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Part I

1.1. Background and Introduction

Reference:

“Mirror Symmetry”, American Mathematical Society (August 19, 2003),

by Kentaro Hori, Sheldon Katz, Albrecht Klemm, Rahul Pandharipande,

Richard Thomas, Cumrun Vafa, Ravi Vakil, Eric Zaslow.



Origin of topological strings

• In the 1980’s, during the first string revolution, it was realized that

string theory is a consistent theory of quantum gravity.

• There are 5 perturbative formulations of consistent string theory. It is

most promising to construct models of particle physics from E8 × E8

heterotic string compactified on Calabi-Yau 3-folds (large enough gauge

group, N = 1 supersymmetry). However it turns out to be difficult to

make precise quantitative physical predictions.

• String theorists continue to study Calabi-Yau manifolds. Mirror Sym-

metry was discovered in early 1990’s. Greene et al constructed a pair

of Calabi-Yau 3-folds and conjectured that the type IIA and IIB the-

ories are dual on the pair. Candelas et al many pairs of Calabi-Yau

3-folds with the hodge numbers h(1,1) and h(1,2) exchanged, and used

the duality to count spheres on Calabi-Yau 3-folds.



• Mathematicians (e.g. Yau) were intrigued by Candelas et al’s calcu-

lations. Witten provided the world-sheet formulation of topological

string theory. Vafa et al developed many tools for calculating topolog-

ical string partition functions.

• Topological strings become an independent branch in string theory,

with active research up to today.



Motivation: Why study topological strings?

• Topological strings arise in compactification of superstring theory on

Calabi-Yau manifolds. Many important phenomenological quantities in

4-D effective field theory, e.g. number of chiral fermion generations,

Yukawa couplings, are related to topological invariants of the compact

manifold.

• Geometric engineering can relate physical (strong coupling) questions

of 4-D quantum field theory to geometric questions of Calabi-Yau man-

ifolds.

• Topological string theory is a tractable, computable sector of super-

strings, and is an ideal setting to study fundamental ideas e.g. D-brane,

S-duality, open/close string duality, etc.



• Mirror symmetry relates topological A-model on manifold X to topolog-

ical B-model on its mirror manifold. Some very difficult mathematical

problems of enumerative geometry can be easily solved by topologi-

cal B-model methods. Mathematicians have studied these enumerative

problems for decades or centuries.

• Relations to matrix models, quantum integrable systems, black hole

physics, etc.



Some review on supersymmetry

• N = (2,2) supersymmetry in 2 dimension

– Bosonic coordinates x0, x1, or x± := x0 ± x1.

– Fermionic coordinates θ+, θ−, θ̄+, θ̄−. The bar is complex conjugate.

– Superfield F (x0, x1, θ+, θ−, θ̄+, θ̄−) = f(x0, x1) + · · · .

– Define operators D± = ∂
∂θ± − iθ̄

±∂±, D̄± = ∂
∂θ̄±
− iθ±∂±.

– Some definitions. Chiral superfield D̄±Φ = 0, anti-chiral superfield

D±Φ̄ = 0, twisted chiral superfield D̄+U = D−U = 0, twisted anti-

chiral superfield D+Ū = D̄−Ū = 0.



• Supersymmetric action:

– D-term
∫
d2xd4θK(F )

– F-term
∫
d2xd2θW (Φ) + c.c.

– Twisted F-term
∫
d2xdθ+dθ̄−W (U) + c.c.

Here W is a holomorphic function, Φ and U are chiral and twisted chiral

superfields.

• Example: theory of a chiral superfield

S = Skinetic + Spotential

=
∫
d2xd4θΦ̄Φ +

∫
d2xd2θW (Φ) + c.c.



Non-linear Sigma Models and
Landau-Ginzburg Models

• Consider a Kahler manifold M with complex coordinates Φi, Φ̄i, Kahler

potential K(Φi, Φ̄i), Kahler metric gīj = ∂i∂j̄K(Φi, Φ̄i). We can con-

struct N = (2,2) Lagrangian with kinetic term

L =
∫
d4θK(Φi, Φ̄i).

The bosonic part is L = −gīj(φk, φ̄k)∂µφi∂µφ̄i + · · · . This is known as

the non-linear sigma model on M .

• We can add a F-term LW =
∫
d2θW (Φi) + c.c. This is known as the

Landau-Ginzburg model.



• Vector R-symmetry U(1)V and axial R-symmetry U(1)A

U(1)V : F (xµ, θ±, θ̄±) → eiαqV F (xµ, e−iαθ±, eiαθ̄±),

U(1)A : F (xµ, θ±, θ̄±) → eiβqAF (xµ, e∓iβθ±, e±iβθ̄±),

where qV and qA are R-charges assigned to the super field F .

• Somethings special.

– The U(1)V R-symmetry is broken classically unless W is quasi-

homogeneous, i.e. one can assign R-charges such as W (λq
i
Φi) =

λ2W (Φi).

– The U(1)A R-symmetry is broken by anomaly if c1(M) 6= 0.

• Witten showed that non-linear sigma models and Landau-Ginzburg

models can be derived from the gauged linear sigma model, leading

to the Calabi-Yau/Landau-Ginzburg correspondence. Topology change

in Calabi-Yau spaces is a smooth physical process when one includes

stringy degrees of freedom.



Topological twist

• So far we consider a flat two-dimensional world-sheet. The supersym-

metry is lost on a general curved Riemann surface. In order to preserve

supersymmetry, we implement a trick known as the topological twist.

• The 2d Lorentz group is SO(1,1). Consider the Euclidean version

SO(2). We replace the 2-d Euclidean group SO(2) = U(1)E by the

diagonal group of U(1)E×U(1)R, where U(1)R is a global R-symmetry.

• Topological twist modifies the spins of operators, and make the theory

invariant under local change of world sheet metric.

• Choice of R-symmetry

U(1)R = U(1)V → A-twist→ A-model

U(1)R = U(1)A → B-twist→ B-model



A-model and B-model

• Physical operators are defined by the Q-cohomology, where Q is the

nilpotent supercharge

– A-model: QA = Q̄+ +Q−

– B-model: QB = Q̄+ + Q̄−

Here the QA and QB become scalar under A-twist and B-twist respec-

tively.

• For A-model, the physical operators correspond to different forms in

M , and QA-cohomology is the de Rahm cohomology.



• For B-model, the physical operators are

w
j1···jq
ī1···̄ip

dz̄ī1 · · · dz̄īp
∂

∂zj1
· · ·

∂

∂zjq
.

The QB-cohomology is identified with the Dolbeault cohomology group⊕n
p,q=0H

(0,p)(M,∧qTM).

• Physical observables are correlation functions of the physical operators.



Coupling to gravity: topological string

• Consider A-twist sigma model on M , with the worldsheet be a general

Riemann surface Σ of genus g. Suppose the physical operator Oi corre-

spond to differential form of (pi, qi) type, the fermion number counting

and index theorem gives the selection rule that 〈O1 · · · Os〉 = 0 unless

s∑
i=1

pi =
s∑

i=1

qi =
∫
β
c1(M) + dimC(M)(1− g)

where β ∈ H2(M,Z) is the homology class of the image of Σ.

• c1(M) > 0 is not very interesting since for a given genus only a finite

set of maps contribute.



• So we should consider Calabi-Yau manifold c1(M) = 0. Naively the

correlator vanish for g ≥ 2. However to do string theory, we integrate

over the complex structure moduli of the world-sheet. The dimension

of complex structure moduli of a Riemann surface of genus g ≥ 2 is

DimC(Mg) = 3(g − 1) (1)

The counting cancels the contribution from fermionic zero mode when

the target space is Calabi-Yau three-fold.

• We define the topological string amplitude for g ≥ 2

Fg =
∫
Mg

〈dΣ〉, (2)

where dΣ is the measure on moduli space Mg, can be written in terms

of Beltrami differentials and supersymmetry currents.



