Spatially covariant gravity with dynamical lapse function

Xian Gao

Department of Physics and Astronomy

Sun Yat-sen University

2018-5-18

ICTS, USTC

Based on:

- XG, Phys.Rev. D 90 (2014) 081501(R), [arXiv: 1406.0822]
- XG, Phys.Rev. D 90 (2014) 104033, [arXiv: 1409.6708]
- XG and Zhi-bang Yao (姚志邦), to appear

Why modified gravity

Why modified gravity

Phenomenological:

To explain the early and later accelerated expansion of our universe.

Why modified gravity

Phenomenological:

To explain the early and later accelerated expansion of our universe.

Theoretical: To understand why GR is unique.

How to modify gravity (GR)

Einstein equation is quite unique.

$$\alpha G_{\mu\nu} + \lambda g_{\mu\nu} = 0$$

[Lovelock, 1971]

Any metric theory of gravity alternative to GR must satisfy (at least):

- extra degrees of freedom (with exotic couplings with gravity),
- extra dimensions (brane world),
- higher derivative terms (f(R)),
- extension of (pseudo-)Riemannian geometry (f(T)),
- giving up locality.

Covariant scalar-tensor theories

1915 • GR

1915 GR
 1961 Brans-Dicke
 [Brans & Dicke, 1961]

$$\mathcal{L} = \frac{1}{16\pi G} \mathbf{R}$$

$$\mathcal{L} = \phi \, R - rac{\omega}{\phi} (\partial \phi)^2$$

1915 GR
 1961 Brans-Dicke
 [Brans & Dicke, 1961]

1999

$$\mathcal{L} = \frac{1}{16\pi G} \mathbf{R}$$

$$\mathcal{L} = \phi \, \frac{R}{R} - rac{\omega}{\phi} (\partial \phi)^2$$

k-essence

$$\mathcal{L} = g(\phi) \, \mathbf{R} + F(\phi, \partial \phi)$$

[Chiba, Okabe, Yamaguchi, 1999] [Armendariz-Picon, Damour, Mukhanov, 1999]

 1915 GR
 1961 Brans-Dicke [Brans & Dicke, 1961]
 1999 k-essence

$$\mathcal{L} = \frac{1}{16\pi G} \mathbf{R}$$

$$\mathcal{L} = \phi \, \mathbf{R} - rac{\omega}{\phi} (\partial \phi)^2$$

 $\mathcal{L} = g(\phi) \, \mathbf{R} + F(\phi, \partial \phi)$

[Chiba, Okabe, Yamaguchi, 1999] [Armendariz-Picon, Damour, Mukhanov, 1999]

k-essence:

The most general theory for a scalar field coupled to gravity, of which the Lagrangian involves up to the first derivative of the scalar field.

1915 <mark>-</mark>

1961

1999

Brans-Dicke [Brans & Dicke, 1961]

GR

$$\mathcal{L} = \frac{1}{16\pi G} \mathbf{R}$$

$$\mathcal{L} = \phi \, {R \over \phi} - {\omega \over \phi} (\partial \phi)^2$$

k-essence

$$\mathcal{L} = g(\phi) \, \mathbf{R} + F(\phi, \partial \phi)$$

[Chiba, Okabe, Yamaguchi, 1999] [Armendariz-Picon, Damour, Mukhanov, 1999]

Beyond *k*-essence? Introducing second derivatives?

1915 <mark>•</mark>

1961

Brans-Dicke [Brans & Dicke, 1961]

GR

$$\mathcal{L} = \frac{1}{16\pi G} \mathbf{R}$$

$$\mathcal{L} = \phi \, R - rac{\omega}{\phi} (\partial \phi)^2$$

1999

k-essence *L* [*Chiba, Okabe, Yamaguchi, 1999*] [*Armendariz-Picon, Damour, Mukh<u>anov, 1999</u>]*

