): $(x, z), B(r e d):(x-\delta, z)$

The distance is given by integration over the region between the point curves

$$
\frac{\mathrm{d}(A, B)}{4 G}=\frac{1}{4} \int_{\left(\tilde{p}_{A} \cup \tilde{p}_{B}\right)-\left(\tilde{p}_{A} \cap \tilde{p}_{B}\right)} \epsilon_{\mathcal{K}}
$$

Kinematic space of geodesics in general dimensions

XH and Lin 1507.04633

Crofton's formula in higher dimensions says
 that the area is equal to flux of geodesics

$$
\begin{aligned}
& \int_{M^{q} \cap L_{r} \neq \varnothing} \sigma_{q+r-d}\left(M^{q} \cap L_{r}\right) \epsilon_{\mathcal{K}}= \\
& \frac{O_{d} \ldots O_{d-r} O_{q+r-d}}{O_{r} \ldots O_{1} O_{0} O_{q}} \sigma_{q}\left(M^{q}\right)
\end{aligned}
$$

$$
\epsilon_{\mathcal{K}}=\frac{1}{4 G} \operatorname{det}\left[\frac{\partial^{2} S\left(\vec{x}_{1}, \vec{x}_{2}\right)}{\partial \vec{x}_{1} \partial \vec{x}_{2}}\right] \prod_{i=1}^{d-1} \mathrm{~d} x_{1}^{i} \wedge \mathrm{~d} x_{2}^{i}
$$

- The density is given by the second derivatives of the length of the geodesic
- RT-formula can be reproduced

Radon Transform and its inverse

$$
\text { Duality: } f(x) \leftrightarrow \hat{f}(\gamma)
$$

Radon transform $f(x) \rightarrow \hat{f}(\gamma)$

$$
\hat{f}(\gamma)=\int_{x \in \gamma} f(x) d \sigma(\gamma)
$$

Dual transform $\varphi(\gamma) \rightarrow \check{\varphi}(x)$

$$
\check{\varphi}_{p}(x)=\int_{d(x, \gamma)=p} \varphi(\gamma)
$$

The inverse transform:

$$
f(x)=-\frac{1}{\pi} \int_{0}^{\infty} \frac{1}{\sinh p} \frac{d}{d p}(\hat{f})_{p}^{\vee}(x) d p .
$$

Conformal block

Conformal partial waves (Δ_{i} all equal) $W_{\Delta, \ell}\left(x_{i}\right)$ from 4-point function

$$
\left\langle\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{3}\left(x_{3}\right) \mathcal{O}_{4}\left(x_{4}\right)\right\rangle=\sum_{\mathcal{O}} C_{12 \mathcal{O}} C^{\mathcal{O}}{ }_{34} W_{\Delta, \ell}\left(x_{i}\right)
$$

$W_{\Delta, \ell}\left(x_{i}\right)$ is related to the (global for 2d) conformal block $G_{\Delta, \ell}(u, v)$

$$
W_{\Delta, \ell}\left(x_{i}\right) \equiv \frac{G_{\Delta, \ell}(u, v)}{\left(x_{12}^{2}\right)^{\frac{1}{2}\left(\Delta_{1}+\Delta_{2}\right)}\left(x_{34}^{2}\right)^{\frac{1}{2}\left(\Delta_{3}+\Delta_{4}\right)}}
$$

where u, v are the cross ratios:

$$
u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, \quad v=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

Conformal block from Radon transform

Conformal block can be computed holographically from geodesic Witten diagram Hijano etal. 1508.00501

$$
\begin{aligned}
W_{\Delta, 0}\left(x_{i}\right) \sim & \int_{x_{0} \in \gamma_{12}} \int_{x_{0}^{\prime} \in \gamma_{34}} G_{b \partial}\left(x_{0}, x_{1}\right) G_{b \partial}\left(x_{0}, x_{2}\right) \times \\
& G_{b b}\left(x_{0}, x_{0}^{\prime} ; \Delta\right) \times G_{b \partial}\left(x_{0}^{\prime}, x_{3}\right) G_{b \partial}\left(x_{0}^{\prime}, x_{4}\right)
\end{aligned}
$$

