Towards a Mathematical Definition

5D Wilson Loops

Xin Wang (王昕)

Korea Institute for Advanced Study
ICTS/PCFT, USTC

```
Based on
(1) Shuai Guo, XW, Longting Wu, in progress
and
(2) Min-xin Huang, Kimyeong Lee, XW, 2205.02366
(3) XW, 2305.09171
(4) Min-xin Huang, Sheldon Katz, Albrecht Klemm, XW, in progress
```

M-theory on non-compact CY3 X
non-compact CY3 X
Topological string theory

Gromov-Witten invariants

Generalization to compact CY3's?

Gromov-Witten theory

- How many straight lines pass between two points in the plane?

Gromov-Witten theory

- How many conics pass through five points in the plane?
- Answer: 1
- How many degree d curves pass through $3 d-1$ points in a plane?
- Degree d Gromov-Witten invariants of \mathbb{P}^{2} with $(3 d-1)$ points insertion.

Gromov-Witten theory

- How many conics pass through five points in the plane?
- Answer: 1
- How many degree d curves pass through $3 d-1$ points in a plane?
- Degree d Gromov-Witten invariants of \mathbb{P}^{2} with $(3 d-1)$ points insertion.

Gromov-Witten theory

- The curve counting problem can be translated to the path integral of a twodimensional $(2,2)$ non-linear sigma model.
- The theory has two R-symmetries $U(1)_{V}$ and $U(1)_{A}$, they give A-twist and Btwist respectively, with BRST operator $Q=Q_{A}$ or $Q=Q_{B}$
- In the A-twist, a general correlation function [witten, '91]

$$
\left\langle\prod_{a} \mathcal{O}_{a}\right\rangle_{n}=e^{-2 \pi n t} \int_{B_{n}} D \phi D \chi D \psi e^{-i t\left\{Q, \int V\right\}} \cdot \prod_{a} \mathcal{O}_{a} .
$$

Gromov-Witten theory

- In the A-twist, a general correlation function [Witten, ‘91]

$$
\left\langle\prod_{a} \mathcal{O}_{a}\right\rangle_{n}=e^{-2 \pi n t} \int_{B_{n}} D \phi D \chi D \psi e^{-i t\left\{Q, \int V\right\}} \cdot \prod_{a} \mathcal{O}_{a}
$$

- The operator is defined in the BRST cohomology class: $\mathscr{O}_{a} \rightarrow \mathcal{O}_{a}+\left\{Q, S_{a}\right\}$. It has a one-to-one correspondence to the de Rham cohomology of the target space
- Reduced to holomorphic map configurations:
- Gromov-Witten invariants.

Gromov-Witten theory

- We also have the B-twist, which provides a different understanding of the same integral. Mirror symmetry
- When the target space is not a Calabi-Yau, e.g. Fano, the axial R-symmetry is anomalous at the quantum level. There is no B-model for Fano.
- A-model is valid for any Kahler target space

5D SQFTs

- Consider the compactification of M-theory on a Calabi-Yau threefold X
- If the CY3 X is non-compact, the gravity in the low-energy physics is decoupled
- we get a five-dimensional supersymmetric quantum field theory (5D SQFT) with eight supercharges
- Hypermultiplet:
- Vector multiplet: A_{μ}, ϕ,

Higgs branch
Coulomb branch

- Coulomb branch: the scalar field ϕ gets the expectation value in the Cartan subalgebra of the gauge group, which breaks the gauge group to $U(1)^{r}$

5D SQFTs

- Coulomb branch: the scalar field ϕ gets the expectation value in the Cartan subalgebra of the gauge group, which breaks the gauge group to $U(1)^{r}$.
- The scalar expectation values $\phi_{i}, i=1, \cdots, r$ parametrize the moduli space on the Coulomb branch.
- The BPS particles carry non-trivial spins $\left(j_{L}, j_{R}\right)$ under the 4D rotation group $S O(4) \simeq S U(2)_{L} \times S U(2)_{R}$, with the multiplicity labeled by $N_{j_{L}, j_{R}}^{\beta_{i}}$

5D SQFT from M-theory

electric BPS particles

Coulomb moduli + mass deformations

Rank of the gauge group r

M2-branes on holomorphic two-cycles

Volume of compact + non-compact curves
E.g. resolved $\mathbb{C}^{3} / \mathbb{Z}_{3}$ $\sim h^{1,1}$