• For genus zero, the three-point function is non-trivial

Ci,j,k = 〈OiOjOk〉, (3)

where Oi,j,k are operators of (1,1) type, corresponding to elements in

H(1,1)(M,Z). The degree zero contribution is the classical intersection.

We define the pre-potential

Ci,j,k = ∂i∂j∂kF
(0) (4)

• Genus one require no insertion. However one insertion is required if we

integrate over the complex structure

∂iF
(1) =

∫
M(1,1)〈OidΣ〉 (5)

• We are interested in the topological string partition function

Z = exp(
∞∑
g=0

λ2g−2F (g)(ti))

where ti are Kahler moduli in the case of A-model, and complex struc-

ture moduli in the case of B-model.



• Topological A-model counts holomorphic curves in target space X,

and has a rigorous mathematical formulation known as Gromov-Witten

theory. Topological B-model is a complex structure deformation theory

known as Kodaira-Spencer theory,



Mathematical definition

• Consider a Kahler manifold X and β ∈ H(1,1)(X,Z). Define moduli
space of stable maps of genus g with n marked points, M̄g,n(X,β).
Yong-Bin Ruan, Gang Tian, 1995; M. Kontsevich, 1995.

• The Gromov-Witten invariant is defined

Nβ
g =

∫
M̄g,0(X,β)

1 (6)

The genus g amplitude is F (g)(ti) =
∑
βN

β
g e
−β·t.

• The virtual dimension

vdim(M̄g,n(X,β)) =
∫
β
c1(X) + (dimC(X)− 3)(1− g) + n (7)

• The Gromov-Witten invariant is well defined is the virtual dimension
vanishes. So again we see that the Calabi-Yau threefold is the most
interesting.



Calabi-Yau threefolds: compact and
non-compact

• Compact Calabi-Yau. Let us illustrate with a famous example: the

quintic. Consider an ambient space, CP4 with coordinates

(X1, X2, X3, X4, X5) ∼ λ(X1, X2, X3, X4, X5). (8)

A hypersurface parametrized by a degree 5 polynomial of Xi is a Calabi-

Yau space, e.g. the Fermat quintic

X5
1 +X5

2 +X5
3 +X5

4 +X5
5 = 0 (9)

• Counting of complex structure parameters. There are
(

9
4

)
= 126 degree

5 monomials. The Calabi-Yau is the same by a GL(5, C) transformation

of the coordinates which has 25 parameters. So the number of complex

structure parameters is h(1,2) = 126− 25 = 101.



• More generally, we can consider a complete intersection M , parametrized

by r polynomials of degrees d1, · · · , dr in a weighted projective space

WCPn(w1, w2, · · · , wn+1).

• The Adjunction formula: The total Chern class

C(TM) =

∏n+1
i=1 (1 + wiK)∏r
k=1(1 + dkK)

=
∑
i

ci(M)Ki, (10)

where K is the Kahler class, and in the expansion we find the Chern

class ci(M) of the manifold M .

• For a hypersurface in CP4 of degree d, we have

C(TM) =
(1 +K)5

1 + dK
= 1 + (5− d)K + (10− 5d+ d2)K2 + · · · . (11)

So the Calabi-Yau condition c1 = 0 is d = Hori5, i.e. quintic hypersur-

face.



• There is at least one Kahler parameter correspond to the volume. If

there is no other fixed point in the construction, the hypersurface or

complete intersection has exactly one Kahler parameter, h(1,1) = 1.

This is known as one-parameter model. The A-model is simplest in

this case.

• There are 13 one-parameter models that are hypersurface or complete

intersection in weighted projective space. Denote the Calabi-Yau space

as Xd1,d2,··· ,dk(w1, · · ·wl). The 4 hypersurfaces are

X5(15), X6(14,2), X8(14,4), X10(13,2,5)



• Non-compact Calabi-Yau threefold: the simplest example C3, also known

as local Calabi-Yau manifold.

• We take a compact complex dimension two manifold, e.g. P2, P1×P1,

del Pezzo surfaces. These manifolds have positive curvature. We intro-

duce anti-canonical line bundle which can cancel the curvature, so the

resulting manifold is a (non-compact) Calabi-Yau threefold. Example:

O(−3)→ P2.

• Topological strings on non-compact Calabi-Yau threefolds are easier to

compute than the compact cases. Many are completely solvable.

• This is due to the simplification of Calabi-Yau moduli space, a N = 2

special Kahler geometry with the metric

Gīj = ∂i∂̄j̄K. (12)

For non-compact model one can choose a gauge such that the Kahler

potential is constant in holomorphic limit.



• The Calabi-Yau manifolds can be also constructed by polytope method.

V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hyper-

surfaces in toric varieties, J. Algebraic Geom. 3 (1994),

• In this construction, the mirror symmetry is realized as a dual pair of

reflexive polytopes. In this approach, the toric variety P∆ is defined

by an n-dimensional convex integral polytope ∆ ∈ Rn, containing the

origin (0, · · · ,0). An integral polytope is a polytope whose vertices are

integral, and is called reflexive if its dual defined by

∆∗ = {(x1, · · · , xn)|
n∑
i=1

xiyi ≥ −1 for all (y1, y2, · · · , yn) ∈∆} (13)

is again an integral polytope.



• An example of reflexive polygon in 2-dimension. The first polygon

represent the complex projective space P2.

(0,1)

(1,0)

(-1,-1)

(-1,1)

(1,-1)(-1,-1)

(0,0)
(0,0)

• In Batyrev’s construction, we use 4-d polytopes as the ambient space

for compact Calabi-Yau threefolds. The hodge numbers h(1,1) and

h(1,2) are exchanged for the Calabi-Yau pairs of the reflexive polytopes.



Mirror Symmetry: the quintic example

• Every Calabi-Yau threefold M has a mirror Calabi-Yau threefold W ,

their hodge numbers are exchanged

h(1,1) ⇔ h(1,2)

• Consider the sub-family of quintics defined by∑
i

X5
i − 5ψ

∏
i

Xi = 0

Consider the group action G : Xi → λkiXi, where λ is a fifth root of

unity and
∑
i ki = 0(mod5). The group action perverse the equation,

and due to scale invariance of the coordinates we have G = (Z5)3. The

mirror M̃ of the quintic manifold can be constructed by orbifold method

M̃ = (
∑
i

X5
i − 5ψ

∏
i

Xi)/G (14)

• The mirror M̃ have hodge numbers h(1,1) = 101 , h(1,2) = 1.



• The parameter ψ becomes the complex structure parameter of the mir-

ror. The B-model is described by deformation theory, and the periods

and mirror map are computed by the Picard-Fuchs differential equation

{(ψ∂ψ)4 − ψ−1(ψ∂ψ −
1

5
)(ψ∂ψ −

2

5
)(ψ∂ψ −

3

5
)(ψ∂ψ −

4

5
)}ω = 0

The equation can be solved by asymptotic series at ψ =∞,

~Π =


∫
B1

Ω∫
B2

Ω∫
A1 Ω∫
A2 Ω

 =


F0
F1
X0
X1

 = ω0


2F (0) − t∂tF (0)

∂tF
(0)

1
t


The mirror map has a logarithmic behavior

2πit(ψ) = − log(55ψ) +
154

625ψ
+

28713

390625ψ2
+ · · ·

• We find the expansion of prepotential

F (0) = −
κ

6
t3 + P2(t) +

∞∑
m,d=1

nd
m3

e−mdt (15)



• The coefficient of e−dt in the prepotential F (0) are Gromov-Witten

invariants, but they are in general rational numbers. By rewriting the

expansion in the form of (15), the numbers nd turns out to be integers.

