Quantum Anomalies and # Hawking radiation Based on arXiv: 0706.0983v5 [hep-th] CQG 24 (2007) 5123 # Shuang-Qing Wu 2007/11/2 at ICTS-USTC **Hua-Zhong Normal University** #### 1. Introduction ### §1.1 Black holes A brief introduction: Concept and Properties ## §1.2 Hawking radiation - (a) Radiant Mechanism: quantum tunnelling; vacuum fluctuation - (b) Derivation Method: so many approaches, such as, gravitational collapse, path integral, Euclidean action integral, Euclidean periodic extension, temperature Green function, renormalization EMT, second quantization, density matrix, Bogoliubov transformation, trace (con-formal) anomaly, conformal flat, <u>DRS</u>, etc. Two recent attracted ones due to F. Wilczek: tunnelling picture and anomaly cancellation A few words about Frank Wilczek # Phys.Rev.Lett. **56** papers [1 (2000) +1 (1000) +2 (500) +7 (250) +12 (100) +10 (50) +19(10)+3(1)+1(0)] (2007.10.23) Hawking radiation from charged black holes via gauge and gravitational anomalies S. Iso, H. Umetsu, **F. Wilczek**, *PRL* **96** (2006) 151302 Cited **37** A Relationship between Hawking radiation and gravitational anomalies S.P. Robinson, **F. Wilczek**, *PRL* **95** (2005) 011303 Cited **46** Hawking radiation as tunneling M.K. Parikh, **F. Wilczek**, *PRL* **85** (2000) 5042 Cited **203** Problem of Strong p and t Invariance in the Presence of Instantons F. Wilczek, *PRL* 40 (1978) 279 Cited 1283 Ultraviolet Behavior of Nonabelian Gauge Theories D.J. Gross, F. Wilczek, *PRL* 30 (1973) 1343 Cited 2324 ## 2. Anomaly #### §2.1 Definitions: Classically conserved law is violated in quantum mechanism version. QFT: quantum field theory Anomaly must be cancelled by introducing a new mechanism—new physics—related to symmetry: **CFT** ?! #### $\S 2.2$ **Examples**: Gauge anomaly: $\nabla_{\mu}J^{\mu} \neq 0$ Gravitational anomaly: $\nabla_{\mu}T^{\mu\nu} \neq 0$ Conformal (trace) anomaly: $T^{\mu}_{\mu} \neq 0$ Chiral anomaly: $\nabla_{\mu}J_{5}^{\mu}\neq 0$ Axial-vector anomaly, triangle anomaly, etc... # 3. Anomaly cancellation #### §3.1 Introduction Dimensional reduction—2-dimensional effective theory—omitting <u>classically irrelevant modes</u>—effective theory becomes chiral in the near-horizon region (Brick-Wall model)—anomalies (appearance and cancellation)—d=2 thermal radiant flux—Hawking radiation reproduction #### Static BHs: - S.P. Robinson and F. Wilczek, PRL **95** (2005) 011303, gr-qc/0502074 - S. Iso, H. Umetsu and F. Wilczek, PRL **96** (2006) 151302, hep-th/0602146 #### **Rotating BHs** - S. Iso S, H. Umetsu and F. Wilczek, PRD **74** (2006) 044017, hep-th/0606018 - K. Murata and J. Soda, PRD **74** (2006) 044018, hep-th/0606069 - S. Iso S, H. Morita and H. Umetsu, JHEP **04** (2007) 068, hep-th/0612286 ## §3.2 Dimensional reduction A most general, static and spherically symmetric black hole: $$ds^{2} = -f(r)dt^{2} + h(r)^{-1}dr^{2} + P(r)^{2}d\Omega^{2}$$ $$A = A_{t}dt = -\frac{q}{r}dt$$ Assume: $f(r_{+}) = 0$, $h(r_{+}) = 0$ Surface gravity: $\kappa = \frac{1}{2} \sqrt{f_{,r} h_{,r}} \Big|_{r_{+}}$ Dimensional reduction—massless scalar field (or massive complex scalar field with a mass term and a minimal electro-magnetic coupling interaction, Dirac, Maxwell fields)—partial wave decomposition: $\phi = \sum_{lm} \phi_{lm}(t,r) Y_{lm}(\theta,\varphi)$ $$S[\phi] = -\frac{1}{2} \int d^4x \sqrt{-g_{(4)}} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi = \frac{1}{2} \int d^4x \sqrt{-g_{(4)}} \phi \Box \phi$$ $$= \frac{1}{2} \int dt dr d\theta d\varphi \ P^2 \sin \theta \sqrt{-g} \phi \left\{ -\frac{1}{f} \partial_t^2 + h \partial_r^2 + \left[\frac{(fh)_{,r}}{2f} + \frac{2h}{P} P_{,r} \right] \partial_r + \frac{1}{P^2} \Delta_{\Omega} \right\} \phi$$ $$= \frac{1}{2} \sum_{lm} \int dt dr \ P^2 \sqrt{-g} \phi_{lm} \left\{ -\frac{1}{f} \partial_t^2 + h \partial_r^2 + \left[\frac{(fh)_{,r}}{2f} + \frac{2h}{P} P_{,r} \right] \partial_r - \frac{l(l+1)}{P^2} \right\} \phi_{lm}$$ $$\simeq \frac{1}{2} \sum_{lm} \int dt dr \ P^2 \sqrt{-g} \phi_{lm} \left[-\frac{1}{f} \partial_t^2 + h \partial_r^2 + \frac{(fh)_{,r}}{2f} \partial_r \right] \phi_{lm}$$ where $\sqrt{-g} = \sqrt{f/h}$, [Tortoise: $r_* = \int dr/\sqrt{fh}$]. Physics near the horizon can be described by an infinite collection of massless fields in the (1+1)-dimensional effective theory, each partial wave propagating in a space-time with a metric given by the "r-t" section of the full space-time metric and the dilaton field $P(r)^2$. <u>Metric ansätz</u>: the (1+1)-dimensional effective metric and the gauge potential: $$ds^{2} = -f(r)dt^{2} + h(r)^{-1}dr^{2}$$ $$A_{t} = \frac{q}{r}$$ with the dilaton field $P(r)^2$. A scalar field in the original (3+1)-dimensional background can be effectively described by an infinite collection of massless fields in the (1+1)-dimensional background space-time with the effective metric and the gauge potential, together with the dilaton field $\Psi = P(r)^2$. When reducing to d=2, a factor $\Psi = P(r)^2$ in the Lagrangian can be interpreted as a dilaton background coupled to the charged fields. The contribution to the anomaly from the dilaton field can be **neglected** due to a static background. The non-vanishing Christoffel symbols and the Ricci scalar: $$\Gamma_{tr}^{t} = \Gamma_{rt}^{t} = \frac{f_{,r}}{2f}, \quad \Gamma_{tt}^{r} = \frac{hf_{,r}}{2}, \quad \Gamma_{rr}^{r} = -\frac{h_{,r}}{2h}$$ $$R = -\frac{hf_{,rr}}{f} - \frac{f_{,r}h_{,r}}{2f} + \frac{hf_{,r}^{2}}{2f^{2}}$$ #### §3.3 Gauge anomaly Hawking effect—near-horizon region—horizon: one-way membrane—modes interior to the horizon can not affect physics outside the horizon, classically \longrightarrow only consider the physics outside the horizon, and define the effective theory in the outer region: $[r_+, +\infty] \equiv [r_+, r_+ + \varepsilon] \cup [r_+ + \varepsilon, +\infty]$ | $[r_+, +\infty]$ | effective theory | anomaly | laws | |--------------------------------|------------------|---------|-----------| | $[r_+, r_+ + \varepsilon]$ | chiral | Yes | × | | | | | | | $[r_+ + \varepsilon, +\infty]$ | non-chiral | No | conserved | In the <u>near-horizon</u> region—there are **only** outgoing modes—if neglecting quantum effects of (classically irrelevant) ingoing modes—effective theory becomes **chiral**—gauge and gravitational **anomalies**—invariance of the underlying theory under gauge and diffeomorphism <u>symmetries</u>—these anomalies must be **cancelled** by quantum effects of the classically irrelevant modes—anomaly cancellation at the horizon—Hawking flux of charge and energy momentum—Hawking temperature. #### Conditions: - (1) anomaly cancellation; - (2) regularity requirement. #### Consistent anomaly: $$\nabla_{\mu}J^{\mu} = \frac{-e^2}{4\pi\sqrt{-g}}\epsilon^{\mu\nu}\partial_{\mu}A_{\nu}$$ Covariant anomaly: $$\nabla_{\mu}\widetilde{J}^{\mu} = \frac{-e^2}{4\pi\sqrt{-g}}\epsilon^{\mu\nu}F_{\mu\nu}$$ minus (-): outgoing (right-handed) fields; $\varepsilon^{tr}=1$; J^{μ} : non-covariant; Coefficient: $\tilde{J}^{\mu}\simeq 2J^{\mu}$; Covariant versus Consistent: $$\widetilde{J}^{\mu} = J^{\mu} + \frac{e^2}{4\pi\sqrt{-g}}A_{\lambda}\epsilon^{\lambda\mu}$$ Non-vanishing r-component: $$\widetilde{J}^r = J^r + \frac{e^2}{4\pi\sqrt{-g}}A_t(r)H(r)$$ Region $[r_+ + \varepsilon, +\infty]$: $J^{\mu}_{(O)}$ is conserved; Region $[r_+, r_+ + \varepsilon]$: $J^{\mu}_{(H)}$ satisfies the anomaly equation: $$\nabla_{\mu} J^{\mu}_{(O)} = 0$$ $$\nabla_{\mu} J^{\mu}_{(H)} = \frac{-e^2}{4\pi\sqrt{-g}} \epsilon^{\mu\nu} \partial_{\mu} A_{\nu}$$ namely $$\partial_{\mu} \left[\sqrt{-g} J^{\mu}_{(O)} \right] = 0,$$ $$\partial_{\mu} \left[\sqrt{-g} J^{\mu}_{(H)} \right] = \frac{-e^2}{4\pi} \epsilon^{\mu\nu} \partial_{\mu} A_{\nu}$$ $$\partial_r \left[\sqrt{-g} J_{(O)}^r \right] = 0$$ $$\partial_r \left[\sqrt{-g} J_{(H)}^r \right] = \frac{e^2}{4\pi} \partial_r A_t$$ Solutions: $$\sqrt{-g}J_{(O)}^{r} = c_{O}$$ $$\sqrt{-g}J_{(H)}^{r} = c_{H} + \frac{e^{2}}{4\pi} \Big[A_{t}(r) - A_{t}(r_{+}) \Big]$$ $$= c_{O} + \frac{e^{2}}{4\pi} A_{t}(r)$$ c_O , c_H : integration constants. Total current outside the horizon: $$J^{\mu} = J^{\mu}_{(O)} \Theta(r) + J^{\mu}_{(H)} H(r)$$ $$\Theta(r) = \Theta(r - r_{+} - \varepsilon)$$: scalar step $$H(r) = 1 - \Theta(r)$$: scalar top hat Variation of the effective action under gauge transformations: (λ : gauge parameter) $$-\delta_{\lambda}W = \int dt dr \sqrt{-g} \lambda \nabla_{\mu} J^{\mu}$$ $$= \int dt dr \lambda \left\{ \partial_{r} \left(\frac{e^{2}}{4\pi} A_{t} H \right) + \left[\frac{e^{2}}{4\pi} A_{t} + \sqrt{-g} \left(J_{(O)}^{r} - J_{(H)}^{r} \right) \right] \delta(r - r_{+} - \epsilon) \right\}$$ The first term should be cancelled by quantum effects of the classically irrelevant ingoing modes. $[\partial_{\mu} \Theta(r) = \delta^{r}_{\mu} \delta(r)]$ Gauge invariance of the total effective action $\delta_{\lambda}W = 0$: $$\sqrt{-g} \left[J_{(O)}^r - J_{(H)}^r \right] (r_+) + \frac{e^2}{4\pi} A_t(r_+) = 0$$ $$\implies c_O = c_H - \frac{e^2}{4\pi} A_t(r_+)$$ c_H : the value of the consistent current at the horizon. To determine the current flow—to fix the value of the current