Control issues of de－Sitter spacetime in large scale of Calabi－Yau compactifications

高 昕

四川大学

Based on：Fortsch．Phys．68（2020）2000089，JHEP 07（2022）056，JHEP 09（2022）091 JHEP 03（2022）087，Phys．Rev．D．105（2022）046017
Phys．Rev．D．107（2023）086004

中科大交叉科学中心／彭桓武高能基础理论中心
合肥，2023．05．11

Outline

(1) de-Sitter in String Theory
(2) Various corrections in orientifold Type IIB string theory
(3) Warping correction and its constraint
(4) Calabi-Yau threefold Database
(5) Summary and outlook

Outline

(1) de-Sitter in String Theory
(2) Various corrections in orientifold Type IIB string theory
(3) Warping correction and its constraint
(4) Calabi-Yau threefold Database
(5) Summary and outlook

Flux Compactification

- Perturbative superstring provides a quantum gravity theory in 10D.
- From string to the real world: 10D $\rightarrow 4 \mathrm{D}$
- What we want: 4D $\mathcal{N}=1$ Supersymmetry with chiral spectrum

Flux Compactification

- Perturbative superstring provides a quantum gravity theory in 10D.
- From string to the real world: 10D $\rightarrow 4 \mathrm{D}$
- What we want: 4D $\mathcal{N}=1$ Supersymmetry with chiral spectrum
- Best under control: $\mathcal{N}=1$ Flux Compactification
- Het string on Calabi-Yau 3-folds $\left(C Y_{3}\right)$
- Type IIA/B on $C Y_{3}$ with orientifold (include Type I \cong Type IIB orientifold with $O 9$-plane)
- (Aux 12D) F-theory on $C Y_{4}$
- (11D) M-theory on $C Y_{3} \times S^{1} / \mathbb{Z}_{2}$ or on \mathcal{M}^{7} with G_{2} holonomy

Flux Compactification

- Perturbative superstring provides a quantum gravity theory in 10D.
- From string to the real world: $10 \mathrm{D} \rightarrow 4 \mathrm{D}$
- What we want: 4D $\mathcal{N}=1$ Supersymmetry with chiral spectrum
- Best under control: $\mathcal{N}=1$ Flux Compactification
- Het string on Calabi-Yau 3-folds $\left(C Y_{3}\right)$
- Type IIA/B on $C Y_{3}$ with orientifold (include Type I \cong Type IIB orientifold with $O 9$-plane)
- (Aux 12D) F-theory on $C Y_{4}$
- (11D) M-theory on $C Y_{3} \times S^{1} / \mathbb{Z}_{2}$ or on \mathcal{M}^{7} with G_{2} holonomy
- Background Flux (in Type II):
- Neveu-Schwarz flux: $H_{3}=d B_{2}, \quad d H_{3}=0$.
- Ramond flux: $\quad F_{p+1}=d C_{p}, \quad d F_{p+1}=0$.
- Non-geometric flux
- Considering the flux, the geometry of the CY reacts back mildly by acquiring a non-trivial warp factor as $\mathcal{M}_{4} \times X_{6}$:

$$
d s^{2}=h(y)^{-1 / 2} g_{\mu \nu}(x) d x^{\mu} d x^{\nu}+h(y)^{1 / 2} g_{m n}(y) d y^{m} d y^{n}
$$

where $h(y) \equiv e^{2 A(y)}$ is the warp factor, $\mu, \nu=1, \ldots, 4$, $m, n=5, \ldots, 10$.

Flux Compactification II

(1) Find a compactified space X_{6}, such as \mathcal{M}_{4} satisfy maximal Symmetry, i.e. $\mathcal{M}_{4}=\left\{d S_{4}, A d S_{4}\right.$, Minks $\}$.

Chiral $\mathcal{N}=1$ SUSY in 4D $\Rightarrow X_{6}$ be (orientifold) Calabi-Yau manifold

Flux Compactification II

(1) Find a compactified space X_{6}, such as \mathcal{M}_{4} satisfy maximal Symmetry, i.e. $\mathcal{M}_{4}=\left\{d S_{4}, A d S_{4}\right.$, Minks $\}$. Chiral $\mathcal{N}=1$ SUSY in 4D $\Rightarrow X_{6}$ be (orientifold) Calabi-Yau manifold
(2) Extra massless spectrum in \mathcal{M}_{4}

The existence of deformations of the underlying geometry (Moduli). The size (Kähler) and shape (complex) of the internal manifold is dynamically determined by the vacuum expectation values of moduli (Moduli Stabilization).

$$
g \rightarrow g+\delta g \quad \text { s.t. } \quad R_{m \bar{n}}(g+\delta g)=0 . \quad \text { for } C Y
$$

For Kähler manifold, under proper gauge $\nabla(\delta g)=0$, it decouples

- Kähler moduli: $\delta g_{m \bar{n}}=i v^{i}\left(\hat{D}_{i}\right)_{m \bar{n}}, \quad i=1, \ldots, h^{1,1}(X)$
- Complex moduli: $\delta g_{m n}=\frac{i}{\|\Omega\|^{2}} \bar{U}^{a}\left(\bar{\chi}_{a}\right)_{m \bar{p} \bar{q}} \Omega_{n}^{\bar{p} \bar{q}}, a=1, \ldots, h^{2,1}(X)$

Flux Compactification II

(1) Find a compactified space X_{6}, such as \mathcal{M}_{4} satisfy maximal Symmetry, i.e. $\mathcal{M}_{4}=\left\{d S_{4}, A d S_{4}\right.$, Minks $\}$. Chiral $\mathcal{N}=1$ SUSY in 4D $\Rightarrow X_{6}$ be (orientifold) Calabi-Yau manifold
(2) Extra massless spectrum in \mathcal{M}_{4}

The existence of deformations of the underlying geometry (Moduli). The size (Kähler) and shape (complex) of the internal manifold is dynamically determined by the vacuum expectation values of moduli (Moduli Stabilization).

$$
g \rightarrow g+\delta g \quad \text { s.t. } \quad R_{m \bar{n}}(g+\delta g)=0 . \quad \text { for } C Y
$$

For Kähler manifold, under proper gauge $\nabla(\delta g)=0$, it decouples

- Kähler moduli: $\delta g_{m \bar{n}}=i v^{i}\left(\hat{D}_{i}\right)_{m \bar{n}}, \quad i=1, \ldots, h^{1,1}(X)$
- Complex moduli: $\delta g_{m n}=\frac{i}{\|\Omega\|^{2}} \bar{U}^{a}\left(\bar{\chi}_{a}\right)_{m \bar{p} \bar{q}} \bar{\rho}_{n}^{\bar{p} \bar{q}}, a=1, \ldots, h^{2,1}(X)$
(3) Get the effective theory of these moduli (chiral spectrum). Based on some concrete model study the particle physics and cosmology.

Toy Model for de-Sitter space I

- The generic result of a compactification with volume \mathcal{V} with some positive-energy source is:

$$
\mathcal{S}_{4} \sim \mathcal{V}\left(R_{4}-\frac{(\partial \mathcal{V})^{2}}{\mathcal{V}^{2}}-E\right)
$$

Toy Model for de-Sitter space I

- The generic result of a compactification with volume \mathcal{V} with some positive-energy source is:

$$
\mathcal{S}_{4} \sim \mathcal{V}\left(R_{4}-\frac{(\partial \mathcal{V})^{2}}{\mathcal{V}^{2}}-E\right)
$$

- After Weyl-rescaling to the Einstein frame and introducing the canonical field $\phi=\ln (\mathcal{V})$:

$$
\mathcal{S}_{4} \sim\left(R_{4}-(\partial \phi)^{2}-E e^{-\phi}\right)
$$

$V=E e^{-\phi}$, so the simplest compactifications lead to: $V^{\prime} / V \sim \mathcal{O}(1)$.

Toy Model for de-Sitter space I

- The generic result of a compactification with volume \mathcal{V} with some positive-energy source is:

$$
\mathcal{S}_{4} \sim \mathcal{V}\left(R_{4}-\frac{(\partial \mathcal{V})^{2}}{\mathcal{V}^{2}}-E\right)
$$

- After Weyl-rescaling to the Einstein frame and introducing the canonical field $\phi=\ln (\mathcal{V})$:

$$
\mathcal{S}_{4} \sim\left(R_{4}-(\partial \phi)^{2}-E e^{-\phi}\right)
$$

$V=E e^{-\phi}$, so the simplest compactifications lead to: $V^{\prime} / V \sim \mathcal{O}(1)$.

- Combining two such runaway potentials with different sign allows in principle for AdS solutions. (Flux and D-brane potential (positive charge) and O-plane potential (negative charge))

Toy Model for de-Sitter space II

- At least 3 potential terms with different falloff and appropriate coefficients are needed to get dS. ($\overline{D 3} / \mathrm{T}$-brane/nilpotent chiralfield uplift potential)

Toy Model for de-Sitter space II

- At least 3 potential terms with different falloff and appropriate coefficients are needed to get dS . ($\overline{D 3} / \mathrm{T}$-brane/nilpotent chiralfield uplift potential)

- If all parameters are $\mathcal{O}(1)$, this can never happen in parametric control.
- Swampland conjecture: A potential $V(\phi)$ for scalar fields in a low energy EFT of any consistent QG must satisfy:

$$
V^{\prime} / V \gtrsim \mathcal{O}(1)
$$

Toy Model for de-Sitter space II

- At least 3 potential terms with different falloff and appropriate coefficients are needed to get dS. ($\overline{D 3} / \mathrm{T}$-brane/nilpotent chiralfield uplift potential)

- If all parameters are $\mathcal{O}(1)$, this can never happen in parametric control.
- Swampland conjecture: A potential $V(\phi)$ for scalar fields in a low energy EFT of any consistent QG must satisfy:

$$
V^{\prime} / V \gtrsim \mathcal{O}(1)
$$

Oogrui/Palti/Shiu/Vafa

- String Swampland vs. String Landscape

de-Sitter in String Theory II

However, with some tuning of fluxes, de-Sitter space can be realized in Type IIB compactified on orientifold Calabi-Yau threefolds X :

- KKLT and Large Volume Scenario (LVS)

Kachru/Kallosh/Linde/Trivedi, Valasubramanian/Berglund/Conlon/Quevedo

de-Sitter in String Theory II

However, with some tuning of fluxes, de-Sitter space can be realized in Type IIB compactified on orientifold Calabi-Yau threefolds X :

- KKLT and Large Volume Scenario (LVS)

Kachru/Kallosh/Linde/Trivedi, Valasubramanian/Berglund/Conlon/Quevedo

- Type IIB is $\mathcal{N}=2$. Break half SUSY to get $\mathcal{N}=1$.
- When consider flux and D-brane, O-plane must be there for tadpole cancelation.

de-Sitter in String Theory II

However, with some tuning of fluxes, de-Sitter space can be realized in Type IIB compactified on orientifold Calabi-Yau threefolds X :

- KKLT and Large Volume Scenario (LVS) Kachru/Kallosh/Linde/Trivedi, Valasubramanian/Berglund/Conlon/Quevedo
- Type IIB is $\mathcal{N}=2$. Break half SUSY to get $\mathcal{N}=1$.
- When consider flux and D-brane, O-plane must be there for tadpole cancelation.
- Most of the string phenomenology is building in Type IIB Calabi-Yau orientifold with $O 3 / O 7$-plane.

$$
\mathcal{O}=\left\{\begin{array}{llll}
\Omega_{p} \sigma & \text { with } & \sigma^{*}(J)=J, & \sigma^{*}\left(\Omega_{3}\right)=\Omega_{3}, \\
(-)^{F_{L}} \Omega_{p} \sigma & \text { with } & \sigma^{*}(J)=J, & \sigma^{*}\left(\Omega_{3}\right)=-\Omega_{3},
\end{array} \quad O 3 / O 7\right.
$$

each σ defines a new CY in the orbifold limit unless it is free action.

de-Sitter in String Theory II

However, with some tuning of fluxes, de-Sitter space can be realized in Type IIB compactified on orientifold Calabi-Yau threefolds X :

- KKLT and Large Volume Scenario (LVS) Kachru/Kallosh/Linde/Trivedi, Valasubramanian/Berglund/Conlon/Quevedo
- Type IIB is $\mathcal{N}=2$. Break half SUSY to get $\mathcal{N}=1$.
- When consider flux and D-brane, O-plane must be there for tadpole cancelation.
- Most of the string phenomenology is building in Type IIB Calabi-Yau orientifold with $O 3 / O 7$-plane.

$$
\mathcal{O}=\left\{\begin{array}{llll}
\Omega_{p} \sigma & \text { with } & \sigma^{*}(J)=J, & \sigma^{*}\left(\Omega_{3}\right)=\Omega_{3}, \\
(-)^{F_{L}} \Omega_{p} \sigma & \text { with } & \sigma^{*}(J)=J, & \sigma^{*}\left(\Omega_{3}\right)=-\Omega_{3},
\end{array} \quad O 3 / O 7\right.
$$

each σ defines a new CY in the orbifold limit unless it is free action.

- In orientifold Type IIB, Complex, dilaton moduli decoupled with Kähler moduli.
- Complex and dilaton moduli can be stabilized by background fluxes at tree level. Gukov/Vafa/Witten
- Kähler moduli can be stabilized by non-perturbative effects (KKLT, LVS).

