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Part I: Background and motivation
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The amazing development from 2003 to 2014 tells us that
although the Feynman diagram method is the most
standard way to calculate scattering amplitudes, it is not
the most efficient way.
For tree-level amplitude, the one-shell recursion relation
becomes one of most useful new efficient method. Let us
review its derivation.
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First fact: Tree-level amplitude is the rational function of
external momenta and external wave functions.
Deformation: We can consider following deformation:
shifting two chosen external momenta, for example p1,p2,
by an auxiliary momentum q as

p1(z) = p1 + zq, p2(z) = p2 − zq

With the deformation, the original tree-level amplitudeM
becomes the function of z,q, i.e.,M(z,q). Furthermore,
the momentum conservation is still hold.
On-shell conditions: Asking p2

1 = p1(z)2, p2
2 = p2(z)2 for

all z-values leads to

q2 = q · p1 = q · p2 = 0
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Structure: From Feynman diagrams, tree-level amplitude
can become singular when propagators are on-shell.
Under the deformation, either propagator is not affected, or
(P + zq)2 = P2 + z(2P · q), i.e., the single pole structure of
complex variable z.
Fact: For rational function of single complex variable z,
one can use the information of its pole locations and
residues to determine it. How to do it?
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Let us consider the contour integration I =
∮

dzA(z)/z.
One can evaluate by two ways:

Doing it along the point z =∞, we get the "boundary
contribution" which will denote as B.
Doing it for big cycle around z = 0, we have
I = A(0) +

∑
α Res(A(z)/z)|zα .

Combining above we have

A(z = 0) = B −
∑

poles zα

Res
(

A(z)

z

)
z=zα

[Britto, Cachazo, Feng , 2004] [Britto, Cachazo, Feng , Witten, 2004]
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Residue of finite pole zα:

Location: It can be found by solving
(P + zq)2 = P2 + zα(2P · q).
Residue: there is an important Factorization property:
when one propagator goes to on-shell, i.e., P2 −m2 → 0,
we have

Atree(1, ..,n) →
∑
λ

Am+1(1, ..,m,Pλ)
1

P2
1m −m2

An−m+1(−P−λ,m + 1, ...,n)

Using it we get(
A(z)

z

)
z=zα

=
∑
λ

AL
m+1(1, ..,m,Pλ(zα))

1
P2 AR

n−m+1(−P−λ(zα),m + 1, ...,n)
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How about the boundary contribution? It has following
three cases:

When z →∞, A(z)→
∑k

i=0 ciz i +O(1/z) with c0 6= 0 =⇒
nonzero boundary contribution
When z →∞, A(z) ∼ 1

z =⇒ zero boundary contribution
When z →∞, A(z) ∼ 1

zk , k ≥ 2 =⇒ zero boundary
contribution and bonus relations

But how to determine which case it will belong to for a
given theory ? A nice method is the background field
method. [Arkani-Hamed, Kaplan 2008]
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Current situations:

Not all theories have B = 0.
Fortunately, for theory involving gluons and gravitons, in
many cases, there is a deformation to make B = 0.
However, for standard model with scalar and fermions, in
general boundary contribution is unavoidable.
Thus determining B is an important problem for
applications.
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There are three ways to deal with boundary contributions:
Using auxiliary fields to make contributions in new QFT
zero.

[Benincasa, Cachazo, 2007; Boels, 2010]

Analyze Feynman diagrams directly
[Feng, Wang, Wang, Zhang, 2009; Feng, Liu, 2010; Feng, Zhang, 2011]

Transfer to the discussion of roots of amplitude
[Benincasa, Conde, 2011; Feng, Jia, Luo, Luo, 2011]
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Feynman diagram for λφ4 theory

With (1,2)-pair deformation, Feynman diagrams will be
following two types:

I J

1 2

1

2

a b

Boundary contribution is

Ab = (−iλ)
∑

I′
⋃
J ′={n}\{i,j}

AI′ ({KI′))
1

p2
I′

1
p2
J ′

AJ ′ ({KJ ′})
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Part II: Proposal for boundary contribution
[ Bo Feng, Kang Zhou, Chenkai Qiao, Junjie Rao, arXiv:1411.0452]
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Let us consider more carefully the derivation of BCFW
recursion relation under the deformation 0 ≡ 〈i0|j0]:

There are physical poles and spurious poles and denote
the set of them as S0.
Classification: detectable propagators which depend on
z0 and the undetectable propagators which are
z0-independent.