at the horizon—condition: gauge covariant—impose: the coefficient of the covariant current at the horizon should vanish: $\tilde{J}^r_{(H)} = 0 \longmapsto \mathbf{Regularity\ requirement}$ $$\widetilde{J}_{(H)}^r = J_{(H)}^r + e^2 A_t(r) / (4\pi \sqrt{-g})$$ $$c_H = -\frac{e^2}{4\pi} A_t(r_+)$$ $c_O = -\frac{e^2}{2\pi} A_t(r_+) = -\frac{e^2 q}{2\pi r_+}$ This agrees with the current flow associated with the Hawking thermal (blackbody) radiation including a chemical potential. ### §3.3 Gravitational anomaly #### Consistent anomaly: $$\nabla_{\mu}T^{\mu}_{\ \nu} = \frac{1}{96\pi\sqrt{-g}}\epsilon^{\beta\delta}\partial_{\delta}\partial_{\alpha}\Gamma^{\alpha}_{\nu\beta} \equiv \mathcal{A}_{\nu} = \frac{1}{\sqrt{-g}}\partial_{\mu}N^{\mu}_{\ \nu}$$ Covariant anomaly: $$\nabla_{\mu} \widetilde{T}^{\mu}_{\ \nu} = \frac{-1}{96\pi\sqrt{-g}} \epsilon_{\mu\nu} \partial^{\mu} R \equiv \widetilde{\mathcal{A}}_{\nu} = \frac{1}{\sqrt{-g}} \partial_{\mu} \widetilde{N}^{\mu}_{\ \nu}$$ (1) First ignore the electro-magnetic interaction and only concentrate on the pure gravitational anomaly. Region $[r_+ + \varepsilon, +\infty]$: $T^{\mu}_{(O)\nu}$ is covariantly conserved; Region $[r_+, r_+ + \varepsilon]$: $T^{\mu}_{(H)\nu}$ obeys the anomalous equation: $$\nabla_{\mu} T^{\mu}_{(O)\nu} = 0$$ $$\nabla_{\mu} T^{\mu}_{(H)\nu} \equiv \mathcal{A}_{\nu} = \frac{1}{\sqrt{-g}} \partial_{\mu} N^{\mu}_{\nu}$$ Region $$[r_{+} + \varepsilon, +\infty]$$: $N^{\mu}_{\ \nu} = \mathcal{A}_{\nu} = 0$; Region $[r_{+}, r_{+} + \varepsilon]$: $N^{r}_{\ r} = N^{t}_{\ t} = 0$ $$N^{r}_{\ t} = \frac{1}{96\pi} \partial_{r} \Gamma^{r}_{tt} = \frac{1}{192\pi} (f_{,r}h_{,r} + hf_{,rr})$$ $$N^{t}_{\ r} = \frac{-1}{96\pi} \partial_{r} \Gamma^{r}_{rr} = \frac{-1}{192\pi h^{2}} (h_{,r}^{2} - hh_{,rr})$$ Consistent and covariant anomalies are purely time-like $(A_r = \tilde{A}_r = 0)$ $$\sqrt{-g}\mathcal{A}_{t} = \partial_{r}N^{r}_{t} = \partial_{r}\left[\sqrt{-g}T^{r}_{t}\right] = \frac{1}{96\pi}\partial_{r}^{2}\Gamma^{r}_{tt}$$ $$= \frac{1}{192\pi}\partial_{r}\left(hf_{,rr} + f_{,r}h_{,r}\right)$$ $$\sqrt{-g}\widetilde{\mathcal{A}}_{t} = \partial_{r}\widetilde{N}^{r}_{t} = \partial_{r}\left[\sqrt{-g}\widetilde{T}^{r}_{t}\right] = \frac{-1}{96\pi}f\partial_{r}R$$ $$= \frac{1}{96\pi}\partial_{r}\left(hf_{,rr} + \frac{f_{,r}h_{,r}}{2} - \frac{hf_{,r}^{2}}{f}\right)$$ \Longrightarrow $$N_t^r = (hf_{,rr} + h_{,r}f_{,r})/(192\pi)$$ $\widetilde{N}_t^r = \left[hf_{,rr} + f_{,r}h_{,r}/2 - hf_{,r}^2/f\right]/(96\pi)$ #### **Covariant** versus **Consistent**: $$\sqrt{-g}\tilde{T}^{r}_{t} = \sqrt{-g}T^{r}_{t} + \frac{h}{192\pi f} (ff_{,rr} - 2f_{,r}^{2})$$ (2) Now include the electro-magnetic interaction. If there were **no** gravitational anomaly, the Ward identity is $$\nabla_{\mu}T^{\mu}{}_{\nu} = F_{\mu\nu}J^{\mu} + A_{\nu}\nabla_{\mu}J^{\mu}$$ Adding the gravitational anomaly, the Ward identity becomes $$\nabla_{\mu} T^{\mu}{}_{\nu} = F_{\mu\nu} J^{\mu} + A_{\nu} \nabla_{\mu} J^{\mu} + A_{\nu} = F_{\mu\nu} \widetilde{J}^{\mu} + A_{\nu}$$ Region $[r_+ + \varepsilon, +\infty]$: $J^{\mu}_{(O)}$, $T^{\mu}_{(O)\nu}$ are conserved; Region $[r_+, r_+ + \varepsilon]$: $J^{\mu}_{(H)}$, $T^{\mu}_{(H)\nu}$ obey the (modified) anomaly equations: $$\nabla_{\mu} T^{\mu}_{(O)\nu} = F_{\mu\nu} J^{\mu}_{(O)}$$ $$\nabla_{\mu} T^{\mu}_{(H)\nu} = F_{\mu\nu} J^{\mu}_{(H)} + A_{\nu} \nabla_{\mu} J^{\mu}_{(H)} + A_{\nu}$$ $$= F_{\mu\nu} \widetilde{J}^{\mu}_{(H)} + A_{\nu}$$ Solve $T_{(O)t}^r$: $$\partial_r \left[\sqrt{-g} T_{(O)t}^r \right] = \sqrt{-g} F_{rt} J_{(O)}^r = c_O \partial_r A_t$$ $$F_{rt} = \partial_r A_t, \ T_t^r = -fh T_r^t, \ \sqrt{-g} J_{(O)}^r = c_O$$ $$\sqrt{-g} T_{(O)t}^r = a_O + c_O A_t(r)$$ $$= a_O - \frac{e^2}{2\pi} A_t(r_+) A_t(r)$$ a_{O} : an integration constant. Solve $T_{(H)t}^r$: $$\begin{split} \partial_r \left[\sqrt{-g} T^r_{(H)t} \right] &= \sqrt{-g} \Big[F_{rt} J^r_{(H)} + A_t \nabla_\mu J^\mu_{(H)} \Big] + \partial_r N^r_t \\ &= \sqrt{-g} F_{rt} \widetilde{J}^r_{(H)} + \partial_r N^r_t \\ \text{namely: } \left[\sqrt{-g} \widetilde{J}^r_{(H)} = c_O + e^2 A_t(r)/(2\pi) \right] \\ \partial_r \Big[\sqrt{-g} T^r_{(H)t} \Big] &= \partial_r N^r_t + \sqrt{-g} J^r_{(H)} \partial_r A_t \\ &\quad + A_t \partial_r \Big[\sqrt{-g} J^r_{(H)} \Big] \\ &= \sqrt{-g} \widetilde{J}^r_{(H)} \partial_r A_t + \partial_r N^r_t \end{split}$$ $$\sqrt{-g}T_{(H)t}^{r} = a_H + \int_{r_{+}}^{r} dr \partial_r \left(c_O A_t + \frac{e^2}{4\pi} A_t^2 + N_t^r \right)$$ **Total energy momentum tensor** outside the horizon: $$T^{\mu}_{\ \nu} = T^{\mu}_{(O)\nu} \Theta(r) + T^{\mu}_{(H)\nu} H(r)$$ Under the infinitesimal general coordinate transformation, the effective action varies as $$-\delta_{\xi}W = \int dt dr \sqrt{-g} \, \xi^{\nu} \nabla_{\mu} T^{\mu}_{\nu} = \int dt dr \, \xi^{t} \Big\{ c_{O} \partial_{r} A_{t} + \partial_{r} \Big[\Big(\frac{e^{2}}{4\pi} A_{t}^{2} + N^{r}_{t} \Big) H \Big] + \Big[\sqrt{-g} (T^{r}_{(O)t} - T^{r}_{(H)t}) + N^{r}_{t} + \frac{e^{2}}{4\pi} A_{t}^{2} \Big] \delta(r - r_{+} - \epsilon) \Big\} + \int dt dr \xi^{r} \sqrt{-g} (T^{r}_{(O)r} - T^{r}_{(H)r}) \delta(r - r_{+} - \epsilon)$$ The **1st term**: the classical effect of the background electric field for constant current flow; The **2nd term** should be cancelled by the quantum effect of the classically irrelevant ingoing modes. To restore the diffeomorphism invariance, the variation of the effective action should vanish $\delta_{\xi}W=0 \Longrightarrow$ constrains: $$\sqrt{-g} \left[T_{(O)t}^r - T_{(H)t}^r \right] (r_+) + N_t^r (r_+) + \frac{e^2}{4\pi} A_t^2 (r_+) = 0$$ $$\Longrightarrow$$ $$a_O = a_H + \frac{e^2}{4\pi} A_t^2(r_+) - N_t^r(r_+)$$ $$= \frac{e^2}{4\pi} A_t^2(r_+) + N_t^r(r_+)$$ To determine a_O —to fix the value of the energy momentum tensor at the horizon—impose: a vanishing condition for the *covariant* energy momentum tensor at the horizon: $\tilde{T}^r_{(H)t} = 0$ \longrightarrow Additional regularity condition $$a_H = 2N_t^r(r_+) = \frac{f_{,r}h_{,r}}{96\pi}\Big|_{r=r_+} = \frac{\kappa^2}{24\pi}$$ The total flux of the energy momentum tensor: $$a_O = \frac{e^2 q^2}{4\pi r_+^2} + N_t^r(r_+) = \frac{e^2 q^2}{4\pi r_+^2} + \frac{\kappa^2}{48\pi}$$ #### §3.3 Blackbody radiation Uncharged case: $\sqrt{-g}T^r_{(O)t}=N^r_t(r_+) \iff$ the energy momentum flux of Hawking radiation. A (1+1)-dimensional black body radiation at temperature T has a flux of the form: $N_t^r(r_+) = (\pi/12)T^2$, accurately giving the Hawking temperature $T = \kappa/(2\pi)$. Charged case: the blackbody radiation at a temperature $T=\kappa/(2\pi)$ with a chemical potential $\omega_0=eA_t(r_+)=eq/r_+$ —Planck distribution: $$I^{(\pm)}(\omega) = rac{1}{e^{2\pi(\omega\pm\omega_0)/\kappa}-1}$$ bosons $J^{(\pm)}(\omega) = rac{1}{e^{2\pi(\omega\pm\omega_0)/\kappa}+1}$ fermions $I^{(-)}$, $J^{(-)}$: particles with charge -e. To keep things simple—only consider the fermion case. The fluxes of charged current and energy momentum: $$\sqrt{-g}J^{r} = \int_{0}^{\infty} e^{\frac{d\omega}{2\pi}} \left[J^{(-)}(\omega) - J^{(+)}(\omega) \right]$$ $$= -\frac{e^{2}q}{2\pi r_{+}}$$ $$\sqrt{-g}T^{r}_{t} = \int_{0}^{\infty} \omega \frac{d\omega}{2\pi} \left[J^{(-)}(\omega) + J^{(+)}(\omega) \right]$$ $$= \frac{e^{2}q^{2}}{4\pi r_{+}^{2}} + \frac{\kappa^{2}}{48\pi}$$ The results derived from the anomaly cancellation conditions coincide with these results, showing that the required thermal flux is capable of cancelling the anomaly. # 4. Concluding remarks **Conclusion**: The compensating energy momentum flux and charged current flux required to cancel gravitational and gauge anomalies at the horizon are precisely equivalent to thermal fluxes associated with a (1+1)-dimensional blackbody radiation emanating from the horizon at the Hawking temperature. #### Comments (1) Hawking radiation can be understood as a compensating flux to cancel anomaly at the horizon; - (2) Hawking radiation is a universal quantum phenomenon only related to the horizon; - (3) Anomaly cancellation method is universal, but can **not** determine the Bekenstein-Hawking entropy; - (4) Anomaly cancellation method is closely related to the properties of the horizon: the cancellation of anomaly takes place at the horizon; the regularity condition requires the covariant physical quantities to vanish at the horizon \iff Unruh vacuum Three **different** definitions of <u>vacuum</u>: Boulware, Hartle-Hawking, and Unruh—Penrose diagram (5) Symmetry: the near-horizon conformal symmetry (CFT: horizon = boundary) — holog-raphy ?! #### 5. Our related work - Q.Q. Jiang and S.Q. Wu, PLB **647** (2007) 200, hep-th/0701002 - Q.Q. Jiang, S.Q. Wu and X. Cai, PRD **75** (2007) 064029, hep-th/0701235; PLB **651** (2007) 58, hep-th/0701048; PLB **651** (2007) 65, arXiv: 0705.3871 [hep-th] - S.Q. Wu, PRD **76** (2007) 029904(E) - S.Q. Wu and J.J. Peng, CQG **24** (2007) 5123, arXiv:0706.0983 [hep-th] - J.J. Peng and S.Q. Wu, CP **17** (2008), to appear, arXiv:0705.1225 [hep-th] - J.J. Peng and S.Q. Wu, arXiv:0709.0044 [hep-th] - J.J. Peng and S.Q. Wu, arXiv:0709.0167 [hep-th] - S.Q. Wu and Z.Y. Zhao, arXiv:0709.4074 [hep-th] # Thank!