KKLT and LVS

KKLT/LVS \Rightarrow meta-stable dS vacua in 3-steps:

- Stabilize complex and dilaton moudli of orientifold CYs by fluxes, leading to a non-SUSY Minkowski minimum ($W=W_{0} \neq 0, V=0$). Gukov/Vafa/ Witten

$$
W_{\tau, U}=\int_{X} G_{3} \wedge \Omega, \quad G_{3}=F_{3}-\tau H_{3}
$$

- Stabilize Kähler moduli by all possible perturbative and non-perturbative corrections.

$$
\begin{aligned}
K & =K_{\text {tree }}+K_{p}+K_{n p} \\
W & =W_{\text {tree }}+W_{n p}
\end{aligned}
$$

leads to corrections of the scalar potential:

$$
\delta V=\delta V_{\alpha^{\prime}}+\delta V_{n p}
$$

- Uplift to de -Sitter

Can KKLT/LVS be realized in
 Calabi-Yau compactifications?

- Various corrections in orientifold Type IIB string theory.

Can KKLT/LVS be realized in Calabi-Yau compactifications?

- Various corrections in orientifold Type IIB string theory.
- Parameter constraint in KKLT/LVS by various corrections.

Can KKLT/LVS be realized in Calabi-Yau compactifications?

- Various corrections in orientifold Type IIB string theory.
- Parameter constraint in KKLT/LVS by various corrections.
- Can these constraints be satisfied in large-scale CY compactifications?

Can KKLT/LVS be realized in Calabi-Yau compactifications?

- Various corrections in orientifold Type IIB string theory.
- Parameter constraint in KKLT/LVS by various corrections.
- Can these constraints be satisfied in large-scale CY compactifications?
- Construction of (orientifold) CY manifold and generate CY database

Can KKLT/LVS be realized in Calabi-Yau compactifications?

- Various corrections in orientifold Type IIB string theory.
- Parameter constraint in KKLT/LVS by various corrections.
- Can these constraints be satisfied in large-scale CY compactifications?
- Construction of (orientifold) CY manifold and generate CY database
- Machine learning in searching string vacua

Outline

(1) de-Sitter in String Theory
(2) Various corrections in orientifold Type IIB string theory
(3) Warping correction and its constraint
(4) Calabi-Yau threefold Database
(5) Summary and outlook

Corrections in orientifold Type IIB from 10D view

XG/Hebecker/Schreyer/Venken JHEP 09(2022)091

- Warping correction $A(y)$: coming from the back reaction of flux and brane to the geometry (Classical).

Corrections in orientifold Type IIB from 10D view

```
XG/Hebecker/Schreyer/Venken JHEP 09(2022)091
```

- Warping correction $A(y)$: coming from the back reaction of flux and brane to the geometry (Classical).
- Generic loop correction: coming from loops of 10d or brane-localized fields propagating in the compact space.
- non-locality: They can not be associated with local operators in 10d or on a brane (analogous to casimir energy).

Corrections in orientifold Type IIB from 10D view

XG/Hebecker/Schreyer/Venken JHEP 09(2022)091

- Warping correction $A(y)$: coming from the back reaction of flux and brane to the geometry (Classical).
- Generic loop correction: coming from loops of 10d or brane-localized fields propagating in the compact space.
- non-locality: They can not be associated with local operators in 10d or on a brane (analogous to casimir energy).
- Local α^{\prime} correction: coming from higher-dimension local operators in bulk, or on the brane system.
- may receive contributions from the counterterms to renormalize the loops.
- marginal local operators at α^{4} introduce logarithmic corrections to the Kahler potential.

Loop corrections: BHP conjecture

- String loop corrections are potentially dangerous for LVS, although subleading effects. Cicoli/Conlon/Quevedo
- It only have been concreted calculated in torus cases Berg/Haack/Kors and conjectured in CYs case, the so-called Berg-Haack-Pajer (BHP) conjecture Berg/Haack/Pajer
- Kaluza-Klein type (exchange KK momentum between branes)
- Winding type (exchange winding strings between intersecting D7-branes)

$$
\delta K_{\left(g_{s}\right)}^{K K} \sim \sum_{a} \frac{g_{s} \mathcal{T}_{a}\left(t^{i}\right)}{\mathcal{V}} \sim \frac{g_{s}}{\tau}, \quad \delta K_{\left(g_{s}\right)}^{W} \sim \sum_{a} \frac{1}{\mathcal{I}_{a}\left(t^{i}\right) \mathcal{V}} \sim \frac{1}{\sqrt{\tau} \mathcal{V}}
$$

where $\mathcal{T}_{a}\left(t^{i}\right), \mathcal{I}_{a}\left(t^{i}\right)$ linear in 2-cycle.

Loop corrections: BHP conjecture

- String loop corrections are potentially dangerous for LVS, although subleading effects. Cicoli/Conlon/Quevedo
- It only have been concreted calculated in torus cases Berg/Haack/Kors and conjectured in CYs case, the so-called Berg-Haack-Pajer (BHP) conjecture Berg/Haack/Pajer
- Kaluza-Klein type (exchange KK momentum between branes)
- Winding type (exchange winding strings between intersecting D7-branes)

$$
\delta K_{\left(g_{s}\right)}^{K K} \sim \sum_{a} \frac{g_{s} \mathcal{T}_{a}\left(t^{i}\right)}{\mathcal{V}} \sim \frac{g_{s}}{\tau}, \quad \delta K_{\left(g_{s}\right)}^{W} \sim \sum_{a} \frac{1}{\mathcal{I}_{a}\left(t^{i}\right) \mathcal{V}} \sim \frac{1}{\sqrt{\tau} \mathcal{V}}
$$

where $\mathcal{T}_{a}\left(t^{i}\right), \mathcal{I}_{a}\left(t^{i}\right)$ linear in 2-cycle.

- We want to derive statement of BHP-conjecture studying directly loops effects on CYs (using 10d field theory)

Genuine Loop correction

- Consider how loop corrections to kinetic term of volume modulus scale. In one moduli case without flux, compactify Type IIB action on

$$
\begin{gathered}
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}+L(x)^{2} \tilde{g}_{m n} d y^{m} d y^{n} \quad \text { where } \quad \mathcal{V}=L^{6} \\
S=\frac{1}{2 \kappa_{10}^{2}} \int d x^{4} \sqrt{-g} L^{6}\left[R_{4}+6(6-1) \frac{(\partial L)^{2}}{L^{2}}+\cdots\right] .
\end{gathered}
$$

Genuine Loop correction

- Consider how loop corrections to kinetic term of volume modulus scale. In one moduli case without flux, compactify Type IIB action on

$$
\begin{aligned}
d s^{2} & =g_{\mu \nu} d x^{\mu} d x^{\nu}+L(x)^{2} \tilde{g}_{m n} d y^{m} d y^{n} \quad \text { where } \quad \mathcal{V}=L^{6} \\
S & =\frac{1}{2 \kappa_{10}^{2}} \int d x^{4} \sqrt{-g} L^{6}\left[R_{4}+6(6-1) \frac{(\partial L)^{2}}{L^{2}}+\cdots\right] .
\end{aligned}
$$

- Loop corrections induced by integrating out KK modes of mass. From both dimensional analyze and Feynman-Diagram calculations:

$$
\delta S_{1-\mathrm{loop}}=\int d x^{4} \sqrt{-g}\left(\frac{b_{0}}{L^{2}} R_{4}+\frac{b_{1}}{L^{4}}(\partial L)^{2}\right)
$$

Genuine Loop correction

- Consider how loop corrections to kinetic term of volume modulus scale. In one moduli case without flux, compactify Type IIB action on

$$
\begin{aligned}
d s^{2} & =g_{\mu \nu} d x^{\mu} d x^{\nu}+L(x)^{2} \tilde{g}_{m n} d y^{m} d y^{n} \quad \text { where } \quad \mathcal{V}=L^{6} \\
S & =\frac{1}{2 \kappa_{10}^{2}} \int d x^{4} \sqrt{-g} L^{6}\left[R_{4}+6(6-1) \frac{(\partial L)^{2}}{L^{2}}+\cdots\right] .
\end{aligned}
$$

- Loop corrections induced by integrating out KK modes of mass. From both dimensional analyze and Feynman-Diagram calculations:

$$
\delta S_{1-\text { loop }}=\int d x^{4} \sqrt{-g}\left(\frac{b_{0}}{L^{2}} R_{4}+\frac{b_{1}}{L^{4}}(\partial L)^{2}\right)
$$

- Consider 4-cycle as $\tau \sim M_{10}^{4} L^{4}$, the Kähler potential will reads:

$$
\begin{gathered}
(S+\delta S)_{\mathrm{EF}}=\frac{M_{4}^{2}}{2} \int d^{4} x \sqrt{-g}\left[R_{4}+\left(-\frac{3}{2} \frac{(\partial \tau)^{2}}{\tau^{2}}+\frac{114 b_{0}+b_{1}}{32 \pi} \frac{(\partial \tau)^{2}}{\tau^{4}}\right)\right] \\
K+\delta K_{1-\text { loop }} \sim 1 / \tau^{2}+1 / \tau^{4} \quad \Rightarrow \quad \delta K_{1-\mathrm{loop}} \sim 1 / \tau^{2} \sim \frac{1}{\sqrt{\tau} \mathcal{V}}
\end{gathered}
$$

scales like BHP winding correction. Unlike BHP, it is not tied to intersecting branes (non-local) and the linearity on 2-cycle volume does not appear in multi-molduli case.

Local α^{\prime} corrections

- Coming higher-dimension local operators in 10d. In Einstein frame, the purely gravitaional curvature part of type IIB:
$S_{\mathrm{EF}} \sim \int d x^{10} \sqrt{-g}\left[M_{10}^{8} R_{10}+\frac{M_{10}^{2}}{g_{s}^{3 / 2}} R_{10}^{4}+M_{10}^{2} g_{s}^{1 / 2} R_{10}^{4}+\mathcal{O}\left(M_{10}^{-2} g_{s}^{-5 / 2} R_{10}^{6}\right)\right]$
Antoniadis/Ferrara/Minasian/Narain

Local α^{\prime} corrections

- Coming higher-dimension local operators in 10d.

In Einstein frame, the purely gravitaional curvature part of type IIB:

$$
S_{\mathrm{EF}} \sim \int d x^{10} \sqrt{-g}\left[M_{10}^{8} R_{10}+\frac{M_{10}^{2}}{g_{s}^{3 / 2}} R_{10}^{4}+M_{10}^{2} g_{s}^{1 / 2} R_{10}^{4}+\mathcal{O}\left(M_{10}^{-2} g_{s}^{-5 / 2} R_{10}^{6}\right)\right]
$$

Antoniadis/Ferrara/Minasian/Narain

- Contributions from high momentum region of integral. Part of the term $M_{10}^{2} g_{s}^{1 / 2} R_{10}^{4}$ can be identified as a counterterm of our EFT analysis.
- Correction to 4D Kahler potential comes from higher dimensional operators compact to 4 d . For example R_{10}^{4} terms:
$\left(\frac{M_{10}^{2}}{g_{s}^{3 / 2}}+M_{10}^{2} g_{s}^{1 / 2}\right) R_{\text {external }} \int d x^{6} R_{\text {internal }}^{3} \sim\left(\frac{M_{10}^{2}}{g_{s}^{3 / 2}}+M_{10}^{2} g_{s}^{1 / 2}\right) R_{\text {external }}$
reproduces the well known string tree-level BBHL correction Becker/Becker/ Haack/Louis and its 1-loop counterpart.

Corrections on D7/07

Correction type	Induced by	Correction to Kahler potential	Correction to scalar potential
Genuine loops	-	f_{-2}	$\left\|W_{0}\right\|^{2} g_{s} \times h_{-5}$
BBHL+1-loop	$\frac{M_{10}^{2}\left(1+g_{s}^{2}\right) R_{10}^{4}}{g_{s}^{3 / 2}}$	$\left(g_{s}^{-1 / 2}+g_{s}^{3 / 2}\right)$ $\times f_{-3 / 2}$	$\|$$\left\|W_{0}\right\|^{2}\left(g_{s}^{-3 / 2}+g_{s}^{1 / 2}\right)$ $\times h_{-9 / 2}$
Non-intersecting D7/O7 (partly)	$M_{10}^{4}\left(1+g_{s}\right) R_{8}^{2}$	$\left(0+g_{s}\right) \times f_{-1}$	$\left\|W_{0}\right\|^{2} g_{s}^{3} \times h_{-5}$
Log-Correction on D7/O7	R_{8}^{4}	$\ln \left(M_{10}^{1 / 4} g_{s}^{1 / 4} L\right)$ $\times f_{-2}$	$\left\|W_{0}\right\|^{2} g_{s} \ln \left(M_{10} g_{s}^{1 / 4} L\right)$
$\times h_{-5}$			

- $f_{-\lambda}, h_{-\lambda}$ are homogeneous of degree $-\lambda$ in 4-cycles τ.
- g_{s} / f_{-1} : scaling like BHP KK correction (indeed in Brane system).
- log enhanced loop correction from marginal operator.
- Genuine loop corrections scale like BHP winding correction. However, in multi Kähler moduli case, scaling persists but linearity is not found in fiberd geometry like K 3 fibered on \mathbb{P}^{1}.