1915	GR	$\mathcal{L} = \frac{1}{16\pi G} \mathbf{R}$
1961	Brans-Dicke [Brans & Dicke, 1961]	$\mathcal{L} = \phi R - rac{\omega}{\phi} (\partial \phi)^2$
1999	k-essence [Chiba, Okabe, Yamaguchi, 1999] [Armendariz-Picon, Damour, Mukhanov, 19	$\mathcal{L} = g(\phi) \mathbf{R} + F(\phi, \partial \phi)$ 999]
2011	Generalized galileon [Deffayet, XG, Steer & Zahariade Phys.Rev. D 84 (2011) 064039]	In $D=4$: $\mathcal{L} = G_0(\phi, X) + G_1(\phi, X) \Box \phi$ $+ G_2(\phi, X) R + \frac{\partial G_2}{\partial X} [(\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi)^2]$

with
$$X \equiv -\frac{1}{2}(\partial \phi)^2$$

 $+ G_3(\phi, X) G^{\mu\nu} \nabla_\mu \nabla_\nu \phi$

 $-\frac{1}{6}\frac{\partial G_3}{\partial X} \left[(\Box \phi)^3 - 3\Box \phi (\nabla_\mu \nabla_\nu \phi)^2 + 2(\nabla_\mu \nabla_\nu \phi)^3 \right]$

1915	GR	$\mathcal{L} = \frac{1}{16\pi G} \mathbf{R}$
1961	Brans-Dicke [Brans & Dicke, 1961]	$\mathcal{L} = \phi R - rac{\omega}{\phi} (\partial \phi)^2$
1999	k-essence [Chiba, Okabe, Yamaguchi, 1999] [Armendariz-Picon, Damour, Mukhanov, 1	$\mathcal{L} = g(\phi) \mathbf{R} + F(\phi, \partial \phi)$ 1999
2011	Generalized galileon [Deffayet, XG, Steer & Zahariade Phys.Rev. D 84 (2011) 064039]	In D=4: $\mathcal{L} = G_0(\phi, X) + G_1(\phi, X) \Box \phi$ $+ G_2(\phi, X) R + \frac{\partial G_2}{\partial X} [(\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi)^2]$

Generalized galileon/Horndeski theory.

 The most general theory for a scalar field coupled to gravity, of which the Lagrangian/EoMs involve up to the second derivatives of the scalar field and the metric. $\nabla_{
u}\phi)^{3}$

• Propagates 1 scalar + 2 tensor dofs.

Beyond Horndeski?

1915	GR	$\mathcal{L} = \frac{1}{16\pi G} R$
1961	Brans-Dicke [Brans & Dicke, 1961]	$\mathcal{L} = \phi R - rac{\omega}{\phi} (\partial \phi)^2$
1999	k-essence [Chiba, Okabe, Yamaguchi, 1999] [Armendariz-Picon, Damour, Mukhanov, 1	$\mathcal{L} = g(\phi) \mathbf{R} + F(\phi, \partial \phi)$
2011	Generalized galileon [Deffayet, XG, Steer & Zahariade Phys.Rev. D 84 (2011) 064039]	In $D=4$: $\mathcal{L} = G_0(\phi, X) + G_1(\phi, X) \Box \phi$ $+ G_2(\phi, X) R + \frac{\partial G_2}{\partial X} [(\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi)^2]$ $+ G_3(\phi, X) G^{\mu\nu} \nabla_\mu \nabla_\nu \phi$ $- \frac{1}{6} \frac{\partial G_3}{\partial X} [(\Box \phi)^3 - 3 \Box \phi (\nabla_\mu \nabla_\nu \phi)^2 + 2(\nabla_\mu \nabla_\nu \phi)^3]$

Even beyond galileon/Horndeski theory?

- Higher derivatives of the scalar field and the metric.
- Propagates 1 scalar + 2 tensor dofs.

Beyond Horndeski?