• The m3 factor takes into account the “bubbling contributions” to

higher degree invariants from low degree invariants. The numbers nd
correspond to the notion of counting the number of spheres in the

Calabi-Yau manifold. It is a special case of Gopakumar-Vafa invariants

at genus zero.

• Computing the number of sphere in quintic is a difficult question in

algebraic geometry. In 1990, mathematicians know the low degree

numbers n1 = 2875, n2 = 609250. Candelas et al’s mirror symmetry

calculations immediately gives nd for all degrees d.

• Mathematicians try to compute n3 but initially get the wrong number

due to computer program error. They confirm Candelas et al’s result

after correcting the bug.



Proof of mirror conjecture (genus zero)

• Kontsevich (1995) developed the theory of Gromov-Witten invariants

and the localization method to compute them. Two group of math-

ematicians later proved that the results are the same with those from

mirror symmetry.

A. Givental, 1996; B. Lian, K. Liu, and S.-T. Yau, Mirror principle I,

II, III, 1997, 1999, 1999.

• Quotes from Yau’s book “The Shape of Inner Space: String Theory

and the Geometry of the Universe’s Hidden Dimensions’”, 2012.

“Here again we venture into one of those areas of controversy ... We

scrutinized his paper very carefully and were not alone in finding it

hard to follow ... My colleagues and I also failed in our attempt to

reconstruct Giventals entire argument, despite our attempts to contact

him and piece together the steps we found most puzzling ... I believe

the best thing to say at this point is that collectively the two papers

constitute a proof of the mirror conjecture and to leave it at that ”



How to compute

• Topological B-model methods: Picard-Fuchs equation for complex

structure deformation, Candelas, De La Ossa, Green and Parkes,

1991); BCOV holomorphic anomaly equations compute higher genus

topological string amplitudes, Bershadsky, Cecotti, Ooguri and Vafa,

hep-th/9309140.

• Mathematical computation of Gromov-Witten invariant by localization

techniques, Kontsevich et al.

• Large-N open/close string duality relates topological strings to Chern-

Simons gauge theory in 3-manifolds, Gopakumar, Vafa; Further de-

veloped into topological vertex formalism, Aganagic, Klemm, Marino,

Vafa.



• Heterotic/type II duality, applied to Calabi-Yaus with K3 fibration (

Antoniadis et al).

• Counting of BPS states, i.e. Gopakumar-Vafa invariants ( Katz, Klemm,

Vafa).

• Matrix model techniques ( Eynard, Orantin).



• Topological strings on non-compact toric Calabi-Yaus, e.g. O(−1) →
P1×P1, O(−3)→ P2, are essentially solved to all genera by topological

vertex formalism.

• A long standing problem: How to solve topological strings on com-

pact Calabi-Yau spaces? The genus zero amplitude is solved by mirror

symmetry and localization method. However, At higher genus, the only

available approach is the mirror symmetry and use holomorphic anomaly

equation M. Bershadsky, S. Cecotti, H. Ooguri, C. Vafa (BCOV), 1993.

This was done by BCOV up to genus 2.

• The BCOV holomorphic anomaly equation

∂̄k̄∂mF
(1) =

1

2
C̄
ij
k̄
C

(0)
mij +

(
χ

24
− 1

)
Gk̄m ,

∂̄k̄F
(g) =

1

2
C̄
ij
k̄

DiDjF (g−1) +
g−1∑
r=1

DiF
(r)DjF

(g−r)
 , g ≥ 2



Holomorphic anomaly equation

• The holomorphic anomaly comes from the boundary of the moduli

space of the worldsheet.

G-}G- 

Imo�

G-}G- 
0}q}i 

G-}G- 

Imo�
G-}G- 

0}q}i 



1.2. Toward solving the higher genus topo-
logical strings on compact Calabi-Yau spaces

References:

1. MH and A. Klemm, “Holomorphic Anomaly in Gauge Theories and

Matrix Models,” JHEP 0709, 054 (2007) [hep-th/0605195].

2. MH, A. Klemm and S. Quackenbush, “Topological string theory on

compact Calabi-Yau: Modularity and boundary conditions,” Lect.

Notes Phys. 757, 45 (2009) [hep-th/0612125].

Quote: “... heroic efforts” (to solve topological strings), C. Vafa,

string 2012 review talk, Munich.



• It is difficult to push the BCOV methods to higher genus. Two major

difficulties are the the followings.

1. Holomorphic ambiguity problem. The holomorphic anomaly equa-

tion only determine F (g) recursively in terms of lower genus results

up to a holomorphic ambiguity, a meromorphic function in the mod-

uli space with a finite number of unknown constants. One need find

alternative ways to fix these unknown constants.

2. Computational complexity in BCOV method: the number of dia-

grams grows exponentially with genus. A normal laptop can handle

the computation only up to about genus 6, even for the simplest

one parameter models such as the quintic.

• The calculation was pushed up to genus 3 for the quintic, using further

information from the counting of BPS states known as Gopakumar-

Vafa invariants. Katz, Klemm, Vafa, hep-th/9910181.



• An example of BCOV diagrams, at genus 2.

=  - 1
2 
_ + + 

+ 18 
_ + + + 

+ + 1 _ 
12 + 

+ 

+ + f2(t) 

1
2 
_ 

1
2 
_ 

1
8 
_ 

1
2 
_ 

1
2 
_ 

i j = -Sij 

= -Si 

= -2S 

i 

+ 

+ 1
2 
_ 

+ 1
2 
_ 



• We made some important progress Huang, Klemm, Quackenbush, hep-

th/0612125.

1. We solve the holomorphic anomaly equation directly without the

BCOV Feynman diagrams, by using the idea of formulating topolog-

ical strings as polynomials Yamaguchi, Yau, hep-th/0406078. The

computational complexity of the method grows only polynomially in

genus.

2. We discover boundary conditions at the conifold point of the moduli

space, i.e. the “gap” condition c.f. Huang, Klemm, hep-th/0605195,

which fix the holomorphic ambiguity to a large extend.

• We are able to solve a class of one-parameter Calabi-Yau models to

very high genus, e.g. in principle to genus 51 for the quintic.



Topological strings as polynomials

Yamaguchi and Yau, hep-th/0406078

• Define the following generators

Ap :=
(ψ∂ψ)pGψψ̄

Gψψ̄
, Bp :=

(ψ∂ψ)pe−K

e−K
, (p = 1,2,3, · · · )

C := Cψψψψ
3, X :=

1

1− ψ
These generators satisfy the derivative relations

ψ∂ψAp = Ap+1 −AAp, ψ∂ψBp = Bp+1 −BBp, ψ∂ψX = X(X − 1)

• The independent generators are (A1, B1, B2, B3, X). One can use the

Picard-Fuchs equation and special geometry relation to show B4 and

A2 are polynomials of (A1, B1, B2, B3, X).



• Define the topological string amplitudes in “Yukawa coupling frame”

Pg := Cg−1F (g), P
(n)
g = Cg−1ψnC

(g)
ψn

• We have the initial data and recursion relation in n

P
(3)
g=0 = 1

P
(1)
g=1 = −

31

3
B +

1

12
(X − 1)−

1

2
A+

5

3

P
(n+1)
g = ψ∂ψP

(n)
g − [n(A+ 1) + (2− 2g)(B −

1

2
X)]P (n)

g

• Define a change of variable

(A1, B1, B2, B3, X)→ (u, v1, v2, v3, X)

by the followings

B = u, A = v1 − 1− 2u, B2 = v2 + uv1,

B3 = v3 − uv2 + uv1X −
2

5
uX



• The anti-holomorphic derivative of the generators can be related to

each other. Only ∂ψ̄A1 and ∂ψ̄B1 are independent. The BCOV holo-

morphic anomaly equations are

∂Pg

∂u
= 0

(
∂

∂v1
− u

∂

∂v2
− u(u+X)

∂

∂v3
)Pg = −

1

2
(P (2)

g−1 +
g−1∑
r=1

P
(1)
r P

(1)
g−r)

• The Main Proposition: Each Pg, (g ≥ 2) is a degree 3g − 3 inhomoge-

neous polynomial of v1, v2, v3, X, where one assigns the degree 1,2,3,1

for v1, v2, v3, X, respectively. Yamaguchi and Yau.