Outline

(1) de-Sitter in String Theory
(2) Various corrections in orientifold Type IIB string theory
(3) Warping correction and its constraint
(4) Calabi-Yau threefold Database
(5) Summary and outlook

Tadpole Cancelation

The geometry with strongly warped throat in Type IIB is locally described by Klebanov-Strassler (KS) solution.
Klebanov/Strassler, Giddings/Karchru/Polchinski
The fluxes number is given by fluxes warpping on two 3-cycles at the conifold :

$$
M=\int_{A} H_{3}, \quad K=\int_{B} F_{3},
$$

The throat carries $N=K \cdot M$ units of D3-brane charge contribute to tadpole.

Tadpole Cancelation

The geometry with strongly warped throat in Type IIB is locally described by Klebanov-Strassler (KS) solution.
Klebanov/Strassler, Giddings/Karchru/Polchinski
The fluxes number is given by fluxes warpping on two 3 -cycles at the conifold :

$$
M=\int_{A} H_{3}, \quad K=\int_{B} F_{3},
$$

The throat carries $N=K \cdot M$ units of
D3-brane charge contribute to tadpole.

> from Ralph's paper

- With $N_{\text {flux }}=2 N=2 K M$, the $D 3$ tadpole is generally given by

$$
N_{D 3}+\frac{N_{\text {flux }}}{2}+N_{\text {gauge }}=\frac{N_{O 3}}{4}+\frac{\chi\left(D_{O 7}\right)}{12}+\sum_{a} N_{a} \frac{\chi\left(D_{a}\right)+\chi\left(D_{a}^{\prime}\right)}{48} \equiv-Q_{3},
$$

Tadpole Cancelation

The geometry with strongly warped throat in Type IIB is locally described by Klebanov-Strassler (KS) solution.
Klebanov/Strassler, Giddings/Karchru/Polchinski
The fluxes number is given by fluxes warpping on two 3 -cycles at the conifold :

$$
M=\int_{A} H_{3}, \quad K=\int_{B} F_{3},
$$

The throat carries $N=K \cdot M$ units of
D3-brane charge contribute to tadpole.

> from Ralph's paper

- With $N_{\text {flux }}=2 N=2 K M$, the $D 3$ tadpole is generally given by

$$
N_{D 3}+\frac{N_{\text {flux }}}{2}+N_{\text {gauge }}=\frac{N_{O 3}}{4}+\frac{\chi\left(D_{O 7}\right)}{12}+\sum_{a} N_{a} \frac{\chi\left(D_{a}\right)+\chi\left(D_{a}^{\prime}\right)}{48} \equiv-Q_{3},
$$

- Locally, $N_{D 3}+N+N_{\text {gauge }}=\frac{N_{O 3}}{4}+\frac{\chi\left(D_{O 7}\right)}{4} \equiv-Q_{3}$

Tadpole Cancelation

The geometry with strongly warped throat in Type IIB is locally described by Klebanov-Strassler (KS) solution.
Klebanov/Strassler, Giddings/Karchru/Polchinski
The fluxes number is given by fluxes warpping on two 3 -cycles at the conifold :

$$
M=\int_{A} H_{3}, \quad K=\int_{B} F_{3},
$$

The throat carries $N=K \cdot M$ units of
D3-brane charge contribute to tadpole.

> from Ralph's paper

- With $N_{\text {flux }}=2 N=2 K M$, the $D 3$ tadpole is generally given by

$$
N_{D 3}+\frac{N_{\text {flux }}}{2}+N_{\text {gauge }}=\frac{N_{O 3}}{4}+\frac{\chi\left(D_{O 7}\right)}{12}+\sum_{a} N_{a} \frac{\chi\left(D_{a}\right)+\chi\left(D_{a}^{\prime}\right)}{48} \equiv-Q_{3},
$$

- Locally, $N_{D 3}+N+N_{\text {gauge }}=\frac{N_{O 3}}{4}+\frac{\chi\left(D_{O 7}\right)}{4} \equiv-Q_{3}$
- Tadpole condition: We must at least have sufficient negative tadpole Q_{3} to cancel the flux in the throat

$$
-Q_{3}>N
$$

KKLT Scenario

Only Non-perturbative correction to superpotential \Rightarrow Fine-tune tree level superpotential W_{0}

- Stabilize Kähler moduli:

Non-perturbative effects (E3-instanton (E3 on 4-cycle Σ)/gaugino condensation (D7)) stabilize the Kähler moduli T, leading to an SUSY AdS minimum $V_{A d S}$.

$$
\begin{gathered}
K=-3 \ln (T+\bar{T}), \quad W=W_{0}+\underline{e^{-T}} \\
V=e^{K}\left(K^{T \bar{T}}\left|\partial_{T}+K_{T} W\right|^{2}-3|W|^{2}\right) \\
V_{A d S} \sim-e^{-\operatorname{Re}(T)}
\end{gathered}
$$

- Uplift to dS:

Uplift to dS by palcing $\overline{D 3}$ in the throat tip, contribute $V_{\text {uplift }} \sim e^{-K / g_{s} M}$.
Meta-stable if uplift energy is not too large:

$$
V_{\text {uplift }} \sim\left|V_{A d S}\right| \Rightarrow \operatorname{Re}(T) \sim \frac{N}{g_{s} M^{2}}
$$

Singular Bulk Problem x6/Junghans/Hebechker Fortsch. Phys. $68(2020)$ 2000089

- Kähler moduli $\operatorname{Re}(T)$ in $W_{n p} \sim e^{-T}$ is precisely the $E 3$-brane action:

$$
\operatorname{Re}(T) \sim N / g_{s} M^{2} \sim S_{E 3}=\frac{1}{g_{s}} \int_{\Sigma} \sqrt{g} h(y)
$$

Singular Bulk Problem x6/Junghans/Hebechher Fortsch. Phys. $68(2020)$ 2000089

- Kähler moduli $\operatorname{Re}(T)$ in $W_{n p} \sim e^{-T}$ is precisely the $E 3$-brane action:

$$
\operatorname{Re}(T) \sim N / g_{s} M^{2} \sim S_{E 3}=\frac{1}{g_{s}} \int_{\Sigma} \sqrt{g} h(y)
$$

- Then we constrain the warp factor average over the 4-cycle Σ :

$$
\langle h(y)\rangle_{\Sigma} \equiv \frac{\int_{\Sigma} \sqrt{g} h(y)}{\int_{\Sigma} \sqrt{g}} \sim \frac{N}{M^{2} \mathcal{V}_{\Sigma}} \sim \frac{N}{M^{2}}
$$

Singular Bulk Problem x6/Junghans/Hebechher Fortsch. Phys. $68(2020)$ 2000089

- Kähler moduli $\operatorname{Re}(T)$ in $W_{n p} \sim e^{-T}$ is precisely the $E 3$-brane action:

$$
\operatorname{Re}(T) \sim N / g_{s} M^{2} \sim S_{E 3}=\frac{1}{g_{s}} \int_{\Sigma} \sqrt{g} h(y)
$$

- Then we constrain the warp factor average over the 4-cycle Σ :

$$
\langle h(y)\rangle_{\Sigma} \equiv \frac{\int_{\Sigma} \sqrt{g} h(y)}{\int_{\Sigma} \sqrt{g}} \sim \frac{N}{M^{2} \mathcal{V}_{\Sigma}} \sim \frac{N}{M^{2}}
$$

- $\langle h\rangle_{\Sigma} \sim \frac{N}{M^{2}}$ implies in the neihborhood of Σ, there is: $h \lesssim \frac{N}{M^{2}}$

Singular Bulk Problem x6/Junghans/Hebechher Fortsch. Phys. $68(2020)$ 2000089

- Kähler moduli $\operatorname{Re}(T)$ in $W_{n p} \sim e^{-T}$ is precisely the $E 3$-brane action:

$$
\operatorname{Re}(T) \sim N / g_{s} M^{2} \sim S_{E 3}=\frac{1}{g_{s}} \int_{\Sigma} \sqrt{g} h(y)
$$

- Then we constrain the warp factor average over the 4-cycle Σ :

$$
\langle h(y)\rangle_{\Sigma} \equiv \frac{\int_{\Sigma} \sqrt{g} h(y)}{\int_{\Sigma} \sqrt{g}} \sim \frac{N}{M^{2} \mathcal{V}_{\Sigma}} \sim \frac{N}{M^{2}}
$$

- $\langle h\rangle_{\Sigma} \sim \frac{N}{M^{2}}$ implies in the neihborhood of Σ, there is: $h \lesssim \frac{N}{M^{2}}$
- Variation of the warp factor due to N unit D3 charge at the Klebanov -Strassler tip: $|\partial h| \sim g_{s} N$

$$
\frac{|\partial h|}{h} \gtrsim \frac{g_{s} N}{N / M^{2}} \sim g_{s} M^{2} \gtrsim M \gg 1
$$

Singular Bulk Problem

- $g_{s} M \gtrsim 1$ for small curvature at KS tip (SUGRA control)

Klebanov/Strassler, Kachru/Pearson/Verlinde(KPV), Klebanov/Herzog/Ouyang

- $g_{s} M^{2} \gtrsim 12$ for metastability of the $\overline{D 3}$ (polarization of $\overline{D 3}$ into NS5) KPV, Bena/Dudas/Grana/Lust, Blumenhagen/Klawer/Schlechter

How large is the singular region in CY?

- Variation of h much larger than its average $\frac{|\partial h|}{h} \gg 1$. This leads $h<0$ on $\mathcal{O}(1)$ fraction of $E 3$ volume, making much of the $E 3$ singular.
- It fact, it will then also spread over an $\mathcal{O}(1)$ distance into the transverse space, extending over a large part of the Calabi-Yau.

How large is the singular region in CY?

- Variation of h much larger than its average $\frac{|\partial h|}{h} \gg 1$. This leads $h<0$ on $\mathcal{O}(1)$ fraction of $E 3$ volume, making much of the $E 3$ singular.
- It fact, it will then also spread over an $\mathcal{O}(1)$ distance into the transverse space, extending over a large part of the Calabi-Yau.
There is a connected region on the Calabi-Yau for which h stays negative all the way from brane until (at least) the nearest O-plane.

How large is the singular region in CY?

- Variation of h much larger than its average $\frac{|\partial h|}{h} \gg 1$. This leads $h<0$ on $\mathcal{O}(1)$ fraction of $E 3$ volume, making much of the $E 3$ singular.
- It fact, it will then also spread over an $\mathcal{O}(1)$ distance into the transverse space, extending over a large part of the Calabi-Yau.
There is a connected region on the Calabi-Yau for which h stays negative all the way from brane until (at least) the nearest O-plane.

- Alternative view of the problem:

$$
R_{6}=h^{-5 / 2}|\partial h|^{2}-3 / 2 h^{-3 / 2} \nabla^{2} h \quad \Rightarrow \quad R_{6} \gtrsim g_{s}^{2} M^{5} / \sqrt{N}
$$

Imposing $g_{s} M \gtrsim 1, M \gtrsim 12$ and $R_{6} \lesssim 1$ implies $N \gtrsim 3 \cdot 10^{6}$, which exceeds the largest know tadpole of 7.5×10^{4} in string compactification.

[^0]- Warping correction + meta-stable of de-Sitter in KKLT \Rightarrow Singular Bulk Problem

LVS

Non-perturbative contribution to superpotentail Perturbative $\alpha^{\prime 3}$ correction to Kähler potential $(\tau=\operatorname{Re}(T))$

$$
W=W_{0}+A_{s} e^{-a_{s} T_{s}}, \quad K=-2 \ln \left(\mathcal{V}+\frac{\xi}{2 g_{s}^{3 / 2}}\right)=-2 \ln \left(\tau_{b}^{3 / 2}-\kappa_{s} \tau_{s}^{3 / 2}-\frac{\chi(X) \zeta(3)}{4(2 \pi)^{3} g_{s}^{3 / 2}}\right)
$$

LVS

Non-perturbative contribution to superpotentail Perturbative $\alpha^{\prime 3}$ correction to Kähler potential $(\tau=\operatorname{Re}(T))$

$$
W=W_{0}+A_{s} e^{-a_{s} T_{s}}, \quad K=-2 \ln \left(\mathcal{V}+\frac{\xi}{2 g_{s}^{3 / 2}}\right)=-2 \ln \left(\tau_{b}^{3 / 2}-\kappa_{s} \tau_{s}^{3 / 2}-\frac{\chi(X) \zeta(3)}{4(2 \pi)^{3} g_{s}^{3 / 2}}\right)
$$

This yields the pure LVS scalar potential

$$
V \sim \frac{g_{s} \sqrt{\tau}_{s} e^{-2 a_{s} \tau_{s}}}{\mathcal{V}}-\frac{g_{s} \tau_{s} W_{0} e^{-a_{s} \tau_{s}}}{\mathcal{V}^{2}}+\frac{\xi W_{0}^{2}}{\sqrt{g_{s}} \mathcal{V}^{3}}
$$

which is minimized by

$$
\mathcal{V}=\frac{3 \kappa_{s}\left|W_{0}\right| \sqrt{\tau_{s}}}{4 a_{s}\left|A_{s}\right|} e^{a_{s} \tau_{s}}, \quad \quad \tau_{s}=\frac{\xi^{2 / 3}}{\left(2 \kappa_{s}\right)^{2 / 3} g_{s}}+\mathcal{O}(1)
$$

leading to an AdS vacuum at exponentially large volume

$$
V_{\mathrm{AdS}}=-\frac{3 \kappa_{s} g_{s} \sqrt{\tau_{s}}\left|W_{0}\right|^{2}}{8 a_{s} \mathcal{V}^{3}}
$$