1915	GR	$\mathcal{L} = \frac{1}{16\pi G} R$
1961	Brans-Dicke [Brans & Dicke, 1961]	$\mathcal{L} = \phi R - rac{\omega}{\phi} (\partial \phi)^2$
1999	k-essence [Chiba, Okabe, Yamaguchi, 1999] [Armendariz-Picon, Damour, Mukhanov, 1	$\mathcal{L} = g(\phi) \mathbf{R} + F(\phi, \partial \phi)$
2011	Generalized galileon [Deffayet, XG, Steer & Zahariade Phys.Rev. D 84 (2011) 064039]	$ \begin{array}{c} \text{In } D=4: \\ \mathcal{L} = G_0(\phi, X) \\ + G_2(\phi, X) \end{array} $
		$+G_{2}(\phi, 2)$ $+G_{3}(\phi, 2)$ $-\frac{1}{6}\frac{\partial G_{3}}{\partial X} \begin{bmatrix} \text{NO GO AREA!} \\ \end{pmatrix}^{2} + 2(\nabla_{\mu}\nabla_{\nu}\phi)^{3} \end{bmatrix}$

Even beyond galileon/Horndeski theory?

- Higher derivatives of the scalar field and the metric.
- Propagates 1 scalar + 2 tensor dofs.

Beyond Horndeski?

1915	GR	$\mathcal{L} = \frac{1}{16\pi G} R$
1961	Brans-Dicke [Brans & Dicke, 1961]	$\mathcal{L} = \phi R - rac{\omega}{\phi} (\partial \phi)^2$
1999	k-essence [Chiba, Okabe, Yamaguchi, 1999] [Armendariz-Picon, Damour, Mukhanov, 1	$\mathcal{L} = g(\phi) \mathbf{R} + F(\phi, \partial \phi)$
2011	Generalized galileon [Deffayet, XG, Steer & Zahariade Phys.Rev. D 84 (2011) 064039]	$ \begin{array}{c} \text{In } \mathcal{D}=4: \\ \mathcal{L}=G_0(\phi, X) \\ +G_2(\phi, 2) \end{array} \qquad $
		$+G_{3}(\phi, 2)$ $-\frac{1}{6}\frac{\partial G_{3}}{\partial X} \begin{bmatrix} \text{NO GO AREA!} \\ 0 \end{bmatrix}^{2} + 2(\nabla_{\mu}\nabla_{\nu}\phi)^{3} \end{bmatrix}$

We need some alternative approach.

Key question: how to introduce a scalar degree of freedom?

2 tensor + 1 scalar

Spacetime covariant

4-D quantities

 $\phi, g_{\mu\nu}, R_{\mu\nu\rho\sigma}, \nabla_{\mu}$

Spacelike hypersurfaces

Spacetime covariant

4-D quantities

 $\overline{\phi, g_{\mu
u}, R_{\mu
u}}_{
ho\sigma}, \overline{
abla}_{\mu}$

Ghost condensation [Arkani-Hamed, Cheng, Luty & Mukohyama]

2007

2004

Effective field theory of inflation

[Cheung, Creminelli, Fitzpatrick, Kaplan & Senatore]

Cosmological background naturally breaks time diff, which has a preferred time direction or set of spatial sclices, on which:

$$\phi(t, \vec{x}) = \overline{\phi}(t)$$

unitary gauge (uniform scalar field gauge)

Instead of perturbatively expanding a "covariant" theory like

 $|\mathcal{L}(\bar{g}_{\mu\nu} + \delta g_{\mu\nu}, \bar{\phi} + \delta \phi)|$

we may start directly by constructing Lagrangians respecting only spatial symmetries.

Ghost condensation

[Arkani-Hamed, Cheng, Luty & Mukohyama]

2007 🏅

2004 •

Effective field theory of inflation

[Cheung, Creminelli, Fitzpatrick, Kaplan & Senatore]

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2}R + \Lambda(t) + f_1(t) \,\delta N + f_2(t) \,\delta N^2 + \cdots \right]$$
$$+ g_1(t) \,\delta K_i^i + g_2(t) \left(\delta K_i^i \right)^2 + g_3(t) \,\delta K_{ij} \delta K^{ij} + \cdots \right]$$

2004

Ghost condensation

[Arkani-Hamed, Cheng, Luty & Mukohyama]

2007

Effective field theory of inflation

[Cheung, Creminelli, Fitzpatrick, Kaplan & Senatore]

2004 2007

Ghost condensation

[Arkani-Hamed, Cheng, Luty & Mukohyama]

Effective field theory of inflation

[Cheung, Creminelli, Fitzpatrick, Kaplan & Senatore]

2009 Hořava gravity

- The Lagrangians are built of spatial invariants;
- The theories propagates one scalar mode (besides the two tensor modes).

