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1 Motivations

• Singularity theorem: (Penrose, Hawking ... 1960s) Singulari-

ties could be ill defined in General Relativity. Especially,

spacelike singularities are BAD: Black holes, big-bang

(crunch) singularities;

• Very near singularities: quantum effects should be taken

into account. The concept of geometry must be broken

down. So what? Quantum foam, spin foam, .... It’s a

question for every kind of quantum gravity theory!



• The resolution of cosmic singularity? One of the central

issues in String theory. Singularity should be resolved in

string theory due to the extensive nature of string.

– Orbifold singularity: resolved by perturbative D.O.F.

Dixon et.al., ...

– Conifold singularity: resolved by nonperturbative D.O.F.

A. Strominger



• What are the right degrees of freedom?

– Perturbative description? Null orbifolds (suffer from

the large blueshift)H. Liu et.al., Horowitz et.al.,... Milne

universe Berkooz et.al., Nekrasov, ...

– Closed string Tachyon phase? (poorly understood)

E. Silverstein, ...

– Pre-big-bang scenario? Veneziano et.al.

– Nonperturbative description? Matrix cosmology!



• Matrix cosmology: C. Craps, Sethi and Verlinde (2005)

– IIA flat spacetime with a linear null dilaton back-

ground;

– 1/2 BPS;

– Perturbatively solvable;

– Geodesics incomplete;

– String coupling diverges near the big-bang singular-

ity;

– A dual Matrix string description (2-dim SYM on

Milne orbifold);

– 1-loop effective potential? Miao Li and Wei Song, Craps

et.al.



• Questions: other time-dependent configurations with SUSY?

– 1/2 BPS configurations in M-theory?

Miao Li, Bin Chen, N. Ohta ...

– Other solvable BPS background in String theory?

S. Das et.al, B. Chen et.al.



– Configurations with holographic description?

Chu and Ho, S. Das et.al., F.L. Lin et.al.

Holographic description of BH singularity via AdS/CFT.

Shenker et.al....

Emergent time?



2 Time-dependent BPS configurations in M-theory

and Matrix models

Start from 11-dimensional supergravity

RMN =
1

12
(FMPQRF

PQR
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12
gMNF

2)

d ∗ F =
1

2
F ∧ F

and the Killing spinor equations

D̃Mε = (DM − ΩM)ε

where DM is the spin connection defined by

DM = ∂M +
1

4
ωabΓab



and

ΩM =
1

288
FPQRS(ΓPQRS

M + 8ΓPQRδS
M).

We would like to find the solutions to the equations of mo-

tions, which have at least sixteen standard supersymmetries,

corresponding to the Killing spinors ε satisfying Γ+ε = 0.



• Vacuum configurations: we make the following ansatz:

ds2 = 2A0(u)dudv + Ai(u)(dx
i)2,

where the A0(u), Ai(u), i = 1, · · · 9 are the functions of u.

An orthogonal frame

θ+ =
√
A0(u)du, θ− =

√
A0(u)dv θI =

√
Ai(u)dx

iδI
i .
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Next let us check the remaining supersymmetries. In the

vacuum case, ΩM = 0 and the Killing spinor equations are

∂uε = −1

2
(ω+−

u + ω−+
u Γ−+ + ω−i

u Γ−i)ε

∂iε = −1

2
ω−k

i Γ−kε.

Choosing a constant spinor ε0 with Γ+ε0 = 0, then the

Killing spinor satisfying the above equations is

ε(u) = exp(−1

2

∫
ω−+

u du)ε0.



• Plane-wave like configurations

Let us introduce a constant 4-form field strength

Fu123 = f0(u),

and make the following ansatz on the metric

ds2 = 2A0(u)dudv +B0(u, x)du
2 + Ai(u)(dx

i)2 +Bi(u, x)dx
idu,

where the B0, Bi’s are the functions of u and x. Very

recently, N. Ohta et.al. generalized the above metric

and found more general supersymmetric configurations.



