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Generalization to compact CY3’s? <«




Gromov-Witten theory

* How many straight lines pass between two points in the plane?




Gromov-Witten theory

* How many conics pass through five points in the plane?

- Answer: 1

* How many degree d curves pass through 3d — 1 points in a plane?

- Degree d Gromov-Witten invariants of P* with (3d — 1) points insertion.
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Gromov-Witten theory

* The curve counting problem can be translated to the path integral of a two-
dimensional (2,2) non-linear sigma model.

* The theory has two R-symmetries U(1),,and U(1),, they give A-twist and B-
twist respectively, with BRST operator Q = Q, or O = (Qp

* In the A-twist, a general correlation function

(H Ou)n = 6_27””/ D¢ Dy Dvy e_it{Q’f Vi, H O,.
a Bn a



Gromov-Witten theory

* In the A-twist, a general correlation function

(I Oa)n = e72 / Dé Dy Dip e~ @)V}, ITo..
a B o

* The operator is defined in the BRST cohomology class: O, — O+ {0, S }.

It has a one-to-one correspondence to the de Rham cohomology of the target
space

* Reduced to holomorphic map configurations:

* Gromov-Witten invariants.



Gromov-Witten theory

* We also have the B-twist, which provides a different understanding of the
same integral. Mirror symmetry

* When the target space is not a Calabi-Yau, e.g. Fano, the axial R-symmetry is
anomalous at the quantum level. There is no B-model for Fano.

* A-model is valid for any Kahler target space



M-theory on non-compact CY3 X

non-compact CY3 X
Topological string theory >

v

A

5D N=1 gauge theory

\4

Gromov-Witten invariants

~ ) M-theory on X with boundary branes
compactfano X = XU --- ry ry

\4

Wilson loops in 5D N=1 gauge theory




5D SQFTs

* Consider the compactification of M-theory on a Calabi-Yau threefold X

* If the CY3 X is non-compact, the gravity in the low-energy physics is decoupled

* we get a five-dimensional supersymmetric quantum field theory (5D SQFT) with
eight supercharges

- Hypermultiplet: Higgs branch

- Vector multiplet: A, @, Coulomb branch

* Coulomb branch: the scalar field ¢ gets the expectation value in the Cartan
subalgebra of the gauge group, which breaks the gauge group to U(1)’



5D SQFTs

* Coulomb branch: the scalar field ¢ gets the expectation value in the Cartan
subalgebra of the gauge group, which breaks the gauge group to U(1)'.

* The scalar expectation values ¢i, [ = 1,---, r parametrize the moduli space on
the Coulomb branch.

* The BPS particles carry non-trivial spins (J;, J») under the 4D rotation group

SO(4) ~ SU(2), x SU(2)x, with the multiplicity labeled by 1\/}@].



5D SQFT from M-theory

X 3
E.g. resolved C°/Z,
X
electric BPS particles M2-branes on holomorphic two-cycles
Coulomb moduli + mass deformations Volume of compact + non-compact curves ~ k11
Rank of the gauge group r Betti number b, : # compact divisors

BPS partition function Topological string partition function



Half-BPS Wilson loop operators

* Consider the half-BPS Wilson loop operator along the “time circle”, with the
gauge field in the representation r

W, = Tr, exp (lﬂﬁ di(A(t) - ¢<r>>)
gl

* On the Coulomb branch, G — U(1)’, the notion of the representation is
replaced by the electric charges r = |g,, ---, ¢,.| under the abalien groups

* The expectation value

<W > — eQI¢1+"°+Qr¢rX (1 _|_ ...)

=[qq,***.qy]

( WZSg[(_z)l]) = ¢ " + ¢ + Inst.

One-form symmetry action: ¢; — ¢, + ix



Half-BPS Wilson loop operators

* The Wilson loop operator we consider can be realized by a heavy, stationery
electric particle located at the origin of the space | 4

* The worldline of that particle becomes the Wilson line along the time circle.

We now try to understand such particle(s) in the geometric descriptions



Realization in M theory

(O

X
X
Wilson loop Geometry X
heavy, stationery electric particle a non-compact curve C = P!in CY3 extended to Infinity
Heavy
BPS particles M2-branes wrapping around C + C, C € H,(X; Z)
Representation Charges of C g =D;-C

Comcht divisor



Realization in M theory

* We want to consider the BPS partition function in the presence of W operators.

e Generation function for the Wilson loop BPS invariants NV ]i i

* Without Wilson loop: BPS partition function has the (refined) Goparkumar-Vafa
expansion

. . _ 1\2iL+2jr ATB XjL(kf—)XjR(k€+) —kpB-t
/Bps = log Zpps = Z Z (=1)7* RNjL,ij 12 _—1/2\ (.1/2 __-1/2\ =
BEH2(X,Z) L IR q1 41 45 49




Realization in M theory

* We want to consider the BPS partition function in the presence of W operators.

e Generation function for the Wilson loop BPS invariants N€ i

* Without Wilson loop: BPS partition function has the (refined) Goparkumar-Vafa
expansion
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Spectra of
Harmonic oscillators
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Realization in M theory

* We want to consider the BPS partition function in the presence of W operators.

e Generation function for the Wilson loop BPS invariants NV ]i i

* With Wilson loop, SU(2); X SU(2), symmetry is not broken: modified (refined)
Goparkumar-Vafa expansion with a similar spin structure

251,+27r N7 XjL (6—)XjR(€+) —B-t—t
JBPS,{C} ~ Z Z (—1)™* ]RNjLajR 1/2 —1/2 1/2 —1/2 € )
BEH2(X,Z) jL.JR (ql — ) (qz — 4 )

e ———— s S e e e =
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x Dynamic contribution!

4 | Spectra of
R™x%x S Harmonic oscillators
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Realization in M theory

_ 2 +2jr NP X3 ( )XJ (E—l-) —Bt—t
fBPS,{C} — ; Z(: | Z JLT4JR |\ ]L JR (q1/2 qu/Q) (qu/2 q_1/2> & C
€H>(X,Z)JL,JR 1 1 2 2
\ T

* Here - = + 00. However, we can first treat it with finite mass.

* The inserted curve C must have minimal charger = (g, -=-,q.], |g.| < 1,10
avoid self-interactions. We call curves with that property primitive curves

* Higher representations/charges are generated with distinct primitive curves {C.}

Frps™ = Feps.{y + FBps.{c} M1 + Fps () M2 + Frps {c;.co1 M1 Mo



Realization in M theory

* In the large mass Iimit

Z9ps" = exp( = exp(Fgps,{})

X [ + FBps,{c1} M1 + FBps {c,) M2 + (fBPs,{cl,cz} T fBPs,{cl}]:BPs,{cz}) M1M2]

(W) (W) (Men)

f-Wllson )

®* BPS sector

FBPS,{Cl,“-,Cn} — In—l . Z Z 2]L+2.7R ]ﬂ_L,JRXJL( _)XjR(e-l-)e_ﬁ.t
BEH2(X,Z)JL-JR