LVS

Non-perturbative contribution to superpotentail Perturbative $\alpha^{\prime 3}$ correction to Kähler potential $(\tau=\operatorname{Re}(T))$

$$
W=W_{0}+A_{s} e^{-a_{s} T_{s}}, \quad K=-2 \ln \left(\mathcal{V}+\frac{\xi}{2 g_{s}^{3 / 2}}\right)=-2 \ln \left(\tau_{b}^{3 / 2}-\kappa_{s} \tau_{s}^{3 / 2}-\frac{\chi(X) \zeta(3)}{4(2 \pi)^{3} g_{s}^{3 / 2}}\right)
$$

This yields the pure LVS scalar potential

$$
V \sim \frac{g_{s} \sqrt{\tau}_{s} e^{-2 a_{s} \tau_{s}}}{\mathcal{V}}-\frac{g_{s} \tau_{s} W_{0} e^{-a_{s} \tau_{s}}}{\mathcal{V}^{2}}+\frac{\xi W_{0}^{2}}{\sqrt{g_{s}} \mathcal{V}^{3}}
$$

which is minimized by

$$
\mathcal{V}=\frac{3 \kappa_{s}\left|W_{0}\right| \sqrt{\tau_{s}}}{4 a_{s}\left|A_{s}\right|} e^{a_{s} \tau_{s}}, \quad \quad \tau_{s}=\frac{\xi^{2 / 3}}{\left(2 \kappa_{s}\right)^{2 / 3} g_{s}}+\mathcal{O}(1)
$$

leading to an AdS vacuum at exponentially large volume

$$
V_{\mathrm{AdS}}=-\frac{3 \kappa_{s} g_{s} \sqrt{\tau_{s}}\left|W_{0}\right|^{2}}{8 a_{s} \mathcal{V}^{3}}
$$

LVS expansion balance the perturbative and non-perturbative correction

$$
\delta V_{\alpha^{\prime}} \sim \delta V_{n p} \sim \mathcal{O}\left(\frac{1}{\mathcal{V}^{3}}\right)
$$

Control problem also for LVS?

Are there warping corrections associated to the realization of de-Sitter that are deadly for LVS?

Control problem also for LVS?

Are there warping corrections associated to the realization of de-Sitter that are deadly for LVS?

- In principle, LVS is well protected from various correction because the CYs volume is exponentially large.

Control problem also for LVS?

Are there warping corrections associated to the realization of de-Sitter that are deadly for LVS?

- In principle, LVS is well protected from various correction because the CYs volume is exponentially large.
- However, the problem does not disappear since at large volume the AdS minimum of LVS becomes shallow, requiring a small uplift and hence a strongly warped throat. Junghans

Control problem also for LVS?

Are there warping corrections associated to the realization of de-Sitter that are deadly for LVS?

- In principle, LVS is well protected from various correction because the CYs volume is exponentially large.
- However, the problem does not disappear since at large volume the AdS minimum of LVS becomes shallow, requiring a small uplift and hence a strongly warped throat. Junghans

- Warping correction + meta-stable of de-Sitter in LVS \Rightarrow Parametric Tadpole Constraint (PTC)
XG/Hebecker/Schreyer/Venken JHEP 07(2022)056

Warping corrections of LVS

- We derive the most precise formula for warping of anti D3 brane uplift term at tip:

$$
V_{\mathrm{up}}=\frac{\left(3^{2} \pi^{3} 2^{22 / 3}\right)^{1 / 5}}{a_{0}} \frac{e^{-\frac{8 \pi N}{3 g_{s} M^{2}}}}{g_{s} M^{2} \mathcal{V}^{4 / 3}}
$$

Warping corrections of LVS

- We derive the most precise formula for warping of anti D3 brane uplift term at tip:

$$
V_{\mathrm{up}}=\frac{\left(3^{2} \pi^{3} 2^{22 / 3}\right)^{1 / 5}}{a_{0}} \frac{e^{-\frac{8 \pi N}{3 g_{s} M^{2}}}}{g_{s} M^{2} \mathcal{V}^{4 / 3}}
$$

- meta-stable de-Sitter vacuum means again $V_{\text {up }} \approx\left|V_{A d S}\right|$ leads to a constrain on the CY volume \mathcal{V} and gives a relation between the parameters of warped throat and bulk CYs.
- Warping correction to Euler number $\chi(X)$:

$$
\frac{1}{g_{s}^{3 / 2}} \int_{\mathcal{M}_{10}} e^{2 A(y)} R \wedge R \wedge R \wedge R \wedge e \wedge e \approx \frac{1}{g_{s}^{3 / 2}} \int d^{4} x R_{4}\left(\chi(X)+\frac{\chi(X) N}{\mathcal{V}^{2 / 3}}\right)
$$

leads to the warping correction to the scalar potential

$$
\delta V_{\text {warp }}=\frac{15 \xi N\left|W_{0}\right|^{2}}{8 \sqrt{g_{s}} \mathcal{V}^{11 / 3}} \mathcal{O}(1)
$$

Warping corrections of LVS

- We derive the most precise formula for warping of anti D3 brane uplift term at tip:

$$
V_{\mathrm{up}}=\frac{\left(3^{2} \pi^{3} 2^{22 / 3}\right)^{1 / 5}}{a_{0}} \frac{e^{-\frac{8 \pi N}{3 g_{s} M^{2}}}}{g_{s} M^{2} \mathcal{V}^{4 / 3}}
$$

- meta-stable de-Sitter vacuum means again $V_{\text {up }} \approx\left|V_{A d S}\right|$ leads to a constrain on the CY volume \mathcal{V} and gives a relation between the parameters of warped throat and bulk CYs.
- Warping correction to Euler number $\chi(X)$:

$$
\frac{1}{g_{s}^{3 / 2}} \int_{\mathcal{M}_{10}} e^{2 A(y)} R \wedge R \wedge R \wedge R \wedge e \wedge e \approx \frac{1}{g_{s}^{3 / 2}} \int d^{4} x R_{4}\left(\chi(X)+\frac{\chi(X) N}{\mathcal{V}^{2 / 3}}\right)
$$

leads to the warping correction to the scalar potential

$$
\delta V_{\text {warp }}=\frac{15 \xi N\left|W_{0}\right|^{2}}{8 \sqrt{g_{s}} \mathcal{V}^{11 / 3}} \mathcal{O}(1)
$$

- A measure for parametric control is given by comparing the size of $\delta V_{\text {warp }}$ and its value at the minimum $V_{A d S}$:

$$
c_{N} \equiv \frac{V_{\text {AdS }}}{\delta V_{\text {warp }}}, \quad \mathcal{V}^{2 / 3}=c_{N} \frac{10 a_{s} \xi^{2 / 3}}{\left(2 \kappa_{s}\right)^{2 / 3} g_{s}} N
$$

$\Rightarrow c_{N} \gg 1$ for parameter control.

Constraints from W_{0}

- Higher F-terms corrections to the scalar potential (eight derivative terms)

Ciupke/Louis/Westphal/Junghans

$$
\delta V_{F} \sim \frac{W_{0}^{4} g_{s}^{1 / 2}}{\mathcal{V}^{11 / 3}}
$$

and we introduce another ratio $c_{W_{0}}$ such that:

$$
c_{W_{0}} \equiv \frac{V_{A d S}}{\delta V_{F}}, \quad \frac{1}{W_{0}^{2}}=c_{W_{0}} \frac{16 a_{s}}{3\left(2 \kappa_{s}\right)^{2 / 3} \xi^{1 / 3}} \frac{1}{\mathcal{V}^{2 / 3}}
$$

$\Rightarrow c_{W_{0}} \gg 1$ for parameter control.

Constraints from W_{0}

- Higher F-terms corrections to the scalar potential (eight derivative terms)

Ciupke/Louis/Westphal/Junghans

$$
\delta V_{F} \sim \frac{W_{0}^{4} g_{s}^{1 / 2}}{\mathcal{V}^{11 / 3}}
$$

and we introduce another ratio $c_{W_{0}}$ such that:

$$
c_{W_{0}} \equiv \frac{V_{A d S}}{\delta V_{F}}, \quad \frac{1}{W_{0}^{2}}=c_{W_{0}} \frac{16 a_{s}}{3\left(2 \kappa_{s}\right)^{2 / 3} \xi^{1 / 3}} \frac{1}{\mathcal{V}^{2 / 3}}
$$

$\Rightarrow c_{W_{0}} \gg 1$ for parameter control.

- In addition, there is another bound on the tadpole related to W_{0} : Denef/Douglas

$$
-Q_{3} \geq 2 \pi g_{s} W_{0}^{2}
$$

- Replace W_{0}, \mathcal{V} in terms of $c_{W_{0}}, c_{N}$ and consider the standard Tadpole condition in Type IIB, we have:

$$
-Q_{3} \geq \frac{c_{N}}{c_{W_{0}}} \frac{15 \pi \xi}{4} N \equiv c_{Q} N, \quad-Q_{3}>N
$$

This result allows for a more compact formulation if we merely restrict c_{N} and $c_{W_{0}}$ such that some minimal quality of control is ensured.

Parametric Tadpole Constraint (PTC)

XG/Hebecker/Schreyer/Venken JHEP 07(2022)056

- Replace W_{0} and \mathcal{V} in terms of $c_{W_{0}}$ and c_{N}, from $V_{u p}=\left|V_{A d S}\right|$, we will get an equation for N which is of the form $w e^{w}=x$. Then one can give analytic expression of N.
- Combining this set of constraints, one can obtain a constraint on the flux $N=K \cdot M$ required in the warped throat

The LVS parametric tadpole constraint:
The D3 tadpole contribution Q_{3} of O3/O7-planes and D7-branes must fulfill

$$
-Q_{3}>N=N_{*}\left(\frac{1}{3} \ln N_{*}+\frac{5}{3} \ln c_{N}+\ln a_{s}-\frac{2}{3} \ln \kappa_{s}+8.2+\mathcal{O}(\ln (\ln))\right),
$$

where we defined $\quad N_{*}=9 g_{s} M^{2} /(16 \pi)$.

Parametric Tadpole Constraint (PTC)

XG/Hebecker/Schreyer/Venken JHEP 07(2022)056

- Replace W_{0} and \mathcal{V} in terms of $c_{W_{0}}$ and c_{N}, from $V_{u p}=\left|V_{A d S}\right|$, we will get an equation for N which is of the form $w e^{w}=x$. Then one can give analytic expression of N.
- Combining this set of constraints, one can obtain a constraint on the flux $N=K \cdot M$ required in the warped throat

The LVS parametric tadpole constraint:

The D3 tadpole contribution Q_{3} of O3/O7-planes and D7-branes must fulfill

$$
-Q_{3}>N=N_{*}\left(\frac{1}{3} \ln N_{*}+\frac{5}{3} \ln c_{N}+\ln a_{s}-\frac{2}{3} \ln \kappa_{s}+8.2+\mathcal{O}(\ln (\ln))\right),
$$

where we defined $\quad N_{*}=9 g_{s} M^{2} /(16 \pi)$.

- Two parameters c_{N} and $g_{s} M^{2}$
- $g_{s} M^{2}>12$ from KPV solution Kachru/Pearson/Verlinde
- $g_{s} M^{2}>46$ for stability warped throat Bena/Dudas/Grana/Lust

Lower bound on the tadpole from PTC

The LVS parametric tadpole constraint:

The D3 tadpole contribution Q_{3} of O3/O7-planes and D7-branes must fulfill

$$
-Q_{3}>N=N_{*}\left(\frac{1}{3} \ln N_{*}+\frac{5}{3} \ln c_{N}+\ln a_{s}-\frac{2}{3} \ln \kappa_{s}+8.2+\mathcal{O}(\ln (\ln))\right),
$$

where we defined $\quad N_{*}=9 g_{s} M^{2} /(16 \pi)$.

- Our PTC provide a lower bound on the required tabpole:
- $\kappa_{s}=1, g_{s} M^{2}=46, a_{s}=\pi / 3, c_{N}=5 \quad \Rightarrow \quad N=133$
- $\kappa_{s}=1, g_{s} M^{2}=46, a_{s}=\pi / 3, c_{N}=100 \quad \Rightarrow \quad N=180$
- $\kappa_{s}=1, g_{s} M^{2}=90, a_{s}=2 \pi, c_{N}=5 \Rightarrow N=298$
- $\kappa_{s}=1, g_{s} M^{2}=90, a_{s}=2 \pi, c_{N}=100 \Rightarrow N=388$

Lower bound on the tadpole from PTC

The LVS parametric tadpole constraint:

The D3 tadpole contribution Q_{3} of O3/O7-planes and D7-branes must fulfill

$$
-Q_{3}>N=N_{*}\left(\frac{1}{3} \ln N_{*}+\frac{5}{3} \ln c_{N}+\ln a_{s}-\frac{2}{3} \ln \kappa_{s}+8.2+\mathcal{O}(\ln (\ln))\right),
$$

where we defined $\quad N_{*}=9 g_{s} M^{2} /(16 \pi)$.