Beyond Horndeski

Two equivalent languages

Spacetime covariant Scalar-tensor theories

 $\mathcal{L}(\phi, g_{\mu\nu}, R_{\mu\nu\rho\sigma}, \nabla_{\mu})$

Two equivalent languages

Spacetime covariant Scalar-tensor theories

 $\mathcal{L}(\phi, g_{\mu\nu}, R_{\mu\nu\rho\sigma}, \nabla_{\mu})$

Spatially covariant gravity theories

 $\mathcal{L}(t, N, h_{ij}, R_{ij}, K_{ij}, \nabla_i)$

Two equivalent languages

Two equivalent languages

Two equivalent languages

 ϕ is just the Goldstone mode that nonlinearly realizes time diff.

2004 2007

Ghost condensation

[Arkani-Hamed, Cheng, Luty & Mukohyama]

 Effective field theory of inflation [Cheung, Creminelli, Fitzpatrick, 2 Kaplan & Senatore]

2009 • Hořava gravity [Horava]

The first explicit example of scalar-tensor theories beyond Horndeski.

Spatially covariant gravity (ver 1.0)

Hořava gravity [Horava]

Spatially covariant gravity (ver 1.0)

$$S = \int dt d^3x N \sqrt{h} \mathcal{L}(t, N, h_{ij}, R_{ij}, K_{ij}, \nabla_i)$$

Spatially covariant gravity (ver 1.0)

$$S = \int \mathrm{d}t \mathrm{d}^3 x \, N \sqrt{h} \mathcal{L}(t, N, h_{ij}, R_{ij}, K_{ij}, \nabla_i)$$

2 tensor + 1 scalar DoFs with higher derivative EoMs. [X.Gao, Phys.Rev. D90 (2014) 104033]

Dynamical lapse function

Geometric picture revisit

The basic picture:

4d spacetime + foliation of spacelike hypersurfaces

Geometric picture revisit

The basic picture:

4d spacetime + foliation of spacelike hypersurfaces

Basic geometric quantities:

4d metric $g_{\mu\nu}$ $\begin{cases} \text{timelike normal vector field:} \quad n_{\mu} = -N \nabla_{\mu} \phi \\ \text{Induced metric:} \quad h_{\mu\nu} \end{cases}$

Geometric picture revisit

The basic picture:

4d spacetime + foliation of spacelike hypersurfaces

Basic geometric quantities:

4d metric $g_{\mu\nu}$ $\begin{cases} \text{timelike normal vector field:} \quad n_{\mu} = -N \nabla_{\mu} \phi \\ \text{Induced metric:} \quad h_{\mu\nu} \end{cases}$

Basic building blocks:

 $\phi, N, h_{\mu\nu}$ with derivatives in terms of $\begin{cases} \pounds_n & \text{time der.} \\ D_\mu & \text{space der.} \end{cases}$

The general action:

$$S = \int d^4x \sqrt{-g} \mathcal{L}(\phi, N, h_{\mu\nu}, \pounds_{\mathbf{n}} N, \pounds_{\mathbf{n}} h_{\mu\nu}, D_{\mu})$$

The general action:

$$S = \int \mathrm{d}^4 x \sqrt{-g} \,\mathcal{L}\left(\phi, N, h_{\mu\nu}, \pounds_{\mathbf{n}} N, \pounds_{\mathbf{n}} h_{\mu\nu}, \mathrm{D}_{\mu}\right)$$

