Yi-Ming Zhong

City University of Hong Kong

USTC, 9 May, 2024

chan Island 大铲岛

Airport

Chex Lap Kok 赤鱲角

Lantau Island 大嶼山

Cheung Sha

Lamma Island 南丫島

Yi-Ming Zhong (CityU HK)

CUHK ()

CityU Hong Kong 香港

HKU

Hong Kong Island 香港島 HKUST_{Kau}Sai Chau 滘西洲

Outine

- Introduction
- Gravothermal collapse of self-interacting dark matter (SIDM) halos
- holes
- Summary

Collapsed halos give birth to high-z supermassive black

Evidence for dark matter

Bullet Cluster

Yi-Ming Zhong (CityU HK)

Large-Scale Structure

Cosmic Microwave Background

Ordinary matter

The Standard Model of Particle Physics

What is dark matter?

Dark matter candidate

 $10^{-22} \text{ eV} - 1 \text{ eV}$

Yi-Ming Zhong (CityU HK)

Weakly interacting massive particles (WIMP)

Ultraheavy dark matter (e.g. black holes)

Astro bound

.

Is dark matter alone?

Dark sector

Dark sector

Dark sector searches

If dark photon couples to the Standard Model charged particles

Yi-Ming Zhong (CityU HK)

11

Dark sector searches

Coupling to the Standard Model charged particles

Except ATOMKI'16, JAM '23

Yi-Ming Zhong (CityU HK)

Dark photon mass

Dark sector

Nucleon-nucleon self-interaction

Cross section strength:

 \mathbf{N}

Yi-Ming Zhong (CityU HK)

 $\sigma_{\rm T}/m_{\rm N} \sim 10\,{\rm cm}^2/{\rm g}$

Nuclear Data Sheets '11

 $1\,\mathrm{cm}^2/\mathrm{g}$ $\approx 2 \,\mathrm{barn/GeV}$

Cold Collisionless Dark Matter (CDM) $\sigma_{\rm T}/m_{\rm DM} \sim 10^{-70} \, {\rm cm}^2/{\rm g}$ (DM mass~ GeV)

Cross section strength:

DM

DM

Yi-Ming Zhong (CityU HK)

Self-Interacting Dark Matter (SIDM) 2 -1 Cross section strength: $\sigma_{\rm T}/m_{\rm DM} \sim 1\,{\rm cm}^2/{\rm g}$

New interaction $\bigwedge \bigwedge \bigwedge \bigwedge$ DM

$\sigma_{\rm T}/m_{\rm DM}\sim 1\,{\rm cm}^2/{\rm g}$

$(1 \,\mathrm{cm}^2/\mathrm{g})$ $(0.4 \, \mathrm{GeV}/\mathrm{cm}^3)$ $200 \,\mathrm{km/s}$ σ/m ρ \mathcal{U}

Spergel & Steinhardt '00

Where to look at?

Where to look at?

Yi-Ming Zhong (CityU HK)

~2 million light years

Dark matter halos

Dark matter halos can probe self-interactions

Dark matter self-interactions

Yi-Ming Zhong (CityU HK)

Dark matter halo properties

Dark matter halo classes

Dwarf halos

Yi-Ming Zhong (CityU HK)

Milky Way-sized halos

Galaxy cluster halos

10¹⁴ ~ 10¹⁵ M⊙

Constraints on dark matter self-interaction

$$cm^2/g$$
 10^3 10^2 10^1 10^2 10^1 10^0 10^{-2} $10^$

 ≈ 2

MW Cluster

Constraints on dark matter self-interaction

MW Cluster

Constraints on dark matter s

Yi-Ming Zhong (CityU HK)

MW Cluster

Bullet Clus (Robertson+

allowed value

10³

10²

v [km/s]

WE'VE ALSO SEEN MORE DIRECT EVIDENCE FOR DARK MATTER:

WE SAW TWO GALAXIES COLLIDE! EACH GALAXY HAD NORMAL MATTER. AND DARK MATTER THEN THEY COLLIDED! THE NORMAL MATTER SLAMMED INTO EACH OTHER ENORMOUS GALACTIC-SIZED PIECES OF MATTER PASSED RIGHT THROUGH EACH OTHER! THE BULLET CLUSTER

Constraints on dark matter self-interaction

Constraints on dark matter self-interaction

cross section strength

Solving "small-scale problems" of CDM

Solving smallscale problems of CDM

Probing dark sectors

Gravothermal collapse of self-interacting dark matter halos

Effects of self-interaction

Cooler

Hot (faster)

Yi-Ming Zhong (CityU HK)

Hotter

Time

Cold (slower)

Equipartition

I. Halo formation

Density profile (density at given radii)

L Halo formation

Density profile (density at given radii)

II. Core expansion

Yi-Ming Zhong (CityU HK)

Huo, Yu & **YZ** '20

II. Core expansion

Yi-Ming Zhong (CityU HK)

Huo, Yu & **YZ** '20

III. Core collapse

Yi-Ming Zhong (CityU HK)

36

III. Core collapse

Yi-Ming Zhong (CityU HK)

37

Gravothermal evolution

Evolution stages:

- 0. Halo formation
- 1. Core expansion
- 2. Quasi-stable
- 3. Core collapse

Gravothermal evolution

Evolution stages:

- 0. Halo formation
- 1. Core expansion
- 2. Quasi-stable
- 3. Core collapse

Self-interactions increase halo's **diversity**

Self-interactions enforce halo's **universality**

Different halo configurations

Yi-Ming Zhong (CityU HK)

Rescaling

YZ, Yang & Yu '23

But it takes too long...