- Our PTC provide a lower bound on the required tabpole:
- $\kappa_{s}=1, g_{s} M^{2}=46, a_{s}=\pi / 3, c_{N}=5 \quad \Rightarrow \quad N=133$
- $\kappa_{s}=1, g_{s} M^{2}=46, a_{s}=\pi / 3, c_{N}=100 \quad \Rightarrow \quad N=180$
- $\kappa_{s}=1, g_{s} M^{2}=90, a_{s}=2 \pi, c_{N}=5 \Rightarrow N=298$
- $\kappa_{s}=1, g_{s} M^{2}=90, a_{s}=2 \pi, c_{N}=100 \Rightarrow N=388$
- On the other hand, there is a so-called Tadpole conjecture Bena/Blaback/ Grana/Lust, if it is correct, indicates an upper bound, that the tadpole should not be too large in order to stabilize the complex structure moduli of the orientifold CYs.

Lower bound on the tadpole from PTC

The LVS parametric tadpole constraint:

The D3 tadpole contribution Q_{3} of O3/O7-planes and D7-branes must fulfill

$$
-Q_{3}>N=N_{*}\left(\frac{1}{3} \ln N_{*}+\frac{5}{3} \ln c_{N}+\ln a_{s}-\frac{2}{3} \ln \kappa_{s}+8.2+\mathcal{O}(\ln (\ln))\right),
$$

where we defined $\quad N_{*}=9 g_{s} M^{2} /(16 \pi)$.

- Our PTC provide a lower bound on the required tabpole:
- $\kappa_{s}=1, g_{s} M^{2}=46, a_{s}=\pi / 3, c_{N}=5 \quad \Rightarrow \quad N=133$
- $\kappa_{s}=1, g_{s} M^{2}=46, a_{s}=\pi / 3, c_{N}=100 \quad \Rightarrow \quad N=180$
- $\kappa_{s}=1, g_{s} M^{2}=90, a_{s}=2 \pi, c_{N}=5 \Rightarrow N=298$
- $\kappa_{s}=1, g_{s} M^{2}=90, a_{s}=2 \pi, c_{N}=100 \Rightarrow N=388$
- On the other hand, there is a so-called Tadpole conjecture Bena/Blaback/ Grana/Lust, if it is correct, indicates an upper bound, that the tadpole should not be too large in order to stabilize the complex structure moduli of the orientifold CYs.
- Do we have a model satisfy the PTC?

Orientifold Calabi-Yau threefold landscape

- toric CY3 hypersurface $\left(\#<? \mathcal{O}\left(10^{920}\right)\right)$ Borisov/Batyrev/Cox/Kreuzer/Skarke/ Demirtas/Long/McAllister

Orientifold Calabi-Yau threefold landscape

- toric CY3 hypersurface (\#<?O(10920)) Borisov/Batyrev/Cox/Kreuzer/Skarke/ Demirtas/Long/McAllister
- The highest negative tadpole values of explicitly considered model is $-Q_{3}=149$ Crino/Quevedo/Valandro.

Orientifold Calabi-Yau threefold landscape

- toric CY3 hypersurface (\# $<$? $\mathcal{O}\left(10^{920}\right)$) Borisov/Batyrev/Cox/Kreuzer/Skarke/ Demirtas/Long/McAllister
- The highest negative tadpole values of explicitly considered model is $-Q_{3}=149$ Crino/Quevedo/Valandro.
- We constructed explicitly the toric orientifold CYs with divisor exchange from the 700,000 toric CYs with $h^{1,1} \leq 6$ and get around 6000 orientifold CYs Altman/Carifio/XG/Nelson JHEP 03 (2022) 087. We also make a prediction of orientifold CYs for $h^{1,1}=7$ by machine learning XG/Zou Phys.Rev.D 105 (2022) 4, 046017.
The largest negative tadpole is $-Q_{3}=30$ for the concrete $\mathrm{SO}(8)$ model and is bounded by $-Q_{3} \leq 252$ in Kreuzer-Skarke dataset ($h^{1,1} \leq 491$).

Orientifold Calabi-Yau threefold landscape

- toric CY3 hypersurface (\# $<$? $\mathcal{O}\left(10^{920}\right)$) Borisov/Batyrev/Cox/Kreuzer/Skarke/ Demirtas/Long/McAllister
- The highest negative tadpole values of explicitly considered model is $-Q_{3}=149$ Crino/Quevedo/Valandro.
- We constructed explicitly the toric orientifold CYs with divisor exchange from the 700,000 toric CYs with $h^{1,1} \leq 6$ and get around 6000 orientifold CYs Altman/Carifio/XG/Nelson JHEP 03 (2022) 087. We also make a prediction of orientifold CYs for $h^{1,1}=7$ by machine learning XG/Zou Phys.Rev.D 105 (2022) 4, 046017.
The largest negative tadpole is $-Q_{3}=30$ for the concrete $\mathrm{SO}(8)$ model and is bounded by $-Q_{3} \leq 252$ in Kreuzer-Skarke dataset ($h^{1,1} \leq 491$).
- Complete Intersection Calabi-Yau threefolds (CICY) Hubsch/Candelas/Dale/

Lutaken/Schimmrigk/Green

Orientifold Calabi-Yau threefold landscape

- toric CY3 hypersurface (\# <?O $\left(10^{920}\right)$) Borisov/Batyrev/Cox/Kreuzer/Skarke/ Demirtas/Long/McAllister
- The highest negative tadpole values of explicitly considered model is $-Q_{3}=149$ Crino/Quevedo/Valandro.
- We constructed explicitly the toric orientifold CYs with divisor exchange from the 700,000 toric CYs with $h^{1,1} \leq 6$ and get around 6000 orientifold CYs Altman/Carifio/XG/Nelson JHEP 03 (2022) 087. We also make a prediction of orientifold CYs for $h^{1,1}=7$ by machine learning XG/Zou Phys.Rev.D 105 (2022) 4, 046017.
The largest negative tadpole is $-Q_{3}=30$ for the concrete $\mathrm{SO}(8)$ model and is bounded by $-Q_{3} \leq 252$ in Kreuzer-Skarke dataset ($h^{1,1} \leq 491$).
- Complete Intersection Calabi-Yau threefolds (CICY) Hubsch/Candelas/Dale/

Lutaken/Schimmrigk/Green

- Based on the favorable Complete Intersection Calabi-Yau (CICY) database ($\#=7890$) Anderson/XG/Gray/Lee JHEP 10(2017)007, the largest negative tapole is $-Q_{3}=132$. Carta/Moritz/Westphal

Orientifold Calabi-Yau threefold landscape

- toric CY3 hypersurface (\#<?O(10920)) Borisov/Batyrev/Cox/Kreuzer/Skarke/ Demirtas/Long/McAllister \qquad
- The highest negative tadpole values of explicitly considered model is $-Q_{3}=149$ Crino/Quevedo/Valandro.
- We constructed explicitly the toric orientifold CYs with divisor exchange from the 700,000 toric CYs with $h^{1,1} \leq 6$ and get around 6000 orientifold CYs Altman/Carifio/XG/Nelson JHEP 03 (2022) 087. We also make a prediction of orientifold CYs for $h^{1,1}=7$ by machine learning XG/Zou Phys.Rev.D 105 (2022) 4, 046017.
The largest negative tadpole is $-Q_{3}=30$ for the concrete $\mathrm{SO}(8)$ model and is bounded by $-Q_{3} \leq 252$ in Kreuzer-Skarke dataset ($h^{1,1} \leq 491$).
- Complete Intersection Calabi-Yau threefolds (CICY) Hubsch/Candelas/Dale/

Lutaken/Schimmrigk/Green

- Based on the favorable Complete Intersection Calabi-Yau (CICY) database (\# 7890) Anderson/XG/Gray/Lee JHEP 10(2017)007, the largest negative tapole is $-Q_{3}=132$. Carta/Moritz/Westphal
- Generalized Complete Intersection Calabi-Yau Manifolds (gCICY)

Anderson/Apruzzi/XG/Gray/Lee Nucl.Phys.B 906(2016)441
By using ML, we can generate \# > 4000 Cui/XG/Wang Phys.Rev.D107(2023)8,086004

Constraint of de-Sitter from Warping correction

- Warping correction is important: the constraints come from demanding that warping corrections in the bulk, associated with the KS throat housing the anti-D3 brane uplift are under control.
- For KKLT, singular bulk problem is independent from concrete parameters of CYs.
- For LVS, the parameter control regime is given, but the proper CYs need to be find out if it exist.

Lessons from parameter constraint in LVS

- Need more complicated geometry to provide larger tadpole but may also introduce new difficulties
- Searching specific divisors in orientifold CY (Whitney brane Crino/Quevedo/ Schachner/Valandro)
- New CY database (like gCICY, complete intersection in higher dimension toric variety)

Lessons from parameter constraint in LVS

- Need more complicated geometry to provide larger tadpole but may also introduce new difficulties
- Searching specific divisors in orientifold CY (Whitney brane Crino/Quevedo/ Schachner/Valandro)
- New CY database (like gCICY, complete intersection in higher dimension toric variety)
- Alternative uplift mechanism may weaken the PTC, like Winding uplift Carta/Mininno/Righi/Westphal, Hebecker/Leonhardt, T-branes uplift Cicoli/Quevedo/Valandro and D-term uplift Cremades/Moral/Suruliz, Achucarro/Carlos/Casas/Doplicher

Lessons from parameter constraint in LVS

- Need more complicated geometry to provide larger tadpole but may also introduce new difficulties
- Searching specific divisors in orientifold CY (Whitney brane Crino/Quevedo/ Schachner/Valandro)
- New CY database (like gCICY, complete intersection in higher dimension toric variety)
- Alternative uplift mechanism may weaken the PTC, like Winding uplift Carta/Mininno/Righi/Westphal, Hebecker/Leonhardt, T-branes uplift Cicoli/Quevedo/Valandro and D-term uplift Cremades/Moral/Suruliz, Achucarro/Carlos/Casas/Doplicher
- Other corrections such as Loop and local corrections?
- The correction of BHP conjecture (non-linear dependence) would lead a constraint on the volume of 2-cycle.
- The Log enhancement of $\alpha^{\prime 4}$ correction coming from marginal operator on the brane system may be danger for those moduli stabilization mechanism which is sensitive to loop correction such as fiber-inflation.

Lessons from parameter constraint in LVS

- Need more complicated geometry to provide larger tadpole but may also introduce new difficulties
- Searching specific divisors in orientifold CY (Whitney brane Crino/Quevedo/ Schachner/Valandro)
- New CY database (like gCICY, complete intersection in higher dimension toric variety)
- Alternative uplift mechanism may weaken the PTC, like Winding uplift Carta/Mininno/Righi/Westphal, Hebecker/Leonhardt, T-branes uplift Cicoli/Quevedo/Valandro and D-term uplift Cremades/Moral/Suruliz, Achucarro/Carlos/Casas/Doplicher
- Other corrections such as Loop and local corrections?
- The correction of BHP conjecture (non-linear dependence) would lead a constraint on the volume of 2-cycle.
- The Log enhancement of $\alpha^{\prime 4}$ correction coming from marginal operator on the brane system may be danger for those moduli stabilization mechanism which is sensitive to loop correction such as fiber-inflation.
- Parameter constraint of realizing de-Sitter space in string theory.