• The number of terms ng in Pg grows polynomially with genus g.

ng � (3g − 3)4



• The generators (Ai, Bi, X) are modular functions of the monodromy

group of the quintic, a subgroup of Sp(4, Z).

• We use the holomorphic anomaly equation to compute the Pg recur-

sively, up to a holomorphic ambiguity

f(g) =
3g−3∑
i=0

ciX
i

The degree is fixed by the maximal degree of the poles at the conifold

point.

• There are 3g − 2 unknown constants at each genus g.



Boundary conditions

• There are three singular points in the complex structure moduli space:

ψ = 0, ψ = 1, ψ =∞.

• We can expand the topological strings around these singular points. In

the holomorphic limit, the Kahler potential and metric go like

e−K ∼ ω0, Gψψ̄ ∼ ∂ψt,

So in the holomorphic limit, the generators Ap and Bp are

Ap =
(ψ∂ψ)p(∂ψt)

∂ψt
, Bp =

(ψ∂ψ)pω0

ω0
,

• The period ω0 and mirror map t can be solved asymptotically at each

singular point of the moduli space by the Picard-Fuchs equation.



• Boundary condition at the orbifold point ψ = 0. The Picard-Fuchs

equation has 4 power series solutions that go like ω0 ∼ ψ
1
5, ω1 ∼ ψ

2
5,

ω2 ∼ ψ
3
5, ω3 ∼ ψ

4
5.

• The topological string amplitudes are

F
(g)
orbifold = lim

ψ̄→0
ω

2(g−1)
0 (

1− ψ
ψ

)g−1Pg ∼
Pg

ψ
3
5(g−1)

We expect F (g)
orbifold to be regular at the orbifold point, based on earlier

works (e.g. Katz, Klemm , Vafa).

• Pg is a power series of ψ, starting from a constant. This imposes

d
3

5
(g − 1)e

number of conditions on the holomorphic ambiguity in Pg.



• Boundary condition at the conifold point ψ = 1. Picard-Fuchs equation

around z = ψ − 1 have four solutions that go like

~Π =


ω0
ω1
ω2
ω3

 =


1 +O(z)
z +O(z2)
z2 +O(z3)

ω1 log(z) +O(z4)



• We define a dual mirror map tD = ω1
ω0

. We find the topological strings

around the conifold point has a “gap” structure in the tD coordinate

F
(g)
conifold = lim

z̄→0
ω

2(g−1)
0 (

1− ψ
ψ

)g−1Pg

=
(−1)g−1B2g

2g(2g − 2)t2g−2
D

+O(t0D),

This fixes 2g − 2 coefficients in the holomorphic ambiguity.

• An arbitrary change of the basis ω0 → ω0 + b1ω1 + b2ω2 does not affect

this gap like structure.



• The leading coefficients of the conifold expansion were actually pointed

out long time ago, Ghoshal, Vafa, hep-th/9506122. The gap condition

is first observed recently in the context of SU(2) Seiberg-Witten theory,

Huang, Klemm, hep-th/0605195.

• Near the conifold point of the moduli space, a D3-brane wrapping

a vanishing 3-cycle appears as a charged, BPS, extremal, and nearly

massless black hole in space-time, Strominger, hep-th/9504090.

• A physical explanation of the gap condition: Integrating out the mass-

less black hole state in a graviphoton background...



• Gopakumar-Vafa-Schwinger Computation: In N = 2 supergravity, we

integrate out a charged BPS hypermultiplet of e = m = t
λ, and Lorentz

Group SO(4) = SU(2)L × SU(2)R representation

[(
1

2
,0) + 2(0,0)]

⊗
(jL, jR)

in a graviphoton background where the self-dual part of the graviphoton

field strength is F+ = λ.

• The Gopakumar-Vafa-Schwinger Computation generates the following

term in the effective action

S =
∫
d4xF (t, λ)R2

+,

where F (t, λ) =
∫ ∞
ε

ds

s

Tr (−1)F exp(−st) exp(−2sλσL)

(2 sin(sλ2 ))2

• In type IIB compactification near the conifold, there is only one light

particle: the massless black hole.



• The topological string near the conifold should be, (up to regular terms

of the period t),

F (λ, t) =
∫ ∞
ε

ds

s

exp(−st)
(2 sin(sλ2 ))2

=
∑

(
λ

t
)2g−2(−1)g−1B2g

2g(2g − 2)
+O(t0)

This is precisely the gap condition.



• Boundary conditions at infinity ψ =∞. The constant map contribution

of manifold M , Faber, Pandharipande, math.ag/9810173,

lim
t→∞

F
(g)
A-model =

(−1)g−1B2gB2g−2

4g(2g − 2)(2g − 2)!
χ(M)

• The world sheet instanton corrections

F
(g)
instanton =

∑
β∈H2(M,Z)

r
(g)
β exp(2πitβ)

where r
(g)
β are rational numbers, known as the Gromov-Witten invari-

ants of holomorphic maps.

• Re-organize the world sheet instanton contributions

∞∑
g=0

λ2g−2F
(g)
instanton =

∞∑
g=0

∑
β

∞∑
m=1

n
(g)
β (

e2πitβm

m
)(2 sin

mλ

2
)2g−2



• The Gopakumar-Vafa invariants n(g)
β are integers counting BPS D0-D2

brane bound states.

• The quintic example: one kahler modulus, β = d is the degree of the

holomorphic map. The GV invariants

g d=1 d=2 d=3 d=4 d=5
0 2875 609250 317206375 242467530000 229305888887625
1 0 0 609250 3721431625 12129909700200
2 0 0 0 534750 75478987900
3 0 0 0 8625 -15663750
4 0 0 0 0 49250
5 0 0 0 0 1100
6 0 0 0 0 10
7 0 0 0 0 0

• Boundary condition: at each genus, the Gopakumar-Vafa invariants

vanish n
(g)
d = 0 for low degree d holomorphic maps.



Summary of Boundary Conditions at genus g

• Holomorphic ambiguity: 3g − 2 unknown constants.

• The expansion around orbifold point ψ = 0 provides d35(g−1)e boundary

conditions.

The expansion around conifold point ψ = 1 provides 2g − 2 boundary

conditions.

The large complex structure modulus/large volume limit ψ = ∞ pro-

vides ag+ 1 boundary conditions, where ag is the number of low degree

vanishing GV invariants at genus g, sensitive to specific models.

• Count the number of unknown constants

3g − 2− (d
3

5
(g − 1)e+ 2g − 2 + 1 + ag) = [

2

5
(g − 1)]− ag



• We have enough/redundant data to compute topological strings if

ag ≥ [
2

5
(g − 1)]

• This is true for low genus, (up to g ∼ 51 for the quintic) . However,
asymptotically

ag ∼
√
g, when g →∞

So far our calculation is limited only by the power of our computational
facilities.

20 40 60 80
genus

5

10

15

20

25

degree



• The analysis can be straightforwardly generalized to one-parameter

Calabi-Yau models, realized as hypersurfaces or complete intersections

in weight projective spaces.

X5(15) X6(14,2), X8(14,4), X10(13,2,5), X3,3(16),

X4,2(16), X3,2,2(17), X2,2,2,2(18) X4,3(15,2), X4,4(14,22),

X6,2(15,3), X6,4(13,22,3), X6,6(12,22,32).

• We solve all these 13 models to very high genus. The singular behaviors

around the conifold point is universal.