The metric allows an orthogonal frame

θ+ =
√
A0(u)du

θ− =
√
A0(u)dv +

B0(u, x)

2
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The corresponding spin connections are

ω−+ = −∂u

√
A0√
A0

du

ω+i = 0

ωij = − ∂iBj

2
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The existence of Killing spinor with Γ+ε = 0 requires that

Bi = Aij(u)x
j

with Aij = −Aji
1. And the equation of motion asks B0 to

be bilinear in xi, namely

B0 = Bij(u)x
ixj.

Therefore, we find a class of time-dependent configura-

tions akin to the plane-waves

ds2 = 2A0(u)dudv+Bij(u)x
ixj(du)2+Ai(u)(dx

i)2+Aij(u)x
jdxidu

with at least 16 supersymmetries.

1The antisymmetric condition is not necessary



• Extra supersymmetries?

– Why? The ”standard” 16 supersymmetries lead to

nonlinearly realized supersymmetries on Matrix model

(or on the action of other objects embedded in the

background).

– Strategy: check if such configurations have Killing

vector with nonvanishing ∂u component and no de-

pendence on v.



1. Consider the Killing vector

K = ε̄Γµε∂µ,

which has the component Ku = 1√
2
(Γ+ε)T (Γ+ε). The

extra supersymmetries with Γ+ε 6= 0 will give us

the nonvanishing Killing component Ku.

2. A Killing vector with nonvanishing Ku component

is not enough to ensure the extra supersymme-

tries. Since in our discussion the Killing spinor is

independent of v, the corresponding Killing vector

cannot have v dependence.



• Results: For the metric

ds2 = 2A0(u)dudv +Bij(u)x
ixj(du)2 + Ai(u)(dx

i)2

the possible time-dependent configurations with super-

numerary supersymmetries are

– B0 = 0, A0 = 1, and Ai’s are exponential functions;

– B0 6= 0, A0 = 1, Ai’s are exponential functions and Bjk

take the form of

Bjk = eγju(e2ufBse
−2uf )jk

where Bs is a constant symmetric matrix and f is a

constant antisymmetric matrix.



However, after coordinate transformation, the above back-

grounds are reduced to the well-studied homogeneous

plane-waves. Blau et.al.

We conclude that our time-dependent supersymmetric

configurations of the metric form (2.1) have no supernu-

merary supersymmetry, except the cases with constant

A0, Ai’s and the appropriately chosen Bij, Aij’s.



3 Matrix models

• Matrix models in the curved backgrounds is a subtle is-

sue;

• Weak field limit following DLCQ prescription; W. Taylor

et.al.

However, for the above time-dependent configurations,

it could be far from flat near the big-bang singularity,

and the validity of weak field limit is in doubt;



• Another way: matrix regularization of the membrane ac-

tion in the curved background: order by order expansion

in fermionic coordinates; de Wit et.al. People has applied

this route to the flat spacetime and maximal plane-wave

background and obtained the BFSS and BMN matrix

model succesfully. de Wit et.al., K. Dasgupta et.al.

• In our case, we obtained the membrane action to all or-

ders of fermionic coordinates. H. Z. Chen and B. Chen



The supermembrane action is:

S[Z(ξ)] =

∫
d3ξ[−

√
−g(Z(ξ))− 1

6
εabcΠA

a ΠB
b ΠC

c BCBA(Z(ξ))],

where ZA(ξ) = (xµ(ξ), θ(ξ)) is the curved superspace coordi-

nates, gab = Πµ
aΠν

bgµν = Πr
aΠ

s
bηrs is the induced metric, ηrs =

diag(−1, 1, ...1) is the 11-d Lorentz metric, and ξa = (ξ0, ξ1, ξ2) =

(τ, ξα), α = 1, 2 represent the coordinates on the world volume.

Here ΠA
a are the supervielbein pullback, BABC are the super

three-potential.



In our case, the gravitino is zero, so the supervielbein pull-

back is:

Πr
a = ∂aZ

AEr
A

= ∂ax
µ(er

µ −
1

4
θ̄Γrstθωµst + θ̄ΓrΩµθ) + θ̄Γr∂aθ +O(θ3),

where ωµst is the spin connection, and

Ωµ =
1

288
Fνρσλ(Γ

νρσλ
µ + 8Γνρσδλ

µ).