Outline

(1) de-Sitter in String Theory
(2) Various corrections in orientifold Type IIB string theory
(3) Warping correction and its constraint
(4) Calabi-Yau threefold Database
(5) Summary and outlook

Calabi-Yau 3-folds database

- $\operatorname{CICY}(\# 7890)$, gCICY (\# > O $\left(10^{3}\right)$) and toric CY (\# > $\mathcal{O}\left(10^{10}\right)$). Candelas/Dale/Lutken/Schimmrigk, Anderson/XG/Gray/Lee, Anderson/Apruzzi/XG/Gray/Lee, Kreuzer/ Skarke, Altman/Gray/He/Jejjala/Nelson

$$
X_{\mathrm{CICY}}=\left[\begin{array}{c||lll}
\mathbb{P}^{2} & 1 & 1 & 1 \\
\mathbb{P}^{4} & 3 & 1 & 1
\end{array}\right], \quad X_{\mathrm{gCICY}}=\left[\begin{array}{c||cc|cc}
\mathbb{P}^{1} & 1 & 1 & -1 & 1 \\
\mathbb{P}^{1} & 1 & 1 & 1 & -1 \\
\mathbb{P}^{5} & 3 & 1 & 1 & 1
\end{array}\right]
$$

Calabi-Yau 3-folds database

- $\operatorname{CICY}(\# 7890)$, gCICY ($\#>\mathcal{O}\left(10^{3}\right)$) and toric CY (\# > $\mathcal{O}\left(10^{10}\right)$). Candelas/Dale/Lutken/Schimmrigk, Anderson/XG/Gray/Lee, Anderson/Apruzzi/XG/Gray/Lee, Kreuzer/ Skarke, Altman/Gray/He/Jejjala/Nelson

$$
X_{\mathrm{CICY}}=\left[\begin{array}{c||lll}
\mathbb{P}^{2} & 1 & 1 & 1 \\
\mathbb{P}^{4} & 3 & 1 & 1
\end{array}\right], \quad X_{\mathrm{gCICY}}=\left[\begin{array}{c||cc|cc}
\mathbb{P}^{1} & 1 & 1 & -1 & 1 \\
\mathbb{P}^{1} & 1 & 1 & 1 & -1 \\
\mathbb{P}^{5} & 3 & 1 & 1 & 1
\end{array}\right]
$$

- Orientifold involution

$$
\sigma= \begin{cases}\text { Reflection : }\left\{x_{i} \leftrightarrow-x_{i}, \cdots\right\} & h_{-}^{1,1}(X)=0 \\ \text { Exchange involution : }\left\{x_{i} \leftrightarrow x_{j}, \cdots\right\} & h_{-}^{1,1}(X) \neq 0\end{cases}
$$

Calabi-Yau 3-folds database

- $\operatorname{CICY}(\# 7890)$, gCICY $\left(\#>\mathcal{O}\left(10^{3}\right)\right)$ and toric $\mathrm{CY}\left(\#>\mathcal{O}\left(10^{10}\right)\right)$. Candelas/Dale/Lutken/Schimmrigk, Anderson/XG/Gray/Lee, Anderson/Apruzzi/XG/Gray/Lee, Kreuzer/ Skarke, Altman/Gray/He/Jejjala/Nelson

$$
X_{\mathrm{CICY}}=\left[\begin{array}{c||lll}
\mathbb{P}^{2} & 1 & 1 & 1 \\
\mathbb{P}^{4} & 3 & 1 & 1
\end{array}\right], \quad X_{\mathrm{gCICY}}=\left[\begin{array}{c||cc|cc}
\mathbb{P}^{1} & 1 & 1 & -1 & 1 \\
\mathbb{P}^{1} & 1 & 1 & 1 & -1 \\
\mathbb{P}^{5} & 3 & 1 & 1 & 1
\end{array}\right]
$$

- Orientifold involution

$$
\sigma= \begin{cases}\text { Reflection : }\left\{x_{i} \leftrightarrow-x_{i}, \cdots\right\} & h_{-}^{1,1}(X)=0 \\ \text { Exchange involution : }\left\{x_{i} \leftrightarrow x_{j}, \cdots\right\} & h_{-}^{1,1}(X) \neq 0\end{cases}
$$

$h_{-}^{1,1}(X) \neq 0$ is important to solve the chirality issue for global model building (Combine partical physics and moduli stabilization and inflation in a single set-up). Blumenhagen/Moster/Plauschinn, Cicoli/Mayrhofer/Valandro/Quevedo/ Krippendorf, Balasubramanian/Berglund/Braun/Garcia-Etxebarria, Grimm/Weigand/Kerstan ...

- D-brane at singularity
- Fluxed Instanton

Searching and Classification of Orientifold CY3s

- Based in the favorable CICY database Anderson/XG/Gray/Lee JHEP10(2017)077, orientifold CICYs has been studied recently. Carta/Moritz/Westphal

Searching and Classification of Orientifold CY3s

- Based in the favorable CICY database Anderson/XG/Gray/Lee JHEP10(2017)077, orientifold CICYs has been studied recently. Carta/Moritz/Westphal
- Favorable Description: When Toric divisor classes on the Calabi-Yau hypersurface X are all descended from ambient space \mathcal{A}.

$$
h^{1,1}(X)=\operatorname{dim}\left(H^{1,1}(X)\right) \cong \operatorname{dim}(\operatorname{Pic}(\mathcal{A}))=h^{1,1}(\mathcal{A})
$$

http://www1.phys.vt.edu/cicydata/

The Favorable CICY List, and its Fibrations

```
Data associated to the paper arXiv:1708.07907
```


Maximally Favorable CICY List

In arXiv:1708.07907, a favorable configuration has been found for all but 48 CICY three-folds. The remaining CICYs can be In arXiv:1708.07907, a favorable configuration has been found fer fersor almost del Pezzo surfaces. This website holds the data describing these new descriptions of CICYs. Any use of this data should be acknowledged by referencing the associated publication given above.

The new version of the CICY list, with non-favorable configuration matrices replaced by favorable ones (the "favourable CICY list"), can be found here:

* Text file containing the Favorable CICY list in a Mathematica readable format (3MB)

Hodge data and the second chern class of the manifolds are included. In addition, a flag indicates whether the Kahler cone is the naive one induced from the ambient space. See arXiv: 1708.07907 for more details and explanation of format.

Obvious Fibrations

The elliptic fibrations which can be observed directly from the configuration matrices of the favorable CICY list can be found here:

- Text file (12.5 MB)

The data is in the format described in Appendix E of arXiv:1708.07907 and includes elliptic and K3 fibrations as well as nestings of these possibilties. This list only contains 7868 configurations, as the 22 direct product CICYs are excluded. Any use of the data on this website should be acknowledged by referencing the associated publication given above.

Searching and Classification of Orientifold CY3s

- Based in the favorable CICY database Anderson/XG/Gray/Lee JHEP10(2017)077, orientifold CICYs has been studied recently. Carta/Moritz/Westphal
- Favorable Description: When Toric divisor classes on the Calabi-Yau hypersurface X are all descended from ambient space \mathcal{A}.

$$
h^{1,1}(X)=\operatorname{dim}\left(H^{1,1}(X)\right) \cong \operatorname{dim}(\operatorname{Pic}(\mathcal{A}))=h^{1,1}(\mathcal{A})
$$

- In toric CY database Altman/Gray/He/Jejjala/Nelson, exchange involution is studied for $h^{1,1} \leq 4\left(\# \sim \mathcal{O}\left(10^{3}\right)\right)$ XG /Shukla, JHEP11(2013)170 and now for $h^{1,1} \leq 6$ with fully classification of exchange involutions, fix-point locus and free action.

Altman/Carifio/XG /Nelson, JHEP03(2022)087

Searching and Classification of Orientifold CY3s

- Based in the favorable CICY database Anderson/XG/Gray/Lee JHEP10(2017)077, orientifold CICYs has been studied recently. Carta/Moritz/Westphal
- Favorable Description: When Toric divisor classes on the Calabi-Yau hypersurface X are all descended from ambient space \mathcal{A}.

$$
h^{1,1}(X)=\operatorname{dim}\left(H^{1,1}(X)\right) \cong \operatorname{dim}(\operatorname{Pic}(\mathcal{A}))=h^{1,1}(\mathcal{A})
$$

- In toric CY database Altman/Gray/He/Jejjala/Nelson, exchange involution is studied for $h^{1,1} \leq 4\left(\# \sim \mathcal{O}\left(10^{3}\right)\right)$ XG /Shukla, JHEP11(2013)170 and now for $h^{1,1} \leq 6$ with fully classification of exchange involutions, fix-point locus and free action.

Altman/Carifio / XG /Nelson, JHEP03(2022)087

- Among total 646903 CYs with $h^{1,1}(X) \leq 6$, only 5% of them admits a proper divisor exchange orientifold.
- Most of oreintifold CYs admitting an $O 3 / O 7$ system, 60% of them admitting a naive orientifold Type IIB string vacua.

Searching and Classification of Orientifold CY3s

- Based in the favorable CICY database Anderson/XG/Gray/Lee JHEP10(2017)077, orientifold CICYs has been studied recently. Carta/Moritz/Westphal
- Favorable Description: When Toric divisor classes on the Calabi-Yau hypersurface X are all descended from ambient space \mathcal{A}.

$$
h^{1,1}(X)=\operatorname{dim}\left(H^{1,1}(X)\right) \cong \operatorname{dim}(\operatorname{Pic}(\mathcal{A}))=h^{1,1}(\mathcal{A})
$$

- In toric CY database Altman/Gray/He/Jejjala/Nelson, exchange involution is studied for $h^{1,1} \leq 4\left(\# \sim \mathcal{O}\left(10^{3}\right)\right)$ XG /Shukla, JHEP11(2013)170 and now for $h^{1,1} \leq 6$ with fully classification of exchange involutions, fix-point locus and free action.
- Among total 646903 CYs with $h^{1,1}(X) \leq 6$, only 5% of them admits a proper divisor exchange orientifold.
- Most of oreintifold CYs admitting an $O 3 / O 7$ system, 60% of them admitting a naive orientifold Type IIB string vacua.
- Suitable for Machine Learning to extend our result to higher $h^{1,1}$ to search and classify orientifold CYs.
- Based on our works, some new progress is under going. Crino/Quevedo/ Schachner/Valandro, Hongfei Gao/XG

Current status of constructing orientifold CY

- We identify the topology of each divisors and determine the involutions which are globally consistent across all disjoint phases of the Kähler cone for each unique CY.
- Identify free action of involution and all possible fixed loci under non-trivial actions, thereby determining the type and location of O-planes.

Current status of constructing orientifold CY

- We identify the topology of each divisors and determine the involutions which are globally consistent across all disjoint phases of the Kähler cone for each unique CY.
- Identify free action of involution and all possible fixed loci under non-trivial actions, thereby determining the type and location of O-planes.
- Classify the naive orientifold string vacua by considering the D3 tadpole cancelation locally.
- Determine the Hodge number splitting under these involutions.

Current status of constructing orientifold CY

- We identify the topology of each divisors and determine the involutions which are globally consistent across all disjoint phases of the Kähler cone for each unique CY.
- Identify free action of involution and all possible fixed loci under non-trivial actions, thereby determining the type and location of O-planes.
- Classify the naive orientifold string vacua by considering the D3 tadpole cancelation locally.
- Determine the Hodge number splitting under these involutions.
- The ML method gives a very high precision (99.96\%) for identifying the polytopes which can result in an orientifold CY. This indicate the orientifold symmetry may encoded in the polytope structure itself.
- The ML method predict the polytopes which can result in an orientifold CY for higher h^{11}.

Polytopes, Triangulations and Geometries

- MPCP: Maximal Projective Crepant Partial (MPCP) desingularization involves the triangulation of the polar dual reflexive polytope Δ^{*}, which contains at least one fine, star, regular triangulation (FSRT).
- Wall's theorem: The compact Calabi-Yau 3-folds are classified by the Hodge numbers, the intersection numbers, and the second Chern Class.
\Longrightarrow Geometry-wise description: Glue together the various phases of the complete Kähler cone corresponding to a distinct Calabi-Yau threefold geometry.

Proper Involution σ

Proper Involutions $\sigma: x_{i} \leftrightarrow x_{j} \quad \Longrightarrow \quad \sigma^{*}: D_{i} \leftrightarrow D_{j}$.

- In favorable case, restricts strightforward to the Calabi-Yau hypersurface.
- $D_{ \pm}=D_{i} \pm D_{j} \in H_{ \pm}^{1,1}\left(X / \sigma^{*}\right)$
- Non-Trivial Identity Divisor: $H^{\bullet}\left(D_{i}\right) \cong H^{\bullet}\left(D_{j}\right)$ with different wights $\mathcal{O}(D)$.
- Completely Rigid Divisors:
$h^{\bullet}(D)=\left\{h^{0,0}(D), h^{0,1}(D), h^{0,2}(D), h^{1,1}(D)\right\}=\left\{1,0,0, h^{1,1}(D)\right\}$.
Wilson Divisors: $h^{\bullet}(W)=\left\{1, h^{1,0}, 0, h^{1,1}\right\} . h_{+}^{1,0}=1$ characterize the zero modes of poly-instanton, which can't be lifted by background fluxes.
Deformation divisors such as $K 3$.
- Symmetry of Stanley-Reisner Ideal $\mathcal{I}_{S R}(\mathcal{A})$: To ensure the involution to be an automorphism of \mathcal{A}, leaving invariant the exceptional divisors from resolved singularities.
- Symmetry of the linear ideal $\mathcal{I}_{\text {lin }}(\mathcal{A})$: To ensures the defining polynomial of CY remains homogeneous under involution.

$$
A^{\bullet}(\mathcal{A}) \cong \frac{\mathbb{Z}\left(D_{1}, \cdots, D_{k}\right)}{\mathcal{I}_{\text {lin }}(\mathcal{A})+\mathcal{I}_{S R}(\mathcal{A})}
$$

- Triple intersection tensor defined in Chow ring should be invariant under involution σ.

Example: $h^{1,1}(X)=4, h^{2,1}(X)=64$.