• On the other hand, we discover a rich variety of singularity structures

around the orbifold point. The 13 models fall into 4 classes.



Four cases

(1). No massless charged state. The F g are regular at the orb-

ifold point ψ = 0, imposing boundary conditions. This includes mod-

els X5(15), X6(14,2), X8(14,4), X10(13,2,5),X3,3(16), X2,2,2,2(18),

X4,4(14,22),X6,6(12,22,32).

(2). One massless charged state. The F g exhibit the “gap structure”

similar to the conifold point, imposing boundary conditions. This in-

cludes models X4,2(16), X6,2(15,3).

(3). Two massless charged states. The interactions between mass-

less states destroy the “gap structure”, no boundary conditions at the

orbifold point. This includes models X3,2,2(17).

(4). Multiple massless charged states. The F g are singular with no

obvious structures at the orbifold point. However the scaling of masses

of these light states imposes some boundary conditions. This includes

the model X4,3(15,2), X6,4(13,22,3).



Castelnuovo’s theory

• We make many predictions for the Gopakumar-Vafa invariants. The

counting of BPS states of a degree d can be calculated from the coho-

mology of the moduli space M of the D0-D2 brane bound states. This

algebraic geometric counting is known as Castelnuovo’s theory. (Katz,

Klemm, Vafa, 1999)

• The “top genus” numbers are the easiest to calculate.

n
g
d = (−1)dim(M)χ(M)

• Examples from the quintic:

1. Genus g = 6, degree d = 5: n6
5 = 10, ng5 = 0 (g ≥ 7).

2. Genus g = 16, degree d = 10: n16
10 = −50, ng10 = 0 (g ≥ 17).



• Some basics: The moduli space of Pk moving in Pn is the Grassmannian

G(k, n). The complex dimension and Euler number are

dim(Pk) = k, χ(Pk) = k + 1,

dim(G(k, n)) = (k + 1)(n− k), χ(G(k, n)) =

(
n+ 1
k + 1

)

• Consider a complete intersection of degree (1,1,5) in P4. This is a

curve of genus 6, degree 5. The moduli space of curves in the quintic

is Grassmannian G(2,4), so we recover the BPS number

n6
5 = (−1)3·2

(
5
3

)
= 10

• Similarly, consider a complete intersection of degree (1,2,5) in P4. This

is a curve of genus 16, degree 10. The moduli space of curves in the

quintic is P4 × P9, so we recover the BPS number

n16
10 = (−1)4+95 · 10 = −50



1.3. Applications for black hole physics

References:

1. MH, A. Klemm, M. Marino and A. Tavanfar, “Black Holes and

Large Order Quantum Geometry,” Phys. Rev. D 79, 066001 (2009)

[arXiv:0704.2440 [hep-th]].

Quote: “... congratulations for settling the long outstanding conjecture

on the entropy of the spinning BH ....”, C. Vafa to A. Klemm, private

communication.



• Compactify M-theory on a compact Calabi-Yau 3-fold. The 5-D super-

gravity has a BPS black hole solution (BMPV black hole) with gravipho-

ton charge Q, angular momentum J of the SU(2)L ⊂ SO(4). The

classical entropy of the black hole is one quarter of the horizon area

S = 2π
√
Q3 − J2

• There are R2 correction to the black hole entropy, computable by

Wald’s formula,

∆S = 2π
∫

Horizon

∂(∆L)

∂Rµνρσ
εµνερσ ∼ Q

1
2

• An open problem: How to count the black hole microstates? Much

more difficult than the Strominger-Vafa black hole.



• Katz, Klemm, Vafa (KKV), 1999: The black hole microstates are

counted by topological strings. For a black hole with 2-brane charge d

and SU(2)L angular momentum J = m, the number of states are

Nm
d =

∑
r
nrd

(
2r + 2

r + 1 +m

)
The graviphoton charge are related by the supergravity attractor equa-

tion Q = (2
9)

1
3 d√

κ
, where κ is the intersection number.

• This is a very natural proposal since the Gopakumar-Vafa invariant nrd
is a supersymmetric index that remains constant in the moduli space.

• Difficulty: For non-compact Calabi-Yaus, the KKV formula can not be

reliably applied to count 5D black hole microstates, since this is not

really a compactification to 5D supergravity. There were not much

computations of the Gopakumar-Vafa invariants for compact Calabi-

Yau available (before our paper).



• We use our new results and the KKV formula the count micro-states.
Consider e.g. angular momentum m = 0,

S = log(N0
d ) =

4π

3
√

2κ
d

3
2 +O(d

1
2)

Topological string data provide the values

f(d) =
log(N0

d )

d
3
2

=
4π

3
√

2κ
+
b1
d

+
b2
d2

+ · · ·

for d up to a finite degree.

• The quintic example

2 4 6 8 10 12
d

3
4
5
6
f !d"



• How to extrapolate? Use the Richardson extrapolation method.To

cancel the sub-leading corrections up to order 1/dN , one defines

A(d,N) =
N∑
k=0

f(d+ k)(d+ k)N(−1)k+N

k!(N − k)!
, (16)

For example A(d,1) = (d+ 1)f(d+ 1)− df(d).

2 4 6 8 10 12 14
d1.25

1.5

1.75

2

2.25
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• For all 13 models, the KKV formula for counting micro-states con-

firms the macroscopic black hole prediction of leading coefficient with

impressively small error of 1∼ 3 % .

Calabi-Yau dmax A(dmax − 3,3) b0 = 4π
3
√

2κ
error

X5(15) 14 1.35306 1.32461 2.15 %
X6(14,2) 10 1.75559 1.71007 2.66 %
X8(14,4) 7 2.11454 2.0944 0.96 %

X10(13,2,5) 5 2.99211 2.96192 1.02 %
X3,3(16) 17 1.00204 0.987307 1.49 %
X4,2(16) 15 1.07031 1.0472 2.21 %

X3,2,2(17) 10 0.821169 0.855033 -3.96 %
X2,2,2,2(18) 13 0.722466 0.74048 -2.43 %
X4,3(15,2) 11 1.21626 1.2092 0.58 %
X6,2(15,3) 11 1.52785 1.48096 3.17 %
X4,4(14,22) 7 1.42401 1.48096 -3.85 %

X6,4(13,22,3) 5 2.06899 2.0944 -1.21 %
X6,6(12,22,32) 4 2.95082 2.96192 -0.37 %



• The subleading correction have been studied by supergravity analysis

in the literature. We confirm the macroscopic results numerically with

about 5∼ 15 % error for the 13 one-parameter models.

Calabi-Yau dmax A1(dmax − 3,3) b1 = πc2
4
√

2κ
error

X5(15) 14 11.2668 12.4182 -9.27 %
X6(14,2) 10 11.9237 13.4668 -11.5 %
X8(14,4) 7 14.0537 17.2788 -18.7 %

X10(13,2,5) 5 15.2509 18.8823 -19.2 %
X3,3(16) 17 9.29062 9.99649 -7.06 %
X4,2(16) 15 10.0226 10.9956 -8.85 %

X3,2,2(17) 10 8.45163 9.61912 -12.1 %
X2,2,2,2(18) 13 7.84595 8.88577 -11.7 %
X4,3(15,2) 11 9.5981 10.8828 -11.8 %
X6,2(15,3) 11 12.5614 14.4394 -13.0 %
X4,4(14,22) 7 9.70091 11.1072 -12.7 %

X6,4(13,22,3) 5 11.1008 12.5664 -11.7 %
X6,6(11,22,33) 4 11.1378 12.2179 -8.84 %



Part II

2.1. Refined topological strings
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Refinement: Origin and Motivation

• The effective action of 4d N = 2 supersymmetric gauge theories is

determined by a holomorphic quantity known as the prepotential F (0).