Taking $\Delta_{i}=0$, the conformal block becomes the Radon transform of the bulk two-point function

$$
\hat{G}_{b b}\left(\gamma_{12}, \gamma_{34}\right)=G_{\Delta, 0}(u, v)
$$

Bulk field from geodesic operator

Each pair of operators gives the Radon transform of a bulk operator $\hat{\phi}$ Czech etal. 1604.03110

$$
\begin{aligned}
& \hat{\phi}\left(x_{1}, x_{2}\right)=\left(x_{12}\right)^{2 \Delta_{i}} C_{i i \mathcal{O}}\left(x_{12}, \partial\right) \mathcal{O}\left(x_{2}\right) \\
& \mathcal{O}_{i}\left(x_{1}\right) \mathcal{O}_{j}\left(x_{2}\right)=\sum_{\mathcal{O}} C_{i j \mathcal{O}}\left(x_{12}, \partial\right) \mathcal{O}\left(x_{2}\right)
\end{aligned}
$$

Turning on a source of $\phi\left(x_{3}\right)$ (coupled to a primary $\mathcal{O}\left(x_{3}\right)$) gives the 3-point function

$$
\frac{\left(x_{12}^{2}\right)^{\frac{1}{2} \Delta_{3}}}{\left(x_{13}^{2}\right)^{\frac{1}{2} \Delta_{3}}\left(x_{23}^{2}\right)^{\frac{1}{2} \Delta_{3}}}
$$

which is the Radon transform of the bulk-to-boundary propagator

Casimir

Covariant kinematic space specified by end points

$$
\begin{aligned}
& z_{L, R}=t_{L, R}-x_{L, R}, \bar{z}_{L, R}=t_{L, R}+x_{L, R} \\
& \quad \mathrm{~d} s^{2}=\frac{L}{4 G}\left[\frac{1}{\left(z_{L}-z_{R}\right)^{2}} \mathrm{~d} z_{L} \mathrm{~d} z_{R}+\frac{1}{\left(\bar{z}_{L}-\bar{v}_{R}\right)^{2}} \mathrm{~d} \overline{\mathrm{z}}_{L} \mathrm{~d} \bar{z}_{R}\right] .
\end{aligned}
$$

The holomorphic and anti-holomorphic coordinates decouple and the metric takes the form of $\mathrm{dS}_{2} \times \mathrm{dS}_{2}$

The descendants of a certain primary \mathcal{O}_{k} all have eigenvalue C_{k} and we have $\left(\Delta_{i}=0\right)$

$$
\left[\left(L^{2}+\bar{L}^{2}\right), \mathcal{B}_{k}\left(x_{1}, x_{2}\right)\right]=C_{k} \mathcal{B}_{k}\left(x_{1}, x_{2}\right)=\mathcal{L}_{12}^{2} \mathcal{B}_{k}\left(x_{1}, x_{2}\right)
$$

Casimir and equation of motion

The Casimir in the position space (from $\mathcal{L}_{n}=z^{n+1} \partial_{z}$) gives

$$
2\left(\square_{\mathrm{dS}_{2}}+\square \overline{\mathrm{dS}}_{2}\right) \mathcal{B}_{k}\left(x_{1}, x_{2}\right)=\mathcal{C}_{k} \mathcal{B}_{k}\left(x_{1}, x_{2}\right)
$$

which implies

$$
\left(\square_{\mathrm{AdS}}-m^{2}\right) \phi(x)=0 \quad \Longrightarrow \quad\left(2\left(\square_{\mathrm{dS}_{2}}+\square_{\overline{\mathrm{dS}}_{2}}\right)+m^{2}\right) \tilde{\phi}(\gamma)=0
$$

One can solve for the OPE block

Interaction

$$
\tilde{\phi}\left(\gamma_{12}\right)=\mathcal{B}_{\mathcal{O}_{\Delta}}\left(x_{1}, x_{2}\right)+\frac{1}{N} \sum_{\{i, j\}, n} a_{n}^{i j} \mathcal{B}_{\left[\mathcal{O}_{i} \mathcal{O}_{j}\right] n}\left(x_{1}, x_{2}\right)+O\left(1 / N^{2}\right)
$$

- Multi-trace operators are needed to reproduce interaction
- Bulk interaction expressed in terms of geodesics Witten diagram gives rise to exchange of multi-trace operators
- Interacting geodesic operator (with multi-trace operators involving arbitrary number of T) follows from Virasoro conformal block Guica 1610.08952