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}
0	0	0	1	0	1	0	0
0	0	1	0	0	0	1	0
0	1	0	0	1	0	0	1
1	0	0	1	0	0	1	1

- $\mathcal{I}_{S R}=\left\langle x_{1} x_{8}, x_{3} x_{7}, x_{4} x_{6}, x_{1} x_{4} x_{7}, x_{2} x_{3} x_{5}, x_{2} x_{5} x_{6}, x_{2} x_{5} x_{8}\right\rangle$
- The linear ideal, which fixes toric divisor redundancies, is given by

$$
\begin{array}{rlcccccccccccccccc}
\mathcal{I}_{\text {lin }}= & \langle & -D_{1} & - & D_{2} & - & D_{3} & - & D_{4} & + & 0 & + & D_{6} & + & D_{7} & + & D_{8}, & \\
& + & 0 & + & 0 & + & D_{3} & + & D_{4} & + & 0 & - & D_{6} & - & D_{7} & & 0, \\
& - & D_{1} & & 0 & - & D_{3} & - & D_{4} & - & D_{5} & + & D_{6} & + & D_{7} & + & D_{8}, & \\
& + & 0 & + & 0 & + & 0 & + & D_{4} & + & D_{5} & - & D_{6} & + & 0 & - & D_{8} & \rangle,
\end{array}
$$

and a basis in $H^{1,1}(X ; \mathbb{Z})$ given by $J_{1}=D_{1}, J_{2}=D_{2}, J_{3}=D_{3}, J_{4}=D_{6}$.

$$
\begin{aligned}
h^{\bullet}\left(D_{1}\right)= & \{1,0,0,9\}, \quad h^{\bullet}\left(D_{2}\right)=h^{\bullet}\left(D_{4}\right)=h^{\bullet}\left(D_{5}\right)=h^{\bullet}\left(D_{7}\right)=\{1,0,1,21\} \\
& h^{\bullet}\left(D_{3}\right)=h^{\bullet}\left(D_{6}\right)=\{1,0,0,12\}, \quad h^{\bullet}\left(D_{8}\right)=\{1,0,2,30\}
\end{aligned}
$$

- Exist only one proper involution: $\sigma: x_{3} \leftrightarrow x_{6}, x_{4} \leftrightarrow x_{7}$
- $\sigma^{*} \Omega_{3}=-\Omega_{3}$. One would expect $O 3 / O 7$-system.

Orientifold Planes I : Minimal Generators \mathcal{G}

- $\mathcal{G}_{0}=\left\{x_{1}, x_{2}, x_{5}, x_{8}\right\}$.
- $\sigma_{1}: \mathbf{x}_{3} \leftrightarrow \mathbf{x}_{6} \Rightarrow \quad \mathcal{G}_{+}=\left\{x_{3} x_{6}\right\}, \mathcal{G}_{-}=\emptyset$
- $\sigma_{2}: \mathbf{x}_{4} \leftrightarrow \mathbf{x}_{7} \Rightarrow \quad \mathcal{G}_{+}=\left\{x_{4} x_{7}\right\}, \mathcal{G}_{-}=\emptyset$
- $\sigma: \mathbf{x}_{3} \leftrightarrow \mathbf{x}_{6}, \quad \mathbf{x}_{4} \leftrightarrow \mathbf{x}_{7}: x_{3}^{m} x_{4}^{n} \pm x_{6}^{m} x_{7}^{n}$ for $m, n \in \mathbb{Z}$.

The homogeneity of this binomial is determined by the following condition on the weight matrix mathbfW:

$$
m\left(\mathbf{W}_{i 3}-\mathbf{W}_{i 4}\right)+n\left(\mathbf{W}_{i 6}-\mathbf{W}_{i 7}\right)=\mathbf{0}
$$

The kernel is generated by the vector $(m, n)=(1,1)$, so
$\mathcal{G}_{+}=\left\{x_{3} x_{4}+x_{6} x_{7}\right\}$ and $\mathcal{G}_{-}=\left\{x_{3} x_{4}-x_{6} x_{7}\right\}$.

- Serge embbeding:

$$
\begin{gathered}
y_{1}=x_{1}, \quad y_{2}=x_{2}, \quad y_{3}=x_{5}, \quad y_{4}=x_{8}, \quad y_{5}=x_{3} x_{6}, \\
y_{6}=x_{4} x_{7}, \quad y_{7}=x_{3} x_{4}+x_{6} x_{7}, \quad y_{8}=x_{3} x_{4}-x_{6} x_{7}
\end{gathered}
$$

y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}	y_{8}
0	0	0	0	1	1	1	1
0	1	1	1	0	0	0	0
λ_{1}							
1	0	0	1	0	2	1	1
λ_{2}							
λ_{3}							

Orientifold Planes II: Naive Fixed Loci

- $y_{8} \mapsto-y_{8}: F_{1}=\left\{y_{8}=0\right\}$ is a point-wise fixed, codimension- 1 subvariety.
- Check whether any subset $\mathcal{F} \equiv\left\{y_{1}, \cdots, y_{p}\right\}$ of the generators can neutralize the odd parity of y_{8}, becoming fixed themselves in the process.
- We begin our scan with the largest set of generators and work our way down. The largest set we can choose has 4 generators, since their simultaneous vanishing defines a set of isolated points on \mathcal{A}.

Orientifold Planes II: Naive Fixed Loci

- $y_{8} \mapsto-y_{8}: F_{1}=\left\{y_{8}=0\right\}$ is a point-wise fixed, codimension- 1 subvariety.
- Check whether any subset $\mathcal{F} \equiv\left\{y_{1}, \cdots, y_{p}\right\}$ of the generators can neutralize the odd parity of y_{8}, becoming fixed themselves in the process.
- We begin our scan with the largest set of generators and work our way down. The largest set we can choose has 4 generators, since their simultaneous vanishing defines a set of isolated points on \mathcal{A}.
- Consider $F_{2}=\left\{y_{1}=y_{2}=y_{3}=y_{7}=0\right\}$ to be fixed, we must use the three independent \mathbb{C}^{*} actions to neutralize the odd parity of y_{8} while leaving everything else invariant.

$$
\left(y_{4}, y_{5}, y_{6},-y_{8}\right) \sim\left(\lambda_{2} \lambda_{3} y_{4}, \lambda_{1} y_{5}, \lambda_{1} \lambda_{3}^{2} y_{6}, \lambda_{1} \lambda_{3} y_{8}\right)=\left(y_{4}, y_{5}, y_{6}, y_{8}\right)
$$

where $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{C}^{*}$.

$$
\lambda_{2} \lambda_{3}=1 \quad \lambda_{1}=1 \quad \lambda_{1} \lambda_{3}^{2}=1 . \quad \lambda_{1} \lambda_{3}=-1
$$

$\Longrightarrow\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=(1,-1,-1)$ and so F_{2} is indeed a point-wise fixed set.

Orientifold Planes III: True Loci \& String Vacua

- The fixed point set $F_{2}=\left\{y_{1}=y_{2}=y_{3}=y_{7}=0\right\}$ can be written in terms of the original coordinates $\left\{x_{1}=x_{2}=x_{5}=0\right\} \cap\left\{x_{3} x_{4}=-x_{6} x_{7}\right\}$. Substitutions in $P_{\text {symm }}$:

$$
P_{s y m m}=a_{48}\left(x_{3}^{2} x_{4} x_{6} x_{8}^{3}+x_{3} x_{6}^{2} x_{7} x_{8}^{3}\right)=a_{48} x_{3} x_{6} x_{8}^{3} y_{7} .
$$

- $x_{2} x_{3} x_{5} \in \mathcal{I}_{S R} \Longrightarrow x_{3} \neq 0, \quad x_{2} x_{5} x_{6} \in \mathcal{I}_{S R} \Longrightarrow x_{6} \neq 0$, $x_{2} x_{5} x_{8} \in \mathcal{I}_{S R} \Longrightarrow x_{8} \neq 0$
$\Longrightarrow y_{7}=0$ for $P_{\text {symm }}$ vanishing, which is a redundancy.

$$
F_{2}^{\prime}=\left\{y_{1}=y_{2}=y_{3}=0\right\}
$$

- There are $17 U_{i}$, by checking F_{1} and F_{2}^{\prime} as

$$
\mathcal{I}_{i j}^{\text {fixed }}=\left\langle U_{i}, P_{s y m m}, F_{j}\right\rangle
$$

we can determine F_{1} is an O 7 plane, while F_{2}^{\prime} is an O 3 plane locus.

- In fact, there are only one O 7 and one O3-plane, and we have:

$$
N_{D 3}+\frac{N_{\text {flux }}}{2}+N_{\mathrm{gauge}}=\frac{N_{O 3}}{4}+\frac{\chi\left(D_{O 7}\right)}{4}=\frac{1+39}{4}=10
$$

Geometry-wise "naive orientifold type IIB string vacua".

Hodge Number Splitting

- Holomorphicity condition $\Longrightarrow H^{p, q}\left(X / \sigma^{*}\right)=H_{+}^{p, q}\left(X / \sigma^{*}\right) \oplus H_{-}^{p, q}\left(X / \sigma^{*}\right)$
- Favrability $\Longrightarrow H^{1,1}(\mathcal{A}) \cong \operatorname{Pic}(\mathcal{A}) \cong \operatorname{Pic}(X) \cong H^{1,1}(X)$ We can always expand the Kähler form in terms of the divisor classes.

$$
J=t_{1} J_{1}+t_{2} J_{2}+t_{3} J_{3}+t_{4} J_{4}=t_{1} D_{5}+t_{2} D_{6}+t_{3} D_{7}+t_{4} D_{8}
$$

The Kähler form must be invariant under the pullback of involution,

$$
\begin{gather*}
J=\sigma^{*} J=t_{1} D_{5}+t_{2} D_{3}+t_{3} D_{4}+t_{4} D_{8}=t_{1} J_{1}+t_{2} D_{3}+t_{3} D_{4}+t_{4} J_{4} \tag{1}\\
\Longrightarrow D_{3}=J_{1}+J_{3}-J_{4} \quad \text { and } \quad D_{4}=-J_{1}+J_{2}+J_{4} \cdot . \\
t_{1}+t_{2}-t_{3}=t_{1}, \quad t_{3}=t_{2}, \quad t_{2}=t_{3}, \quad-t_{2}+t_{3}+t_{4}=t_{4} \\
h_{+}^{1,1}\left(X / \sigma^{*}\right)=3, \quad h_{-}^{1,1}\left(X / \sigma^{*}\right)=1
\end{gather*}
$$

- The result is basis independent.

Orientifold CY Database I

$\mathbf{h}^{\mathbf{1}, \mathbf{1}}(\mathbf{X})$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	Total
\# of Favorable Polytopes	5	36	243	1185	4897	16608	22974
\# of Favorable Triangulations	5	48	525	5330	56714	584281	646903
\# of Favorable Geometries	5	39	305	2000	13494	84525	100368
\% of Favorable Triangulations Scanned	80	100	99.8	99.66	99.41	99.01	99.01

Table 1: The favorable polytopes, triangulations, geometries for $h^{1,1}(X) \leq 6$.

Orientifold CY Database II

$\mathrm{h}^{1,1}(\mathrm{X})$	1	2	3	4	5	6	Total
Triangulation-wise proper NID exchange involutions							
\# of Polytopes contains Involutions	0	1	25	166	712	2172	3076
\# of Geometries contains Involutions	0	1	26	273	1559	6590	8449
\# of Triangulations contains Involutions	0	1	31	405	3372	21566	25375
\# of Involutions	0	6	51	516	4085	23805	28463
Geometry-wise proper NID exchange involutions							
\# of Polytope contains Involutions	0	1	16	96	330	958	1401
\# of Geometries contains Involutions	0	1	17	183	911	3370	4482
\# of Involutions	0	6	28	259	1219	4148	5660
\% of Polytope contains Involutions	0	2.78	6.58	8.10	6.74	5.77	6.10
\% of Geometries contains Involutions	0	2.56	5.57	9.15	6.75	3.99	4.47

Table 2: Statistic counting on the triangulation/geometry-wide Non-trivial Identical Divisors exchange involutions in favorable polytopes, triangulations and geometries.

Orientifold CY Database III

Orientifold CY Database IV

Classification of O-plane fixed point locus								
$\mathbf{h}^{\mathbf{1 , 1}} \mathbf{(X)}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	Total	
Triangulation-wise proper Involutions								
\# of Involutions	0	6	51	516	4085	23772	28430	
O3	0	0	9	253	2640	18193	21083	
O5	0	6	20	157	1006	3279	4468	
O7	0	0	31	328	3005	20137	23501	
O3 and O7	0	0	9	222	2566	17826	20623	
Free Action	0	0	0	0	0	1	1	
\# of Involutions	0	6	28	259	1219	4148	5660	
O3	0	0	4	82	557	2611	3254	
O5	0	6	16	106	488	929	1545	
O7	0	0	12	124	691	3082	3909	
O3 and O7	0	0	4	53	523	2475	3055	
Free Action	0	0	0	0	0	1	1	

Table 4: Classification of O-plane fixed point locus and free actions under the triangulation/geometry-wise proper involutions.

Orientifold CY Database V

Naive Orientifold Type IIB String Vacua with $O 3 / O 7$-system								
$\mathbf{h}^{\mathbf{1 , 1}}(\mathbf{X})$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	Total	
Triangulation-wise proper Involutions								
\# of Involutions	0	6	51	516	4085	23772	28430	
Contains O3 \& O7	0	0	9	206	2346	15234	17795	
Contains Only O3	0	0	0	31	74	355	460	
Contains Only O7	0	0	22	102	386	1950	2460	
Total String Vacua	0	0	31	339	2806	17539	20715	
\# of Involutions	0	6	28	259	1219	4148	5660	
Contains O3 \& O7	0	$\mathbf{0}$	4	48	455	1874	2381	
Contains Only O3	0	0	0	29	34	136	199	
Contains Only O7	0	0	8	68	149	529	754	
Total String Vacua	0	0	12	145	638	2539	3334	

Table 5: Classification of naive orientifold Type IIB string vacua under the triangulation/geometry-wise proper involutions.