In the unitary gauge ($\phi=t$):

$$S = \int \mathrm{d}t \mathrm{d}^3 x \, N \sqrt{h} \, \mathcal{L}\left(t, N, h_{ij}, \mathbf{F}, \mathbf{K}_{ij}, \nabla_i\right)$$

with
$$F = \frac{1}{N} \left(\dot{N} - \pounds_{\vec{N}} N \right), \qquad K_{ij} = \frac{1}{2N} \left(\dot{h}_{ij} - \pounds_{\vec{N}} h_{ij} \right)$$

lapse is dynamical

The general action:

$$S = \int \mathrm{d}^4 x \sqrt{-g} \,\mathcal{L}\left(\phi, N, h_{\mu\nu}, \pounds_{\mathbf{n}} N, \pounds_{\mathbf{n}} h_{\mu\nu}, \mathrm{D}_{\mu}\right)$$

In the unitary gauge ($\phi=t$):

$$S = \int \mathrm{d}t \mathrm{d}^3 x \, N \sqrt{h} \, \mathcal{L}\left(t, N, h_{ij}, F, K_{ij}, \nabla_i\right)$$

with
$$F = \frac{1}{N} \left(\dot{N} - \pounds_{\vec{N}} N \right), \qquad K_{ij} = \frac{1}{2N} \left(\dot{h}_{ij} - \pounds_{\vec{N}} h_{ij} \right)$$

 \downarrow
lapse is dynamical

Generally, such kind of theories have 2 scalar dof's, one of which is an Ostrogradsky ghost.

Known healthy examples

Healthy examples:

[Domènech, Mukohyama, Namba, Naruko, Saitou and Watanabe, Phys. Rev. D92 (2015), no. 8 084027, [arXiv:1507.05390]

$$g_{\mu\nu} \to \mathcal{A}(\phi, X) g_{\mu\nu} + \mathcal{B}(\phi, X) \partial_{\mu}\phi \partial_{\nu}\phi$$
$$S_{\rm EH} \to S \supset \int dt d^{3}x \, N\sqrt{h}F(t, N) \left(K^{2} - K_{ij}K^{ij} + 2KL + \frac{3}{2}L^{2}\right)$$
$$L = \frac{\mathcal{A}_{,N}}{\mathcal{A}} \frac{1}{N} \left(\dot{N} - N^{i}\nabla_{i}N\right) + \frac{\mathcal{A}_{,t}}{\mathcal{A}N}$$

[Takahashi and Kobayashi, JCAP 1711(2017), no. 11 038]

$$g_{\mu\nu} \to -Xg_{\mu\nu}$$

$$S = \int d^4x \sqrt{-g} \left(f_2(\phi, X) \mathcal{R} + f_3(\phi, X) \mathcal{G}^{\mu\nu} \nabla_{\mu} \nabla_{\nu} \phi + F(g_{\mu\nu}, \phi, \nabla\phi, \nabla\nabla\phi) \right)$$

$$\rightarrow \cdots$$

Hamiltonian analysis

Unitary gauge action:

$$S = \int dt d^3x \, N \sqrt{h} \, \mathcal{L} \left(t, N, h_{ij}, F, K_{ij}, \nabla_i \right)$$

with $F = \frac{1}{N} \left(\dot{N} - \pounds_{\vec{N}} N \right), \qquad K_{ij} = \frac{1}{2N} \left(\dot{h}_{ij} - \pounds_{\vec{N}} h_{ij} \right)$

An equivalent action:

W

$$\tilde{S} = S + \int dt d^3x \left[\frac{\delta S}{\delta A} \left(F - A \right) + \frac{\delta S}{\delta B_{ij}} \left(K_{ij} - B_{ij} \right) \right]$$

th
$$S = \int dt d^3x N \sqrt{h} \mathcal{L} \left(t, N, h_{ij}, A, B_{ij}, \nabla_i \right)$$

Primary constraints

17 variables: $\{N^i, A, B_{ij}, N, h_{ij}\}$

17 conjugate momenta:

$$\begin{aligned} \pi_i &\approx 0, \\ p &\approx 0, \\ p^{ij} &\approx 0, \\ \pi &= \frac{1}{N} \frac{\delta S}{\delta A}, \quad \Rightarrow \qquad \tilde{\pi} := \pi - \frac{1}{N} \frac{\delta S}{\delta A} \approx 0, \\ \pi^{ij} &= \frac{1}{2N} \frac{\delta S}{\delta B_{ij}}, \qquad \Rightarrow \qquad \tilde{\pi}^{ij} := \pi^{ij} - \frac{1}{2N} \frac{\delta S}{\delta B_{ij}} \approx 0, \end{aligned}$$