The super three-potential pullback is:

− 1

6
ΠA

a ΠB
b ΠC

c BCBA

=
1

6
εabc∂ax

µ∂bx
ν∂cx

ρ
[
Cµνρ +

3

4
θ̄ΓrsΓµνθω

rs
ρ − 3θ̄ΓµνΩρθ

]
− εabcθ̄Γµν∂cθ

[1

2
∂ax

µ(∂bx
ν + θ̄Γν∂bθ) +

1

6
θ̄Γµ∂aθθ̄Γ

ν∂bθ
]

+O(θ3),

where Cµνρ is the three-form potential.



In our configurations, the supervielbein and super three-

potential are exact to all orders of θ since the higher order

terms vanish. Why?

• The supervielbein pullback Πr
a = ∂aZ

AEr
A is linear in ∂aX

µ,

while Er
A is constituted with other quantities. It can be

seen from their explicit form that these other quantities,

θ, Γr, Ricci tensor, Ωµ, and field strength et.al. have

no lower curved spacetime index v, and hence no upper

curved spacetime index u.



• The nonvanishing bilinear fermionic terms θ̄Γrst···θ always

have one and only one Γ− and no Γ+ due to the gauge

condition Γ+θ = 0. The upper tangent space index r = −
require an upper curved spacetime index µ = u com-

ing from other geometrical quantities because the only

nonzero vielbein with a lower tangent index r = − is e−u.

Such an index cannot be cancelled by the above men-

tioned quantities except ∂aX
u.



• the super three-potential pullback term can only have

bilinear θ terms. This is due to the antisymmetric nature

of εabc and the fact that bilinear θ term in ΠA
a must be

proportional to ∂aX
u.



To simplify the action, we go to light-cone gauge:

xu = u = τ.

And because of the κ-symmetry of the action, we can also

impose an additional gauge

Γ+θ = 0.

There still exist the residue gauge D.O.F. We should fix them

and write our action in pure physical D.O.F.



Let us focus on the following metric and field strength

ds2 = 2er0ududv +
∑

i

cie
riu(xi)2(du)2 +

∑
i

eriu(dxi)2

+
∑
ij

A0
ije

(ri+rj)u/2xjdxidu,

where

A0
ij = −A0

ji = const,

and r0, ri are all constants,too. We also have a four-form field

strength

Fu123 = e(r1+r2+r3)u/2f 0, f 0 = const.



The Lagrangian of the membrane action in this background

is

L =
∑

i

P u

2
e(ri−r0)τ (Dτx

i)2 +
P u

2

∑
ij

A0
ije

(
ri+rj

2
−r0)τxjDτx

i

+
P u

2

∑
i
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(ri−r0)τ (xi)2 − er0τ

4P u

∑
ij

e(ri+rj)τ{xi, xj}2

− 1

2

∑
i,j=1,2,k=3

{xi, xj}xkεijkf
0e(ri+rj+rk)τ/2

+ iP ue−r0τ/2ψTDτψ −
i

6
P ue−r0τ/2f 0ψTγ123ψ

− i

8
P u

∑
IJ

e−r0τ/2A0
IJψ

TγIJψ − i
∑
I,i

ψTγI{xi, ψ}e(r0+ri)τ/2δI
i .



The usual matrix regularization:

xi → X i
N×N ,

ψ → ψN×N ,

P u

∫
d2σ → 1

R
Tr,

{, } → −i[, ],



Then the matrix model action reads

S =

∫
dτTr

( ∑
i

1

2R
e(ri−r0)τ (DτX

i)2 +
1

2R

∑
ij

A0
ije

(
ri+rj

2
−r0)τXjDτX

i

+
1

2R

∑
i

cie
(ri−r0)τ (X i)2 +

R

4
er0τ

∑
ij

e(ri+rj)τ
[
X i, Xj

]2

+
i

2

∑
i,j=1,2,k=3

[
X i, Xj

]
Xkεijkf

0e(ri+rj+rk)τ/2

+
i

R
e−r0τ/2ψTDτψ −

i

6R
e−r0τ/2f 0ψTγ123ψ

− i

8R

∑
IJ

e−r0τ/2A0
IJψ

TγIJψ −
∑
I,i

ψTγI
[
X i, ψ

]
e(r0+ri)τ/2δI

i

)
.