Bo Feng Boundary contribution of on-shell recursion relation



The expansion

−A0
n(z0) =

N(z0)∏
P2

t (z0)
= R0(z0) + B0(z0).

with recursive part as

R0(z0) =
∑

Pt∈D0

At ;L(ẑ0,t )At ;R(ẑ0,t )

P2
t (z0)

,

and the regular part as

B0(z0) = C0
0 +

∑
C0

i z i
0 .
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Key observation: the poles Pt ∈ D0 will appear once and
only once with power one in R0, i.e., they cannot be the
poles of coefficients B0

Pole structure of boundary: (I) It belongs to U0 or S0; (II)
The powers of spurious poles in B0 may be larger than one.
Fact: The part R0 is known by recursion relation, while
the part B0 is not known.
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Let us consider the second deformation 1 ≡ 〈i1|j1]:

The full amplitude can be calculated by two ways:

The first way: Using the recursion relation

−A1
n(z1) = R1(z1) + B1(z1)

The second way: Using expression −A0
n(z0 = 0) to make

the deformation and the expansion

R0(z1) = RR0,1(z1) +RB0,1(z1)

B0(z1) = BR0,1(z1) + B01(z1),

Key observation: Identifying two ways,

R1(z1) = RR0,1(z1) + BR0,1(z1).

Bo Feng Boundary contribution of on-shell recursion relation



Brief summary:

Using two deformations, we can find part of unknown
boundary B01, which depends on poles Pt ∈ U0⋂D1.
It is easy to see our strategy: using enough deformations
to detect all possible poles of unknown boundary B01, thus
we can determine it up to polynomial part.
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How many steps do we need to take? When we can stop? A
judicious criteria are following:

All spurious poles must be canceled out.
The power of any physical pole must be at most one.
It must have correct factorization limits for all physical
poles.
If the result satisfies above three conditions, it is very likely
to be correct (up to possible polynomial terms).
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Example: A(1+,2,3,4,5+) of the color ordered Yukawa Theory

Possible dependence of physical poles {〈1|2〉 , 〈4|5〉 , 〈5|1〉}
With 0 = 〈1|5]

−A0 = g3 〈2|4〉
〈2|1〉 〈5|4〉

+ B0

with sets D0 = {〈1|2〉}, U0 = {〈4|5〉 , 〈5|1〉}, S0 = ∅
With 1 = 〈5|4],

R1(z1) = gλ
1

〈1|5〉 − z1 〈1|4〉
,

so we get

BR0,1 = gλ
1
〈1|5〉

.
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After the deformation 1 we get

−A5 = g3 〈2|4〉
〈2|1〉 〈5|4〉

− gλ
1
〈5|1〉

+ B01,

with the corresponding sets

D01 = {〈1|2〉 , 〈5|1〉}, U01 = {〈4|5〉}, S01 = ∅.

To continue, we need to perform another deformation, e.g.,
2 = 〈5|1] to detect 〈4|5〉. However, it can be checked that
under 2 the pole part of B01 is zero. Since all physical
poles have been detected, we can conclude that B01 = 0,
and the correct answer is

−A5 = g3 〈2|4〉
〈2|1〉 〈5|4〉

− gλ
1
〈5|1〉

,
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Our algorithm is very general, but there are a lot of unanswered
questions:

How to choose deformations in consequence to make the
calculation most efficient?
Does the algorithm terminate eventually? How to judge it
after several steps?
Which theory it can be applied and which theory it can not
be applied?
Could the idea to be generalized to other places?
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Part III: Recursion relation for boundary
contribution

[ Qingjun Jin, Bo Feng, arXiv:1412.8170]
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Let us consider a special type of deformation 〈i |n] with
i = 2, ...,n − 1

Poles of boundary can be easily read out by large
z-expansion

1

(PJ + p1 − zλnλ̃1)2
=

1
−z 〈n|PJ + p1|1]

∑
i=0

(
(PJ + p1)2

z 〈n|PJ + p1|1]

)i

Thus all spurious poles 〈n|PJ⊂T |i] are invariant under
deformations.
The most important thing is that we can establish
corresponding on-shell recursion relation for boundary
contribution
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Derivation:

First, the boundary is defined as

B1
0({λ1, λ̃1},p2, ...,pn−1, {λn, λ̃n})

=

∮
w=∞

dw
w

An({λ1 − wλn, λ̃1},p2, ...,pn−1, {λn, λ̃n + w λ̃1})

Now using the contour integration
∮
|z|=R→∞ dz B1

0(z)
z we

arrive

B1
0 = B12

0 −
∑
zI

Res

(
B1

0
z

)
z=zI

where the second deformation is 〈2|n] and zI = (p2+PI)2

〈n|PI |2]
and I

⋃
I = {3,4, ...,n − 1}.