Bulk operator reconstruction in SYK model

4-point function in SYK model reads

$$
H_{\mathrm{SYK}}=\sum_{1 \leq i_{1} \leq i_{2} \cdots \leq i_{q} \leq N} j_{i_{1} i_{2} \ldots i_{q}} \psi_{i_{1}} \psi_{i_{2}} \ldots \psi_{i_{q}}, \quad \mathcal{F}=\mathcal{F}_{c}+\mathcal{F}_{h=2}
$$

The CFT_{1} contribution \mathcal{F}_{c} admits the conformal block expansion

$$
\mathcal{F}_{c}\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right)=G\left(\tau_{12}\right) G\left(\tau_{34}\right) \sum_{n=1}^{\infty} c_{n}^{2} z^{h_{n}} F_{1}\left(h_{n}, h_{n} ; 2 h_{n}, z\right)
$$

w/ Chen-Te Ma, in progress
A pair time-like separated determines a bulk point

$$
\begin{gathered}
y=\left(\frac{1}{2}\left(\tau_{1}+\tau_{2}\right), \frac{1}{2}\left|\tau_{1}-\tau_{2}\right|\right) \\
\hat{G}_{b b}\left(y_{12}, y_{34}\right)=G_{h_{n}}(z) .
\end{gathered}
$$

Extension to Schwarzian theory

The leading order non-conformal part is given by the Schwarzian

$$
\int\{f(\tau), \tau\} \mathrm{d} \tau
$$

The following operator in the Schwarzian can have the bulk correspondence Mertens etal 1705.08408

$$
\mathcal{O}_{\ell}\left(\tau_{1}, \tau_{2}\right)=\left(\frac{f^{\prime}\left(\tau_{1}\right) f^{\prime}\left(\tau_{1}\right)}{f\left(\tau_{1}\right)-f\left(\tau_{2}\right)}\right)^{2 \ell} \leftrightarrow e^{2 \ell \phi\left(\tau_{1}, \tau_{2}\right)}
$$

The OPE block of the stress tensor corresponds to the conformal factor in the bulk metric

$$
f \circ B_{T}^{i i}\left(\tau_{1}, \tau_{2}\right)=2\left[\phi\left(\tau_{1}, \tau_{2}\right)-\phi_{0}\left(\tau_{1}, \tau_{2}\right)\right]
$$

Multi-scale entanglement renormalization ansatz

LUs (disentangler, isometry) modify the entanglement structure

MERA version of RT-formula

$$
S_{A} \leq \#(\text { LUs cut })
$$

AdS/MERA

MERA $=$ Discretized AdS Swingle 0905.1317

MERA

$S_{A} \propto \operatorname{Min}\left[\# \operatorname{Bonds}\left(\gamma_{A}\right)\right]$

AdS/CFT

$S_{A} \propto \operatorname{Min}[A r e a]$

Surface/state correspondence

Pure State $|\Phi(\Sigma)\rangle$

Mixed State $\rho(\Sigma)$

Trivial State $|\Omega\rangle$

Mixed State $\rho(\Sigma)$

- AdS/CFT applies to $\Phi(\Sigma)$, an excited state
- RT remains valid for $\Phi(\Sigma)$

RG flow in the kinematic space

The short-distance entanglement (red) is removed while the long-distance (blue) entanglement is invariant under RG flow but it is reshuffled to shorter scale.

Ishibashi state

- The UV state $\phi(x)|0\rangle$ can be expressed in terms of "global" Ishibashi state i.e., $\sum_{n} L_{-1}^{n} \tilde{L}_{-1}^{n} \mathcal{O}$ Miyaji etal. 1506.01353
- Realization of error correction using the covariant version of inverse Radon transform. Ishibashi state in a local form

Goto\&Takayanagi 1704.00053

- The IR (trivial) state should be an Ishibashi state of the full Virasoro algebra
- The IR operator only consists of geodesic operators going through point x

Summary

- The punch line is that we have a duality between the kinematic space \leftrightarrow real space. We can reconstruct the kinematic space from field theory.
- The construction based on geodesic applies to any space and any boundary.
- Bulk operator can be constructed using Radon transform. The dual operator (geodesic operator) follows from OPE
- The approach in principle can go beyond the conformal case and could have a wide range of applications.