BPS partition function
Betti number b_{4} : \# compact divisors

Half-BPS Wilson loop operators

- Consider the half-BPS Wilson loop operator along the "time circle", with the gauge field in the representation \mathbf{r}

$$
W_{\mathbf{r}}=\operatorname{Tr}_{\mathbf{r}} \exp \left(i \oint_{S^{1}} d t\left(A_{0}(t)-\phi(t)\right)\right)
$$

- On the Coulomb branch, $G \rightarrow U(1)^{r}$, the notion of the representation is replaced by the electric charges $\mathbf{r}=\left[q_{1}, \cdots, q_{r}\right]$ under the abalien groups
- The expectation value

$$
\left\langle W_{\mathbf{r}=\left[\mathbf{q}_{1}, \cdots, \mathbf{q}_{\mathbf{r}}\right]}\right\rangle=e^{q_{1} \phi_{1}+\cdots+q_{r} \phi_{r}} \times(1+\cdots)
$$

$\left\langle W_{2=[-1]}^{S U(2)}\right\rangle=e^{-\phi_{1}}+e^{\phi_{1}}+$ Inst.

Half-BPS Wilson loop operators

- The Wilson loop operator we consider can be realized by a heavy, stationery electric particle located at the origin of the space \mathbb{R}^{4}
- The worldline of that particle becomes the Wilson line along the time circle.

We now try to understand such particle(s) in the geometric descriptions

Realization in M theory

Wilson loop

heavy, stationery electric particle

BPS particles

Geometry X
a non-compact curve $C=\mathbb{P}^{1}$ in CY3 extended to infinity
Heavy

M2-branes wrapping around $C+\mathrm{C}, C \in H_{2}(X ; \mathbb{Z})$

Representation

Charges of C

Realization in M theory

- We want to consider the BPS partition function in the presence of W operators.
- Generation function for the Wilson loop BPS invariants $\widetilde{N}_{j_{L}, j_{R}}^{C}$
- Without Wilson loop: BPS partition function has the (refined) Goparkumar-Vafa expansion [Gopakumar, Vafa, '98]

$$
\mathcal{F}_{\mathrm{BPS}}=\log Z_{\mathrm{BPS}}=\sum_{\beta \in H_{2}(X, \mathbb{Z})} \sum_{j_{L}, j_{R}}(-1)^{2 j_{L}+2 j_{R}} N_{j_{L}, j_{R}}^{\beta} \frac{\chi_{j_{L}}\left(k \epsilon_{-}\right) \chi_{j_{R}}\left(k \epsilon_{+}\right)}{k\left(q_{1}^{1 / 2}-q_{1}^{-1 / 2}\right)\left(q_{2}^{1 / 2}-q_{2}^{-1 / 2}\right)} e^{-k \beta \cdot t}
$$

Realization in M theory

- We want to consider the BPS partition function in the presence of W operators.
- Generation function for the Wilson loop BPS invariants $\widetilde{N}_{j_{L}, j_{R}}^{C}$
- Without Wilson loop: BPS partition function has the (refined) Goparkumar-Vafa expansion

$$
\mathcal{F}_{\mathrm{BPS}}=\log Z_{\mathrm{BPS}}=\sum_{\beta \in H_{2}(X, \mathbb{Z})} \sum_{j_{L}, j_{R}}(-1)^{2 j_{L}+2 j_{R}} N_{j_{L}, j_{R}}^{\beta} \frac{\chi_{j_{L}}\left(k \epsilon_{-}\right) \chi_{j_{R}}\left(k \epsilon_{+}\right)}{k\left(q_{1}^{k / 2}-q_{1}^{-k / 2}\right)\left(q_{2}^{k / 2}-q_{2}^{-k / 2}\right)} e^{-k \beta \cdot t}
$$

Dynamic contribution!
Spectra of
Harmonic oscillators

$$
\frac{1}{q_{1,2}^{-1 / 2}-q_{1,2}^{1 / 2}}=\sum_{n} \exp \left[\left(n+\frac{1}{2}\right) \epsilon_{1,2}\right]
$$

Realization in M theory

- We want to consider the BPS partition function in the presence of W operators.
- Generation function for the Wilson loop BPS invariants $\widetilde{N}_{j_{L}, j_{R}}^{C}$
- With Wilson loop, $S U(2)_{L} \times S U(2)_{R}$ symmetry is not broken: modified (refined) Goparkumar-Vafa expansion with a similar spin structure

$$
\mathcal{F}_{\mathrm{BPS},\{\mathrm{C}\}} \sim \sum_{\beta \in H_{2}(X, \mathbb{Z})} \sum_{j_{L}, j_{R}}(-1)^{2 j_{L}+2 j_{R}} \tilde{N}_{j_{L}, j_{R}}^{\beta} \frac{\chi_{j_{L}}\left(\epsilon_{-}\right) \chi_{j_{R}}\left(\epsilon_{+}\right)}{\left(q_{1}^{1 / 2}-q_{1}^{-1 / 2}\right)\left(q_{2}^{1 / 2}-q_{2}^{-1 / 2}\right)} e^{-\beta \cdot t-t_{C}}
$$