Bo Feng Boundary contribution of on-shell recursion relation



Evaluation of residue part is given by

Res

(
B1

0

z

)
z=zI

=

∮
z=zI

dz
z

B1
0({λ1, λ̃1}, {λ2 − zλn, λ̃2}, ...,pn−1, {λn, λ̃n + zλ̃2})

=

∮
zI

dz
z

∮
∞

dw
w

An({λ1 − wλn, λ̃1}, {λ2 − zλn, λ̃2},

p3, ...,pn−1, {λn, λ̃n + zλ̃2 + w λ̃1})

The key is then to use the Fubini-Tonelli theorem to
exchange the ordering of two integrations
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Now we have
∮

w=∞

dw

w

∮
z=zI

dz

z
An({λ1 − wλn, λ̃1}, {λ2 − zλn, λ̃2}, p3, ..., pn−1, {λn, λ̃n + zλ̃2 + wλ̃1})

=

∮
w=∞

dw

w

∑
h

AL(p̂2(zI ), I,−Ph(zI ))
−1

(p2 + PI )2
AR ({λ1 − wλn, λ̃1}, I, {λn, λ̃n + zI λ̃2 + wλ̃1}, P−h(zI ))

=
∑

h

AL(p̂2(zI ), I,−Ph(zI ))
−1

(p2 + PI )2∮
w=∞

dw

w
AR ({λ1 − wλn, λ̃1}, I, {λn, λ̃n + zI λ̃2 + wλ̃1}, P−h(zI ))

=
∑

h

AL(p̂2(zI ), I,−Ph(zI ))
−1

(p2 + PI )2
B1

0 (p1, p̂n(zI ), I, P−h(zI ))
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Remarks:

In the derivation, the commutativity of two integrations is
crucial. In general with arbitrary pair of deformations, it is
not true, but with our special choice of the type 〈i |n], it is
true.
For it to be useful, one should show by other ways that
after finite steps, there is no boundary left anymore. We
have made the analysis for standard like model, i.e.,
similar matter contents and similar interaction except all
particles are massless.
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Example II: Six scalars in scalar-Yang-Mills theory

L = Tr
(
−1

4
FµνFµν − DµΦ̄DµΦ− g2

2
[Φ, Φ̄]2

)

Step 1: With deformation 0 = 〈1|6], the recursive part is
given by

R0
6 = − 〈16〉[35]2[4|1 + 6|2〉2

τ612〈12〉[34][45][5|1 + 6|2〉[3|1 + 2|6〉

+
[13]2〈46〉2[1|2 + 3|5〉2[2|1 + 3|6〉2

τ123[12][23]〈45〉〈56〉[1|2 + 3|4〉[3|1 + 2|6〉[1|2 + 3|6〉2

+
[16]〈24〉2[5|1 + 6|3〉2

τ234[56]〈23〉〈34〉[1|2 + 3|4〉[5|1 + 6|2〉
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Next under the deformation 1 = 〈2|6] and using

B0(g−(k7),4,5,6,1) =
[14]

(
−2[15][46] + [14][56]

)
[16][17][45][57]

B0(Φ̄(k7),5,6,1) =
−〈17〉〈56〉 − 2〈15〉〈67〉

〈16〉〈57〉

B0(g−(k7),6,1) =
〈17〉〈67〉
〈16〉

we find

BR01 = A(2̂,3,−p̂23)
1

p2
23
B0(p̂23,4,5, 6̂,1)

+A(2̂,3,4,−p̂234)
1

p2
234
B0(p̂234,5, 6̂,1)

+A(2̂,3,4,5, p̂16)
1

p2
16
B0(−p̂16, 6̂,1)
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At the third step, using the deformation 2 = 〈3|6] and

B01(g−(k7),5,6,1,2) = [25]
[27][57] , B01(Φ(k7),6,1,2) = −1

we find

BR012 = A(3̂,4,−p̂34)
1

p2
34
B01(p̂34,5, 6̂,1,2)

+A(3̂,4,5,−p̂345)
1

p2
345
B01(p̂345, 6̂,1,2)
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At the fourth step with deformation 3 = 〈4|6], using

B012(g−(k7),6,1,2,3) = [13]2[27]
[23][37][17]2

we find

BR0123 = A(4̂,5,−p̂45)
1

p2
45
B012(p̂45, 6̂,1,2,3)

Finally R0
6 + BR01 + BR012 + BR0123 is equal to the total

amplitude.
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Part IV: The boundary Lagrangian
[ work going-on]
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Our algorithm is reduced to the study of boundary of
boundary. How to study it? Could we have an
understanding like the Feynman diagrams? Could we have
the corresponding Lagrangian?
The key observation is that the boundary comes from the
large z-limit of deformation parameter. Thus two
momenta pi + zq,pj − zq become infinity, i.e., we have
two very heavy particles.
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We can view it from two different aspects:

The first one is background field method, i.e., the two
heavy particles can be taken as classical background,
while other fields as soft (quantum) fluctuation. Thus we
can use Wilson’s idea to integrate them out.
The second one is using OPE method to replace the
product of two quantum fields by a boundary operator,

OI(kL + zq)OJ(kR − zq) =
∑

K

CK
IJ (kL + zq)OK (kL + kR)

Expanding the coefficient around z =∞

CK
IJ (kL + zq) =

∑
i

CK
IJ,iz

i

we get the boundary operator

F =
∑

K

CK
IJ,0OK (k1 + kn)
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A simple calculation for theory

L = −1
2

(∂φ)2 +
λ

m!
φm

The n-point amplitude can be calculated from〈
0|T

(
exp[−i

∫
d4x

λ

m!
φm]

)
|φ(p1)φ(p2)...φ(pn)

〉
= 〈0|[−i

λ

(m − 2)!
φm−2]T

(
exp[−i

∫
d4x

λ

m!
φm]

)
|φ(p2)...φ(pn−1)〉

where we have contracted the p1 − zq,pn + zq.
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Above result can be reproduced by

〈0|T
(

exp[−i
∫

d4x
λ

m!
φm − iF 〈1|n] λ

(m − 2)!
φm−2]

)
|F 〈1|n](p1 + pn)φ(p2)...φ(pn−1)〉

Thus we have derived the boundary Lagrangian as

LB〈1|n] = −1
2

(∂φ)2 +
λ

m!
φm + F 〈1|n] λ

(m − 2)!
φm−2

where φ is the soft fields.
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Path integration approach:

Two key observations: (1) along the hard line, each
vertex has two and only two hard fields; (2) hard particles
are contracted as inner propagator.
Thus interaction vertex should be changed to

λm

m!
φm → λm

m!
φm−2H2C2

m =
λm

2(m − 2)!
φm−2H2
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Thus the evaluation of amplitudes can be divided as
following∫

[Dφ][DH]eiS[φ]+i( 1
2 (∂H)2− λm

2(m−2)!φ
m−2H2)

H(p1 − zq)H(pn + zq)φ(p2)...φ(pn−1)

=

∫
[Dφ]eiS[φ]φ(p2)...φ(pn−1){∫

[DH]ei
∫

d4x( 1
2 (∂H)2− λm

2(m−2)!φ
m−2H2)H(p1 − zq)H(pn + zq)

}
where the 1

2(∂H)2 is needed for contraction to get
propagator.
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The hard part is Guassian and can be evaluated using the
generating function

Z [J] =

∫
[DH]ei

∫
d4x( 1

2 (∂H)2− λm
2(m−2)!φ

m−2H2+JH)

Let us define the operator D = ∂2 + λm
(m−2)!φ

m−2, thus the
two-point correlation function is given by D−1.
The inverse can be expanded as following

D−1 =

{(
1 +

λm

(m − 2)!
φm−2 1

∂2

)
∂2
}−1

=
∞∑

k=0

(−)k 1
∂2

(
λm

(m − 2)!
φm−2 1

∂2

)k
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To get the scattering amplitude, we need to use the LSZ
reduction, i.e., multiplying ∂2 for each field on correlation
function and contracting the off-shell quantities with wave
(polarization) function.

ε(p1 − zq)∂2

{ ∞∑
k=0

(−)k 1
∂2

(
λm

(m − 2)!
φm−2 1

∂2

)k
}
∂2ε(pn + zq)

=
∞∑

k=1

(
−λm

(m − 2)!
φm−2 1

∂2

)k−1 −λm

(m − 2)!
φm−2ε(p1 − zq)ε(pn + zq)

For scalar ε(p1 − zq) = ε(pn + zq) = 1, and each 1
∂2 ∼ 1

z ,
only the term k = 1 contribute and we arrive

LB〈1|n] =
1
2

(∂φ)2 − λm

m!
φm −F 〈1|n] λm

(m − 2)!
φm−2
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Part V: Conclusion
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There are a lot of unsolved problems for our approach:

How to choose deformations in consequence to make the
calculation most efficient?
Does the algorithm terminate eventually? How to judge it
after several steps?
Which theory it can be applied and which theory it can not
be applied?
Could the idea to be generalized to other places?
What is the relation between boundary and the zero of
amplitudes?
To loop level?
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Thanks a lot for listening!!!
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