• Fuzzy sphere solutions: consider the matrix model in the

sector:

X4 = X5 = ... = X9 = 0, ψ = 0.

To simplify the problem, let

r1 = r2 = r3 = r, c1 = c2 = c3 = c.

We want to find solution of the form:

Xa(τ) = S(τ)Ja, a = 1, 2, 3,

where Ja is N dimensional representation of SU(2).



Use

Tr
∑

a

(Ja)2 =
N(N − 1)

4
,

and

[Ja, J b] = iεabcJ c.

We finally get

d2S

dτ 2
+ (r − r0)

dS

dτ
+ 2R2e(2r0+r)τS3 +Rf0e(r0+r/2)τS2 − cS = 0.



4 IIB time-dependent plane-wave with linear null

dilaton

• Linear null dilaton is different from the usual linear (spa-

tial) dilaton;

• Plane-fronted waves are exact solutions of the string the-

ory; Horowitz and Stief

• Plane-wave/SYM correspondence.Metsaev et.al., BMN



Let’s consider the IIB GS superstrings in the following

backgrounds:

ds2 = −2dx+dx− − λ(x+)x2
I dx

+dx+ + dxIdxI ,

φ = φ(x+) , (F5)+1234 = (F5)+5678 = 2f.

The world-sheet conformal invariance requires

λ = −1

4
φ′′ + f 2e2φ .



If we restrict the dilaton to be linear in the light-cone time

coordinate x+, i.e. φ = −cx+ with c being a constant, then we

have

λ = f 2e−2cx+

.

In general, f could be an arbitrary function of x+ and there

is a large class of the models. These models could be studied

in the lightcone gauge.



• Two special cases:

1. One is that λ is a constant. This happens when f =

f0e
−φ with f0 being constant so that

λ = f 2
0 ,

and the metric in the string frame reduces to the

form of the maximally supersymmetric plane wave;

Blau et.al., Mestaev et.al., BMN

2. The other special case is when the self-dual RR field

strength f = f0 is constant so that

λ = f 2e−2cx+

.



• Symmetry algebra:

1. A null Killing vector T, corresponding to the trans-

lation in the x−;

2. Two SO(4) rotations + Z2;

3. Translation along xI plus the shift along x−;

The the continuous symmetry algebra is [so(4)⊕ so(4)]⊕s

h(8).

• Implications: light-cone momentum conserved; no par-

ticle or string creation; no supernumerary supersymme-

tries; Hamiltonian not conserved.



• Geodesics incomplete

Let us focus on xI = 0, x− = constant, and consider the

geodesic equation for x+

d2x+

dσ2
+
c

2

(
dx+

dσ

)2

= 0 ,

which gives

σ = e
c
2
x+

up to an affine transformation. Therefore the singularity

x+ → −∞ corresponds to σ = 0 and it has finite affine

distance to all points in the interior.



• Supersymmetries

The gravitino and dilatino variations should vanish for

independent Killing spinors, i.e.

δελ
A ≡ (D̃)A

B ε
B = 0 , δεψ

A
µ ≡ (D̂µ)A

B ε
B = 0 ,

where µ = +,−, 1, ..., 8 and A = 1, 2 and

( D̃)A
B =

1

2
δA
B Γµ ∂µφ ,

(D̂µ)A
B = δA

B ∂µ + (Ωµ)A
B ,



with

(Ωµ)A
B =

1

4
ων̂ρ̂

µ Γν̂ρ̂ δ
A
B +

i eφ

8 · 5!
ΓκνρσδFκνρσδΓµ(σ2)

A
B ,

where σ2 is the Pauli matrix, ων̂ρ̂
µ is the spin connection

and the hatted indices are used for the tangent space.

It’s straightforward to check our background keep one-

half of the original supersymmetries.



• Bosonic sector

The bosonic part of the GS action is

SB = − 1

4πα′

∫
d2σ

√
−g gabGµν∂ax

µ∂bx
ν

In the light-cone gauge the bosonic action takes the form

SB =
1

4πα′

∫
dτ

∫ 2π

0

dσ (∂τx
I∂τx

I − ∂σx
I∂σx

I − f̃ 2e−2 τx2
I) ,

where for simplicity we have defined f̃ ≡ α′p+f which is

dimensionless.