Seiberg and Witten (1994) solved the low energy effective action us-

ing the holomorphicity and monodromy around singular points of the

moduli space.

• The main parts of the low energy effective action of asymptotically

free gauge theories come from instanton contributions. Nekrasov’s

partition function provides the formulae from direct computations of

instanton contributions. It can be mathematically proven that the for-

malism gives the same prepotential found by Seiberg-Witten method

(Nekrasov, Okounkov, Nakajima, Yoshioka).



• The Nekrasov function also contains the gravitational couplings, the

coefficients of R2F (2g−2) terms in the effective action. Here R and F

are the curvature and graviphoton fields.

• Inspired by Nekrasov’s partition function, one can study the topological

string theory on Calabi-Yau manifolds with two expansion parameters,

known as refined topological string theory.

• Two ways to compute refined topological string amplitudes.

1. A-mode method: refined topological vertex (A. Iqbal, C. Kozcaz,

C. Vafa), applicable to certain local toric Calabi-Yau manifolds that

geometrically engineer the gauge theory.

2. B-model method: Generalized holomorphic anomaly equation, bound-

ary conditions (MH, A. Klemm; Krefl, Walcher).



The Nekrasov Function

• The Nekrasov function is an integral over the moduli space of in-

stantons in the 4d gauge theory. The moduli space is naively non-

compact, and the integral is naively divergent and need to be regular-

ized. Nekrasov regularizes the integral using the so-called Ω deforma-

tions, where the two deformation parameters are ε1 and ε2. Formally

Zinstanton(a, ε1, ε2) =
∞∑
n=0

∫
Mn

1 (17)

where Mn is the moduli space of n instantons in Ω background.

• In the Ω backgrounds, the integral over instanton moduli space localizes

to a finite number of points. It can be written as a sum over some 2d

Young tableaux. The number of the boxes of the Young tableaux is

the number of instantons.



• The formula (SU(2) case)

Zinstanton(a, ε1, ε2)

=
∑
Y1,Y2

∏
(i,j)∈Y1

∏Nf

k=1(a+ ε1(i− 1) + ε2(j − 1) +mk)

E(0, Y1, Y1, i, j)(ε− E(0, Y1, Y1, i, j))E(2a, Y1, Y2, i, j)(ε− E(2a, Y1, Y2, i, j))

·
∏

(i,j)∈Y2

∏Nf

k=1(−a+ ε1(i− 1) + ε2(j − 1) +mk)

E(0, Y2, Y2, i, j)(ε− E(0, Y2, Y2, i, j))E(−2a, Y2, Y1, i, j)(ε− E(−2a, Y2, Y1, i, j))
,

where

E(a, Y1, Y2, i, j) ≡ a+ ε1(Y T1,j − i+ 1)− ε2(Y2,i − j)

The Y T is the transpose of the Young tableau. The ε1 and ε2 are the

deformation parameters in Ω backgrounds, and ε = ε1 + ε2. The mk’s

are the mass parameters of the massive flavors. For the SU(2) case we

have one period a which is the flat coordinate at large modulus limit.



• Including the perturbative contributions, the total contribution is

Z = ZpertZinstanton

• The gravitational couplings can be computed by expansion of the

Nekrasov’s partition function Z(a, ε1, ε2) around small ε1, ε2 parameters

of the general Ω background

logZ(a, ε1, ε2) =
∞∑

i,j=0

(ε1 + ε2)i(ε1ε2)j−1F ( i2,j)(a)

• The leading term F (0,0)(a) is the well-known prepotential. It is de-

termined by holomorphicity and monodromy, and can be conveniently

computed by a differential equation known as the Picard-Fuchs equa-

tion.



• Here I use the pure SU(2) gauge theory as an example. We studied

the case of ε1 + ε2 = 0 in 2006, and generalized the analysis to general

case in a later paper. It turns out the odd power terms F ( i2,j)(a) where

i an odd integer vanish.

• For the genus one case, the F (0,1) follows the conventional genus one

BCOV ( Bershadsky-Cecotti-Ooguri-Vafa, 1993) holomorphic anomaly

equation, while F (1,0) has no holomorphic anomaly. A further boundary

condition at the singular points of moduli space determine the formulae

(up to an irrelevant constant)

F (0,1) = −
1

2
log(

da

du
)−

1

12
log(∆),

F (1,0) =
1

24
log(∆)

where u is the complex modulus parameter of SU(2) Seiberg-Witten

gauge theory, and is the expectation value of the adjoint scalar field

u = 1
2Tr (φ2). The ∆ is the discriminant of the Seiberg-Witten curve

and the singular points of the moduli space are the loci ∆(u) = 0.



• It is convenient to introduce a modular parameter τ (related to the

modular parameter of the Seiberg-Witten curve). The relations be-

tween the parameter q = e2πiτ , u, a are the followings (around u =∞)

a =
E2(τ) + θ4

3(τ) + θ4
4(τ)

3θ2
2(τ)

∼ q−
1
4

u =
θ4

3(τ) + θ4
4(τ)

θ4
2(τ)

∼ q−
1
2

• The u parameter is defined over the complex plane, and is singular

at u = ∞, u = ±1, where some charged particles become massless.

The parameters τ , a are only defined locally in patches of the u plane.

The parameters a, τ near the monopole point u = 1 are obtained by a

S-duality transformation τ → −1
τ

aD =
2

3θ2
4(τ)

(E2(τ)− θ4
3(τ)− θ4

2(τ)) ∼ q
1
2

u =
θ4

3(τ) + θ4
2(τ)

θ4
4(τ)

∼ 1



• The genus one formulae are

F (0,1) = − log(η(τ))

F (1,0) = −
1

6
log(

θ2
2

θ3θ4
) =

1

24
log(u2 − 1)

• It turns out that the topological amplitudes F (g1,g2) satisfy a generalized

holomorphic anomaly equation

∂̄̄iF
(g1,g2)

=
1

2
C̄
jk
ī

(
DjDkF

(g1,g2−1) + (
g1∑

r1=1

g2∑
r2=1

)′DjF
(r1,r2)DkF

(g1−r1,g2−r2)
)

where g1 + g2 ≥ 2, the prime denotes that the sum over r1, r2 does

not include (r1, r2) = 0, and (r1, r2) = (g1, g2), and the first term on

the right hand side is understood to be zero if g2 = 0. This equation

reduces to the ordinary BCOV holomorphic anomaly equation when

g1 = 0.



• In order to be a modular form, the second Eisenstein series E2(τ) should
be shifted by anti-holomorphic piece

E2(τ)→ E2(τ)−
3

πτ2

• The shifted E2 is the only anti-holomorphic piece. F (g1,g2) is a poly-
nomial of the shifted E2 whose coefficients are rational functions of u.
The holomorphic anomaly equations become

48
∂F (g1,g2)(E2, u)

∂E2

=
d2

da2
F (g1,g2−1) + (

g1∑
r1=0

g2∑
r2=0

)′(
dF (r1,r2)

da
)(
dF (g1−r1,g2−r2)

da
)

• The holomorphic anomaly equation determines the F (g1,g2) up to a
rational function of u, called the holomorphic ambiguity. To further
determine now the holomorphic ambiguity for the pure SU(2) theory,
we expand the topological amplitudes around the monopole point u =
1. We find the gap condition around this point completely fixes the
holomorphic ambiguity.



• The gap conditions at genus two are

F
(0,2)
D = −

1

240a2
D

+O(a0
D)

F
(1,1)
D =

7

1440a2
D

+O(a0
D)

F
(2,0)
D = −

7

5760a2
D

+O(a0
D)

• The genus two formulae are

F (0,2) =
200X3 − 360uX2 + (60u2 + 180)X − 19u3 − 45u

12960(u2 − 1)2

F (1,1) =
20uX2 − (40u2 + 60)X + 3u3 + 45u

2160(u2 − 1)2

F (2,0) =
10u2X + u3 − 75u

4320(u2 − 1)2

where X = E2(τ)/θ2(τ)4.