Why should we care?

If more heat goes out

Yi-Ming Zhong (CityU HK)

faster collapse

How to transfer more heat out?

- Velocity-dependent (vd) self-interaction
- Dissipative self-interaction
- Central baryon component
- Tidal stripping Nishikawa+ (2019)

Yi-Ming Zhong (CityU HK)

Essig, Mcdermott, Yu & YZ (2019); Huo, Yu & YZ (2020)

Yang, Yu & YZ (2023); Yang+ (YZ included, 2023)

Larger cross section

Small cross section

46

Larger cross section

Small cross section

Bullet cluster crossing

Bullet cluster crossing

Central baryonic component (CBC)

Objects made of ordinary particles (gas, stars, disk, bulge…)

Central baryonic component (CBC)

Potential

Yi-Ming Zhong (CityU HK)

Potential

Central baryonic component (CBC)

Yi-Ming Zhong (CityU HK)

Collapse much faster

(Up to a factor of 10–100)

How to probe self-interacting dark matter?

Essig, Mcdermott, Yu & YZ (2018), Yang+ (YZ included, 2023)

Yi-Ming Zhong (CityU HK)

Strong lensing

Gilman+ (2021), Gilman, **YZ** & Bovy (2022)

Weak lensing

Adhikari, Banerjee, Jain, Hyeon-Shin & **YZ** (2024)

Give birth to high-z supermassive black holes

High-z supermassive black holes (SMBHs)

The high-z supermassive black holes

> 200 SMBHs with mass ≥ 10^6 M_☉ at z > 6 (7% of the age of Universe)

11 SMBHs with mass ≥ 10^8 M_☉ at z > 7 (5% of the age of Universe)

Eddington limit

Eddington limit: max accretion rate of BH

elapse time

$$M_{\rm BH} = M_{\rm seed} \exp(\Delta t/\tau)$$

e-folding time $\, au=0.5\;{
m Gyr}\,f_{
m Edd}$

The growth puzzle

 For z > 7 SMBHs, collapsed Pop III stars are not heavy enough.

e.g. Wang+ '21

The growth puzzle

- For z > 7 SMBHs, collapsed Pop III stars are not heavy enough.
- One way to solve the puzzle is to form more massive seed BHs
 - Direct collapse of pristine gas ...

Omukai '01, Bromm & Loeb '03, Begelman+ '06, Hosokawa+, '13 Regan+ '17, Ardaneh+ '18, Wise+ '19...

Yi-Ming Zhong (CityU HK)

Time [Gyr]

A worse puzzle

 For z > 7 SMBHs, collapsed Pop III stars are not heavy enough.

e.g. Wang+ '21

• There is also a population of low accretion SMBHs. $f_{
m Edd} \ll 1$

Mazzucchelli+ '17, Shen+ '19, Onoue+ '19 [SHELLQs]...

Yi-Ming Zhong (CityU HK)

Time [Gyr]

Seeding SMBHs from collapsed DM halos

Feng, Yu & YZ '21

Our idea

Our idea

The singular state:

- Can trigger GR instability (Feng, Yu & YZ '21, '22)
- Leads to large seed BH mass (~ 10⁻³ halo mass)

How to dissipate angular momentum?

Collisional viscosity

Yi-Ming Zhong (CityU HK)

Angular momentum for the central region can be dissipated efficiently by selfinteractions.

Feng, Yu & YZ, '21

Need to collapse fast \Rightarrow adding central baryonic components.

Yi-Ming Zhong (CityU HK)

 $r_s \rho_s \sigma / m = 0.2$

Feng, Yu & **YZ**, '21

 $M_{\chi}/M_0 \blacktriangleleft \dots M_0 = 4\pi \rho_s r_s^3$

To form low-luminosity high-z SMBHs

- early Universe).
- Need compact central baryons.
- Need cross section strength $\sigma/m \sim O(1 \text{ cm}^2/\text{g})$.

Yi-Ming Zhong (CityU HK)

Need galactic-sized DM halos at high redshift (rare in the

solve the small-scale problems of the CDM paradigm

To form low-luminosity high-z SMBHs

Yi-Ming Zhong (CityU HK)

$$\frac{dn(M,z)}{dM} \propto \exp\left[-\frac{1}{2}\right]$$

Feng, Yu & YZ, '21

Summary

- halos are important way to probe dark matter/dark sectors.
- The collapsed SIDM halos could be common.
- strong lensing, weak lensing...), including solving the puzzle of high-z supermassive black holes.

• The nature of dark matter remains unknown. Dark matter

Many interesting observational signatures (rotation curves,