Orientifold CY Database VI

Hodge number splitting								
$\mathrm{h}^{1,1}(\mathrm{X})$		1	2	3	4	5	6	Total
Triangulation-wide proper Involutions								
\# of Involutions		0	6	51	516	4085	23805	28463
\# of $\mathbf{h}_{-}^{\mathbf{1 , 1}}$	1	-	6	51	477	3682	20985	25201
	2	-	-	0	39	483	2618	3140
	3	-	-	-	0	0	202	202
	4	-	-	-	-	0	0	0
	5	-	-	-	-	-	0	0
Geometry-wide proper Involutions								
\# of Involutions		0	6	28	259	1219	4148	5660
\# of $\mathbf{h}_{-}^{1,1}$	1	-	6	28	277	1048	3413	4772
	2	-	-	0	32	171	661	864
	3	-	-	-	0	0	74	74
	4	-	-	-	-	0	0	0
	5	-	-	-	-	-	0	0

Table 6: Classification of $h^{1,1}\left(X / \sigma^{*}\right)$ splitting under the triangulation/geometry-wise proper involutions.

Database

http://www.rossealtman.com/toriccy. Altman/Carifio/XG/Nelson, JHEPO3(2022)087

Why Machine Learning?

- Whether ML can pick out the orientifold property of a CYs.

Why Machine Learning?

- Whether ML can pick out the orientifold property of a CYs.
- It was conjectured that the orientifold symmetry (at least the involution symmetry) on the CYs is already encoded in the polytope structure.

Why Machine Learning?

- Whether ML can pick out the orientifold property of a CYs.
- It was conjectured that the orientifold symmetry (at least the involution symmetry) on the CYs is already encoded in the polytope structure.
- Hard for higher $h^{1,1}$. Three difficulties.

Why Machine Learning?

- Whether ML can pick out the orientifold property of a CYs.
- It was conjectured that the orientifold symmetry (at least the involution symmetry) on the CYs is already encoded in the polytope structure.
- Hard for higher $h^{1,1}$. Three difficulties.
- Rare Signal (around 5% for $h^{1,1} \leq 6$). It would be great even if we just train our machine to narrow down the candidate pool and increase the successful rate by one order.

Why Machine Learning?

- Whether ML can pick out the orientifold property of a CYs.
- It was conjectured that the orientifold symmetry (at least the involution symmetry) on the CYs is already encoded in the polytope structure.
- Hard for higher $h^{1,1}$. Three difficulties.
- Rare Signal (around 5% for $h^{1,1} \leq 6$). It would be great even if we just train our machine to narrow down the candidate pool and increase the successful rate by one order.
- Training data: 22960 polytopes, among them 1402 can result in an exchange orientifold CYs and 996 can end up with a naive string vacua.
- Enlarge the data by 120 permutations: 2755200 training data.

	Unresolved	Resolved
Orientifold	99.906%	99.907%
Naive Type IIB string vacua	99.802%	99.897%

Table 1: Test results for $h^{1,1} \leq 6$.

Accuracy of classifier

Accuracy for unresolved data: 99.906% for orientifold \& 99.802% for vacua.

Accuracy for resolved data: 99.907% for orientifold \& 99.897% for vacua.

(a) Orientifold

(b) Geometry-wise string vacua

Prediction for $h^{1,1}(X)=7$

- Initial data: 50376 unresolved polytopes \ll trained data (2755200)
- The trained model with parameters fixed.
- After classifier, among the polytopes with $h^{1,1}=7,2086$ of them may end up with orientifold CYs

$\mathbf{h}^{\mathbf{1 , 1}}(\mathbf{X})$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
\# of Trianed Polytopes	5	36	243	1185	4897	16608	50376
\# of "orientifold" Polytopes	0	1	16	96	330	958	2086
\% of "orientifold" Polytopes	0	2.78	6.58	8.10	6.74	5.77	4.14

Table 2: Statistic counting on the polytopes which can result in orientifold Calabi-Yau. The result for $h^{1,1} \leq 6$ comes from [1] while for $h^{1,1}=7$ comes from our trained neural network.

Working in Progress Hongei Gao/X6

- Extend to higher $h^{1,1}(X)$ by using random triangulation method inspired by graph theory Demirtas/Long/McAllister/Stillman
- Supervised training by generating enough initial orientifold CYs (we only need 30% of the data to train to get a high accuracy for $h^{1,1} \leq 6$). Use a subset of the database to learn something more complicated.

Ratio of Training Data	30%	20%	10%
Training Accuracy	99.70%	99.64%	99.22%
Validation Accuracy	99.75%	99.16%	91.90%
Test Accuracy	99.76%	99.14%	91.64%

- Including all exchange involution and triple reflection involution for all CY with $h^{1,1}(X) \leq 7$

Example of $h^{1,1}=6, h^{2,1}=42$

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}
1	0	0	0	0	0	1	1	0	1
2	2	1	1	0	0	2	0	2	2
1	1	1	1	0	0	0	0	0	0
3	1	1	1	2	0	4	0	0	0
0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	0	1	0	1	0

- $\mathcal{I}_{S R}=$
$\left\langle x_{1} x_{2}, x_{1} x_{5}, x_{1} x_{8}, x_{2} x_{5}, x_{2} x_{9}, x_{2} x_{10}, x_{3} x_{4}, x_{5} x_{6}, x_{6} x_{7} x_{8}, x_{6} x_{10}, x_{7} x_{9}, x_{8} x_{10}\right\rangle$
- $h^{\bullet}\left(D_{i}\right)=\{1,0,1,20\}$ for $\mathrm{i}=1,3,4,7 h^{\bullet}\left(D_{j}\right)=\{1,1,0,6\}$ for $\mathrm{j}=8,9$
- in total $9+\frac{9 * 8}{2}+\frac{9 * 8 * 7}{6}=129$ reflections.
- $\sigma_{1}: x_{1} \leftrightarrow-x_{1}:\left[\left[x_{1}\right],\left[x_{2}\right],\left[x_{6}, x_{8}, x_{9}\right]\right]$, \# O3: 4
- $\sigma_{2}: x_{1,3} \leftrightarrow-x_{1,3}:\left[\left[x_{1}, x_{3}\right],\left[x_{1}, x_{4}\right],\left[x_{2}, x_{3}\right],\left[x_{2}, x_{4}\right]\right]$
- $\sigma_{3}: x_{1,2,3} \leftrightarrow-x_{1,2,3}:\left[\left[x_{3}\right],\left[x_{4}\right]\right]$
- no proper divisor exchange involution
gCIC Anderson/Apruzzi/XG/Gray/Lee Nucl.Phys.B 906(2016)441

$$
X=\left[\begin{array}{l||ll|cc}
\mathbb{P}^{1} & 1 & 1 & -1 & 1 \\
\mathbb{P}^{1} & 1 & 1 & 1 & -1 \\
\mathbb{P}^{5} & 3 & 1 & 1 & 1
\end{array}\right] \quad \mathcal{M}=\left[\begin{array}{l|ll}
\mathbb{P}^{1} & 1 & 1 \\
\mathbb{P}^{1} & 1 & 1 \\
\mathbb{P}^{5} & 3 & 1
\end{array}\right]
$$

- $X \stackrel{(2)}{\longrightarrow} \mathcal{M} \stackrel{(1)}{\longrightarrow} \mathcal{A}$

$$
X=\left[\begin{array}{l||ll|lc}
\mathbb{P}^{1} & 1 & 1 & -1 & 1 \\
\mathbb{P}^{1} & 1 & 1 & 1 & -1 \\
\mathbb{P}^{5} & 3 & 1 & 1 & 1
\end{array}\right] \quad \mathcal{M}=\left[\begin{array}{l|ll}
\mathbb{P}^{1} & 1 & 1 \\
\mathbb{P}^{1} & 1 & 1 \\
\mathbb{P}^{5} & 3 & 1
\end{array}\right]
$$

- $X \stackrel{(2)}{\longleftrightarrow} \mathcal{M} \stackrel{(1)}{\longleftrightarrow} \mathcal{A}$
(2): $h^{0}\left(\mathcal{M}, \mathcal{O}_{\mathcal{M}}(1,-1,1)\right)=h^{0}\left(\mathcal{M}, \mathcal{O}_{\mathcal{M}}(-1,1,1)\right)=1$
\Rightarrow Polynomial description in $\mathcal{M} " \equiv$ " Rational description by $\mathbf{x} \in \mathcal{A}$
(1), (2) are algebraic complete intersection.

$$
X=\left[\begin{array}{l||ll|lc}
\mathbb{P}^{1} & 1 & 1 & -1 & 1 \\
\mathbb{P}^{1} & 1 & 1 & 1 & -1 \\
\mathbb{P}^{5} & 3 & 1 & 1 & 1
\end{array}\right] \quad \mathcal{M}=\left[\begin{array}{l|ll}
\mathbb{P}^{1} & 1 & 1 \\
\mathbb{P}^{1} & 1 & 1 \\
\mathbb{P}^{5} & 3 & 1
\end{array}\right]
$$

- $X \stackrel{(2)}{\longleftrightarrow} \mathcal{M} \stackrel{(1)}{\longleftrightarrow} \mathcal{A}$
(2): $h^{0}\left(\mathcal{M}, \mathcal{O}_{\mathcal{M}}(1,-1,1)\right)=h^{0}\left(\mathcal{M}, \mathcal{O}_{\mathcal{M}}(-1,1,1)\right)=1$
\Rightarrow Polynomial description in $\mathcal{M} " \equiv$ " Rational description by $\mathbf{x} \in \mathcal{A}$
(1), (2) are algebraic complete intersection.
- Rational description \Rightarrow "non-polynomail" deformations

$$
X=\left[\begin{array}{c||cc|cc}
\mathbb{P}^{1} & 1 & 1 & -1 & 1 \\
\mathbb{P}^{1} & 1 & 1 & 1 & -1 \\
\mathbb{P}^{5} & 3 & 1 & 1 & 1
\end{array}\right] \quad \mathcal{M}=\left[\begin{array}{c||ll}
\mathbb{P}^{1} & 1 & 1 \\
\mathbb{P}^{1} & 1 & 1 \\
\mathbb{P}^{5} & 3 & 1
\end{array}\right]
$$

- $X \stackrel{(2)}{\longleftrightarrow} \mathcal{M} \stackrel{(1)}{\longleftrightarrow} \mathcal{A}$
(2): $h^{0}\left(\mathcal{M}, \mathcal{O}_{\mathcal{M}}(1,-1,1)\right)=h^{0}\left(\mathcal{M}, \mathcal{O}_{\mathcal{M}}(-1,1,1)\right)=1$
\Rightarrow Polynomial description in $\mathcal{M} " \equiv$ " Rational description by $\mathbf{x} \in \mathcal{A}$
(1), (2) are algebraic complete intersection.
- Rational description \Rightarrow "non-polynomail" deformations

Candelas, De La Ossa, Font, Katz, Morrison, Green, Hubsch, Mavlyutov,...

- The effective cone of \mathcal{M} is larger than the one in \mathcal{A}

New Hodge Data

Table 13: The Hodge pairs and configuration matrices of novel codimension $(2,1)$ examples. These new Hodge pairs do not appear in the regular CICY list [2], Kreuzer-Skarke list [29] or elsewhere in the known literature [58].

Machine Learning to predict more gCICY

Cui/XG/Wang Phys.Rev.D 107 (2023) 8, 086004

Embedding projective spaces	\# of classes of generalized configuration matrices	\# of spaces found in previous scan $[6]$	\# of spaces found in our scan
$\mathbb{P}^{5} \times \mathbb{P}^{1}$	168	28	67
$\mathbb{P}^{4} \times \mathbb{P}^{2}$	210	6	9
$\mathbb{P}^{4} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$	1,197	229	369
$\mathbb{P}^{3} \times \mathbb{P}^{2} \times \mathbb{P}^{1}$	1,800	263	341
$\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}$	550	12	12
$\mathbb{P}^{3} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$	4,410	545	860
$\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$	5,235	520	683
$\mathbb{P}^{2} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$	12,180	770	1098
$\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$	8,442	360	523
Total	34,192	2,733	3,962

TABLE I. The distribution of codimension $(2,1)$ gCICYs founded in products of projective spaces.

Outline

(1) de-Sitter in String Theory
(2) Various corrections in orientifold Type IIB string theory
(3) Warping correction and its constraint
(4) Calabi-Yau threefold Database
(5) Summary and outlook

Summary and outlook

- Various corrections in orientifold Type IIB string JHEP09(2022)091.
- The parameter constraint in realizing de-Sitter space in string theory
- Warping correction: Singular Bulk problem in KKLT Fortsch.Phys.68(2020)200089 and Parameter Tadpole Constraint in LVS JHEP07(2022)056
- Potential danger in fiber inflation by log enhancement of α^{4} correction and the new correction beyond BHP conjecture working
- New uplift mechanism to relax the constraint
- Searching new topology of orientifold CY or searching new CY to make the constraint less stringent working
- Generate more complete orientifold CY with all exchange involutions and sufficient reflections JHEP03(2022)087, working
- Using ML to predict string vacua in a large-scale CY compactifications Phys.Rev.D.105(2022)4,046017, Phys.Rev.D.107(2023)8, 086004, working

\mathcal{T} hanks for your attention!

[^0]: Taylor/Wang