The equations of motions are

(∂2
τ − ∂2

σ + f̃ 2e−2 τ )xI = 0 .

Expanding in Fourier modes in σ, we get an infinite col-

lection of oscillators with time-dependent frequencies.

The bosonic light-cone Hamiltonian is

HB = HB0(τ) +
1

α′p+

∞∑
n=1

ωn(τ)
[
AI
−n(τ)AI

n(τ) + ÃI
−n(τ)ÃI

n(τ) + 1
]
,

where

ωn =

√
n2 + f̃ 2e−2τ . (4.1)

The bosonic Hamiltonian reminisces the 2-d field theory

of free scalars with time-dependent masses.



• Fermionic sector

The fermionic action in the light-cone gauge can be writ-

ten as

SF =
i p+

√
2π

∫
dτ

∫ 2π

0

dσ (θ1T∂τθ
1 + θ2T∂τθ

2

+θ1T∂σθ
1 − θ2T∂σθ

2 + 2f̃ e−τθ1T Πθ2) .

Similar to the bosonic case, when f = f0e
−φ, the action

reduces to the one in the usual plane-wave metric.



The equations of motion of the fermionic sector are

( ∂τ + ∂σ) θ1 + f̃ e−τΠθ2 = 0 ,

( ∂τ − ∂σ) θ2 − f̃ e−τΠθ1 = 0 .

The fermionic part of the Hamiltonian can be diagonal-

ized as

HF = HF0(τ) +
1

α′p+

∞∑
n=1

ωn(τ)
[
B

†

n(τ)Bn(τ) + B̃
†

n(τ)B̃n(τ)− 1
]
.

Just like the bosonic case, it also looks like the Hamilto-

nian of a free 2-d field theory with time-dependent mass.



• Quantum string mode creation

Generically, in a time-dependent background, one may

expect the particle or string creation occurs from our

knowledge of the quantum field theory in curved space-

time. However, in a plane-fronted background, due to

the existence of null Killing vector, this would not hap-

pen. Gibbons 1975

Nevertheless, there does exist the string mode creation.

Horowitz 1990



In our case, the total number of created oscillator modes

is

N̄T (τ) =
∞∑

n=1

[
N̄B

n + N̄F
n

]
.

1. As τ → +∞, N̄T (τ) ∼ 0 ;

2. As τ → −∞, the total number of created oscillator

modes is

N̄T (τ) = 4d
∞∑

n=1

1

e2nπ − e−2nπ

∼ 0.06 .



Effectively, the problem could be restated as a quantum

mechanical problem. A Bosonic mode Tn(τ) should sat-

isfy the equation

∂2
τ Tn + (n2 + f̃ 2e−2τ )Tn = 0.

Replacing τ by x and Tn by ψ, the above equation takes a

form of one-dimensional Schrodinger equation for a par-

ticle with energy n2 in a potential −f̃ 2e−2τ . The problem

of calculating the number of the creating modes reduces

to the problem of calculating the reflective amplitude in

this one-dimensional system.



• Remarks

1. The symmetric spectrum of the bosonic and fermionic

excitations does not come from the spacetime super-

symmetries. It is from the special choice of the met-

ric. Consider the following background

ds2 = −2dx+dx− −
∑

I

λI(x
+)x2

I dx
+dx+ + dxIdxI ,

φ = φ(x+) , (F5)+1234 = (F5)+5678 = 2f.

Here λI could be different from each other. The

transverse bosons in the bosonic action have different

masses proportional to λI.



2. Matrix description near the big-bang singularity? There

exists the cosmological singularity at x+ = −∞, where

the string coupling is divergent. (Matrix model in

IIB ?)

3. Membrane creation? S. Das et.al



• Other directions?

Holographic description of the time-dependent backgrounds?

Chu and Ho, S.Das et.al., F.L. Lin et.al.

(S)YM with time-dependent coupling, what does it mean?

nontrivial RG flow? Exotic QFT!

Why the correspondence could be true? Short of evi-

dence!

Stability? 1-loop issue.