Our results

• We provide exact formulae summing up all instanton contributions at

a given genus. We extend the calculations to include SU(2) theory

with Nf = 1,2,3,4 fundamental or an adjoint hypermultiplet(s) with

generic mass parameters. Our results agree with the Nekrasov partition

functions.

• We find the boundary gap conditions are not applicable for the case of

Nf = 4 or adjoint massless matters. We need to solve the theory first

with mass deformation and then take the massless limit.



Calabi-Yau case

• How to define the (A-model) refined topological string? It is best to do

it in the target space perspective. Consider the compactification of M-

theory on a Calabi-Yau 3-fold M . The BPS particles in the remaining

5-dimension are M2 branes wrapping 2-cycles β ∈ H2(M,Z) of the

Calabi-Yau, and are in the representation [(1/2,0) + 2(0,0)]
⊗

(jL, jR)

of 5d little group SO(4) = SU(2)L × SU(2)R. Denote the number of

such particles as nβjL,jR
, a non-negative integer. The mass and charge

of the particle is the size of the 2-cycle (denoted as a Kahler modulus

parameter t).

• The number n
β
jL,jR

depends on the geometry of the Calabi-Yau. It

can jump cross line of marginal stability when we move in the complex

structure moduli space, a phenomenon known as the wall crossing. The

following index is invariant.

n
β
jL

=
∑
jR

(−1)2jR(2jR + 1)nβjL,jR



• Further compactly the 5d theory on a circle S1 to 4d, and also turn on

the gravi-photon field G = ε1dx
1 ∧ dx2 + ε2dx

3 ∧ dx4 in 4d. The BPS

charged particle can have momentum on the compact circle, which is

the D0 brane charge in the language of M theory/IIA duality. The mass

and charge of the particle is

m = t+ 2πin

where n ∈ Z is the D0 brane charge, or momentum on S1.

• Integrating out charged particles in a gravi-photon background G =

ε1dx
1 ∧ dx2 + ε2dx

3 ∧ dx4 generates
∫
d4xR2

+F terms in the effective

action (c.f. Gopakumar-Vafa and Schwinger), where

F = −
∫ ∞
ε

ds

s

TrR(−1)σL+σRe−sme−2is(σLεL+σRεR)

4
(
sin2

(
sεL
2

)
− sin2

(
sεR
2

))
where εR/L = ε± = 1

2(ε1 ± ε2) .



• We need to sum over all representation (jL, jR) of SO(4), 2-cycles β

with multiplicity nβjL,jR
. This is the refined topological string amplitude.

It can be computed using the refined topological vertex formalism.

(Iqbal-Kozcaz-Vafa, hep-th/0701156; Awata-Kanno)

• Performing the sums, and also the integral over s, we find

F =
∞∑

jL,jR=0

m=1

∑
β∈H2(M,Z)

nβjL,jR
m

(−1)2jL+2jR
(∑jL

n=−jL y
mn
L

)(∑jR
n=−jR y

mn
R

)
em·(β,t)

4
(
sin2

(
mεL

2

)
− sin2

(
mεR

2

))
with yL/R = e

iεL/R.

• Sometimes it is convenient from computational perspective to define

the BPS numbers in a different basis∑
n
β
jL,jR

[JL ⊗ JR] = nβgL,gRI
gL
L ⊗ I

gR
R

where IL/R = [(1/2) + 2(0)]L/R. The numbers n
β
gL,gR are integers if

n
β
jL,jR

are, and vice versa. (nβgL,gR could be negative).



The gap condition

• Consider the mirror picture in type IIB theory. At the conifold point, a

D3-brane wrapping a vanishing 3-cycle becomes massless. Integrating

out this charged particles generates the following singular terms in the

effective action

F (ε1, ε2, aD) = −
∫ ∞

0

ds

s

exp(−saD)

4 sin(sε1/2) sin(sε2/2)
+O(a0

D)

Here we only consider singular terms as the mass of the particle aD → 0.

• We can expand the integrand in small ε1, ε2 and perform the integral

F (ε1, ε2, aD) =
[
−

1

12
+

1

24
(ε1 + ε2)2(ε1ε2)−1

]
log(aD)

+
[
−

1

240
(ε1ε2) +

7

1440
(ε1 + ε2)2 −

7

5760
(ε1 + ε2)4(ε1ε2)−1

] 1

a2
D

+O(
1

a4
D

) +O(a0
D)

We see the gap structure near conifold point.



• Since the BPS number n
β
jL,jR

can change in the complex structure

moduli space. The (A-model) refined topological string amplitudes

may also jump in the complex structure moduli space, in addition to

the dependence on Kahler moduli space. We consider some cases where

the problem is more tractable, namely the local Calabi-Yau space where

the complex structure moduli are frozen.

• Using the generalized holomorphic anomaly equation and the gap condi-

tions, we solve the refined topological string on some well-known toric

geometries: resolved conifold, local P2 model, local P1 × P1 model.

We find agreements with the calculations from the refined topological

string vertex formalism of Iqbal-Kozcaz-Vafa .

• We can also compute the refined BPS invariants for other local non-

toric Calabi-Yau manifolds, such as the del Pezzo, half K3 Calabi-Yau

manifolds. MH, A. Klemm and M. Poretschkin, arXiv:1308.0619.



Mathematical definition of refined invariants

• Mathematical definition of Nβ
jL,jR

from stable pairs (J. Choi, S. Katz

and A. Klemm, arXiv:1210.4403).

• The moduli space of stable pairs on a Calabi-Yau threefolds M is de-

noted Pn(M,β). It has a perfect and symmetric obstruction theory, and

Its virtual dimension is zero, so one can integrate it to a number.

#vir(Pn(M,β)) =
∫

[Pn(M,β)]vir
1 .

• The construction can be refined by an extension of the classical Bialynicki-

Birula decomposition to the virtual case.



• Del Pezzo Calabi-Yau spaces: the total space of the fibration of the

anti-canonical line bundle O(−KB) → B, over a Fano variety B and

their mirror manifolds.

• Del Pezzo surfaces are two-dimensional smooth Fano manifolds and

enjoy a finite classification. The list is P2 and blow-ups of P2 in up to

n = 8 points, called Bn, as well as P1 × P1.

• The d-dimensional toric Fano varieties are most easily classified by d-

dimensional reflexive polyhedra. Toric almost del Pezzo surfaces are

given by reflexive polyhedra in two dimensions.



• These are the 16 reflexive polyhedra ∆ in two dimensions, which build

11 dual pairs (∆,∆∗). Polyhedron k is dual to polyhedron 17 − k for

k = 1, . . . ,6. The polyhedra 7, . . . ,10 are self-dual. In particular the

polyhedra 1,2,3,5,6 correspond to toric del Pezzo surfaces.
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• The local mirror geometries are encoded by elliptic curves. We use

the well known Nagell’s algorithm to transform the curves to Weier-

strass form, and derived the Picard-Fuchs differential equations for the

periods.



The massless cases

• The complex geometry of the mirror manifolds are described by the

Picard-Fuchs differential equations

(θ2
z + c0z

2∏
i=1

(θz + 1− ai))θz

∫
γi

Ω = 0,

where z is the complex structure modulus in the mirror manifold and

θz = z∂z. a1, a2 and c0 are classical constants of the the Calabi-Yau

manifolds.

• The vectors ~a = (a1, a2) satisfy a1 +a2 = 1 and are given as follows for

various one-parameter families of Calabi-Yau manifolds we consider

P2 : ~a = (
1

3
,
2

3
), P1 × P1 : ~a = (

1

2
,
1

2
), D5 : ~a = (

1

2
,
1

2
),

E6 : ~a = (
1

3
,
2

3
), E7 : ~a = (

1

4
,
3

4
), E8 : ~a = (

1

6
,
5

6
).