X Dynamic contribution!

$$
\mathbb{R}^{4} \times S^{1}
$$

Spectra of
Harmonic oscillators

$$
\frac{1}{q_{1,2}^{-1 / 2}-q_{1,2}^{1 / 2}}=\sum_{n} \exp \left[\left(n+\frac{1}{2}\right) \epsilon_{1,2}\right]
$$

Realization in M theory

$$
\mathcal{F}_{\mathrm{BPS},\{\mathrm{C}\}}=\sum_{\beta \in H_{2}(X, \mathbb{Z})} \sum_{j_{L}, j_{R}}(-1)^{2 j_{L}+2 j_{R}} \widetilde{N}_{j_{L}, j_{R}}^{\beta} \frac{\chi_{j_{L}}\left(\epsilon_{-}\right) \chi_{j_{R}}\left(\epsilon_{+}\right)}{\left(q_{1}^{1 / 2}-q_{1}^{-1 / 2}\right)\left(q_{2}^{1 / 2}-q_{2}^{-1 / 2}\right)} e^{-\beta \cdot t-t_{C}}
$$

- Here $t_{\mathrm{C}}=+\infty$. However, we can first treat it with finite mass.
- The inserted curve C must have minimal charge $\mathbf{r}=\left[q_{1}, \cdots, q_{r}\right], \quad\left|q_{i}\right| \leq 1$, to avoid self-interactions. We call curves with that property primitive curves
- Higher representations/charges are generated with distinct primitive curves $\left\{\mathrm{C}_{i}\right\}$

$$
\mathcal{F}_{\mathrm{BPS}}^{\mathrm{Wilson}}=\mathcal{F}_{\mathrm{BPS},\{ \}}+\mathcal{F}_{\mathrm{BPS},\left\{\mathrm{C}_{1}\right\}} M_{1}+\mathcal{F}_{\mathrm{BPS},\left\{\mathrm{C}_{2}\right\}} M_{2}+\mathcal{F}_{\mathrm{BPS},\left\{\mathrm{c}_{1}, \mathrm{C}_{2}\right\}} M_{1} M_{2}
$$

Realization in M theory

- In the large mass limit

$$
\begin{aligned}
Z_{\mathrm{BPS}}^{\text {Wilson }}= & \exp \left(\mathcal{F}_{\mathrm{BPS}}^{\text {Wiilson }}\right)=\exp \left(\mathcal{F}_{\mathrm{BPS},\{ \}}\right) \\
& \times\left[1+\mathcal{F}_{\mathrm{BPS},\left\{\mathrm{C}_{1}\right\}} M_{1}+\mathcal{F}_{\mathrm{BPS},\left\{\mathrm{C}_{2}\right\}} M_{2}+\left(\mathcal{F}_{\mathrm{BPS},\left\{\mathrm{C}_{1}, \mathrm{C}_{2}\right\}}+\mathcal{F}_{\mathrm{BPS},\left\{\mathrm{C}_{1}\right\}} \mathcal{F}_{\mathrm{BPS},\left\{\mathrm{C}_{2}\right\}}\right) M_{1} M_{2}\right] \\
& \left\langle W_{\mathbf{r}_{1}}\right\rangle\left\langle W_{\mathbf{r}_{2}}\right\rangle
\end{aligned}
$$

- BPS sector [Kim, Kim, Kim, '21][Huang, Lee, XW, '22]

$$
\mathcal{F}_{\mathrm{BPS},\left\{\mathrm{C}_{1}, \cdots, \mathrm{C}_{\mathrm{n}}\right\}}=\mathcal{I}^{\mathrm{n}-1} \cdot \sum_{\beta \in H_{2}(X, \mathbb{Z})} \sum_{j_{L}, j_{R}}(-1)^{2 j_{L}+2 j_{R}} \widetilde{N}_{j_{L}, j_{R}}^{\beta} \chi_{j_{L}}\left(\epsilon_{-}\right) \chi_{j_{R}}\left(\epsilon_{+}\right) e^{-\beta \cdot t}
$$