In total 17 primary constraints: $\{\pi_i, p, p^{ij}, \tilde{\pi}, \tilde{\pi}^{ij}\}$

Primary

 p^{kl} $ilde{\pi}^{kl}$ $ilde{\pi}$ [,]_{PB} π_k p0 0 0 0 0 π_i 0 p p^{ij} 0 $\widetilde{\pi}$ 0 $\tilde{\pi}^{ij}$ 0

Primary

	[,] _{PB}	π_k	p	p^{kl}	$ ilde{\pi}$	$ ilde{\pi}^{kl}$	\mathcal{C}_k
Primary	π_i	0	0	0	0	0	0
	p	0					0
	p^{ij}	0					0
	$ ilde{\pi}$	0					0
	$ ilde{\pi}^{ij}$	0					0
Secondarv	\mathcal{C}_i	0	0	0	0	0	0

If the blue block is not degenerate, no further secondary constraint,

If the blue block is not degenerate, no further secondary constraint,

$$\#_{\text{dof}} = \frac{1}{2} \left(2 \times \#_{\text{var}} - 2 \times \#_{1\text{st}} - \#_{2\text{nd}} \right)$$
$$= \frac{1}{2} \left(2 \times 17 - 2 \times 6 - 14 \right)$$
$$= 4$$

The blue block must be degenerate:

- ightarrow Putting constraints on the theory,
- \rightarrow Additional secondary constraint \mathcal{C} .

The "extended" blue block is also degenerate.

Nullity = 1
$$\rightarrow \#_{dof} = \frac{1}{2} (2 \times 17 - 2 \times 7 - 14) = 3$$

(correct number of dof's)

The "extended" blue block is also degenerate.

Nullity = 2
$$\rightarrow \#_{dof} = \frac{1}{2} (2 \times 17 - 2 \times 8 - 13) = 2.5$$

Not consistent.

The "extended" blue block is also degenerate.

Nullity = 3
$$\rightarrow \#_{dof} = \frac{1}{2} (2 \times 17 - 2 \times 9 - 12) = 2$$
Playing with Poisson brackets

	[,] _{PB}	π_k	p	p^{kl}	$\widetilde{\pi}$	$ ilde{\pi}^{kl}$	\mathcal{C}_k	${\mathcal C}$
Primary	π_i	0	0	0	0	0	0	0
	p	0	0	0	0	0	0	0
	p^{ij}	0	0		0		0	0
	$ ilde{\pi}$	0	0	0	0	0	0	0
	$ ilde{\pi}^{ij}$	0	0		0		0	0
Secondary	\mathcal{C}_{i}	0	0	0	0	0	0	0
	\mathcal{C}	0	0	0	0	0	0	0

The "extended" blue block is also degenerate.

Nullity = 3
$$\rightarrow \#_{dof} = \frac{1}{2} (2 \times 17 - 2 \times 9 - 12) = 2$$

GR as a special example.

1915 • GR
1961 • Brans-Dicke
1999 • *k*-essence

1915 • GR
1961 • Brans-Dicke
1999 • *k*-essence

2011 • Galileon/Horndeski

1915	GR		
1961	Brans-Dicke		
1999	k-essence	2004 •	Ghost condensate
		2007	EFT of inflation
2011	Galileon/Horndeski	2014	2009 • Hořava gravity
		2014	
	Beyond Horndeski	2014	Spatially covariant gravity
		2018	SCG with dynamical lapse

1915	GR	
1961	Brans-Dicke	
1999	k-essence	2004 • Ghost condensate
		2007 EFT of inflation
2011	Galileon/Horndeski	2009 • Hořava gravity
		2014 • GLPV theory
	Beyond Horndeski	2014 Spatially covariant gravity
•	Even beyond	2018 • SCG with dynamical lapse
	Homdeski	

Thank you for your attention!