Higher genus amplitudes

• We discuss next the genus one amplitudes F (1,0) and F (0,1). The F (1,0)

amplitude is holomorphic while the amplitude F (0,1) has a holomorphic

anomaly which is determined by the genus one holomorphic anomaly

equation. Both amplitudes have logarithmic cuts for the discriminant

∆(z) = 1 + c0z and z as

F (1,0) =
log(∆(z))− c(1,0) log(z)

24
,

F (0,1) = −
1

2
log(∂zt(z))−

1

12
(log(∆(z)) + c(0,1) log(z)),

where we use the constants c(1,0) and c(0,1) to denote the coefficients

for log(z) terms in the refined amplitudes.

• We compute the g ≥ 2 amplitudes by refined holomorphic anomaly

and boundary conditions. Due to the orbifold singularity, there are not

sufficient boundary conditions for the En models at high genus.



An example of E5 del Pezzo

2jL\2jR 0
0 16

d=1

2jL\2jR 0 1
0 10

d=2

2jL\2jR 0 1 2
0 16

d=3

2jL\2jR 0 1 2 3 4
0 1 45
1 1

d=4

2jL\2jR 0 1 2 3 4 5
0 16 144
1 16

d = 5

2jL\2jR 0 1 2 3 4 5 6 7
0 10 130 456
1 10 130
2 10

d = 6



some salient features

• For degree d which is a positive integer as an element in H2(M,Z),

there is a non-vanishing positive integer ndjL,jR
= ñd2jL,2jR

at the top

genus (2jL,2jR) = (gtopL , g
top
R ). All higher genus invariants vanish so the

non-vanishing GV invariants form a rectangular matrix.

• In the basis of integers ñdgL,gR, the GV invariants do not generically

vanish if the genus pair lies in the rectangular matrix. However in the

j-spin basis ndjL,jR, there is furthermore a large number of vanishing GV

invariants ndjL,jR inside the rectangular matrix. The genus pairs of these

non-vanishing integers follow a chess board pattern.

• These patterns can help to fix the holomorphic ambiguities at low

genus. The redundancies provide highly non-trivial checks of our cal-

culations.



Half K3 model

• The topological string amplitudes on the half K3 Calabi-Yau threefold
are equivalent to the partition function of the six-dimensional non-
critical E-string compactified on a circle. The winding and momentum
numbers of the E-string on the compactified circle correspond to the
wrapping numbers nb and d on the base and fiber in the homology
classes nb[p] + d[f ] in the half K3 surface.

• The geometry of the half K3 surface can be constructed by blowing up
nine points on P2. The second homology classes in H2(B9,Z) consist
of the class of the line [l] on P2, and the nine exceptional classes [ei]
(i = 1,2, , · · · ,9) on the blown-up points. The non-zero intersections
of the classes are [l] · [l] = 1, [ei] · [ei] = −1. In this construction,
the base class p and fiber class f we mentioned above are the linear
combinations

p = [e9], f = 3[l]−
9∑
i=1

[ei]



• The Göttsche formula is the generating function for the Betti numbers

of the Hilbert scheme of d points on a complex surface S. For wrapping

number nb = 1 we can compute by an infinite product formula, the

refined Göttsche formula.

1

GS(q, yL, yR)
=

∞∏
n=1

(1− yLyRqn)(1− yLy−1
R qn)(1− y−1

L yRq
n)

(1− y−1
L y−1

R qn)(1− qn)b2(S)−2

• For higher wrapping number nb ≥ 2, we propose a refinement of the

modular anomaly equation of S. Hosono, M. H. Saito and A. Takahashi.

• We can turn on 8 generic mass parameters. The topological string

amplitudes are construct by Jacobi modular forms of E8 lattice.

• By properly scaling the parameters and set some to zero, we can flow

to the del Pezzo models and recover the previous results.



2.2. Nekrasov-Shatashvili limit
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• Nekrasov-Shatashvili limit: we take one of ε1,2 to vanish, say ε2 = 0,

and consider the expansion around ε ≡ ε1. Nekrasov-Shatashvili conjec-

tured that in this limit, the vacua of N = 2 gauge theory correspond

to certain quantum integrable systems.

• In this limit we can define the deformed prepotential F as

F(ai, ε) =
∞∑
n=0

ε2nF (n,0)(ai) (18)

• We can prove some of our higher genus formulae for F (n,0) in the limit.

We can derive the holomorphic anomaly equation in this limit. This

also works for the non-compact Calabi-Yau manifolds, e.g. the local P2

model, local P1×P1 model, and the local del Pezzo Calabi-Yau models.



The Saddle Point Equation

• The deformed prepotential F can be computed from Nekrasov function

using saddle point method (Poghossian et al).

qM(x− ε)w(x)w(x− ε)− w(x)P (x) + 1 = 0

where q = Λ4−Nf and y2 = P (x)2−4qM(x) is the Seiberg-Witten curve.

For the pure SU(2) case, P (x) = x2 − u and M(x) = 1.

• Poghossian et al use the saddle point method to solve the deformed

prepotential F(ã, ε, q) perturbatively in q parameter and the solution

is exact in ε parameter. On the other hand, in order to make con-

nection with our higher genus formulae, we need to instead solve the

deformed prepotential exactly in q parameter and but perturbatively in

ε parameter.



• The w(x) is the spectral function. It can be solved perturbatively

w(x) =
∞∑
n=0

wn(x)εn,

w0(x) =
P (x)−

√
P (x)2 − 4q

2q
,

w1(x) =
x(P (x)−

√
P (x)2 − 4q)2

2q(P (x)2 − 4q)
,

· · ·

• The deformed period

ã = −
∞∑
n=0

Resx=
√
ux∂x logw(x)

= a0 + a2ε
2 + a4ε

4 +O(ε6)



• Here a ≡ a0 is the conventional period, satisfy Picard-Fuchs differential

equation

4(4q − u2)∂2
ua = a

• There are exact formulae for higher order terms.

a2 =
1

24
(∂ua+ 2u∂2

ua)

a4 =
(60qu− u3)∂ua+ 2(300q2 + 153qu2 − u4)∂2

ua

2880(u2 − 4q)2

• We can also define the deformed dual period from the integrand, with

a different contour

ãD = aD0 + aD2ε
2 + aD4ε

4 +O(ε6)

They satisfy the same equations as the deformed period.



Two ways to compute the deformed
prepotential

• First way: use the deformed Matone relation

0 = q
dFinst(ã, ε, q)

dq
− ã2 +

=
1

2
F (0,0)(a)−

1

4
a
∂F (0,0)(a)

∂a
+ u

+
ε2

4
[a2(aD + 2πiτa)− a

∂F (1,0)(a)

∂a
+

1

6
]

+
ε4

2
[−F (2,0)(a)−

a

2

∂F (2,0)(a)

∂a
−
a2

2
∂a(a

∂F (1,0)(a)

∂a
)

+
a4

2
(aD + 2πiτa) +

a2
2

4
∂a(aD + 2πiτa)] +O(ε6)

• Each order provides a differential equation for F (n,0). We can prove

our formulas by showing they satisfy the equations.



• Second way: use the deformed period (A. Mironov and A. Morozov).

0 =
∂F(ã)

∂ã
− ãD

=
∂F (0,0)(a)

∂a
− aD + ε2(∂aF

(1,0)(a)− 2πiτa2 − aD2)

+ε4[∂aF
(2,0)(a) + a2∂

2
aF

(1,0)(a)− 2πiτa4

−πi(∂aτ)(a2)2 − aD4] +O(ε6)

• We can also show our formulas satisfy the low order equations. Disad-

vantage: the equation is not yet derived from Nekrasov’s function.



Deriving holomorphic anomaly equation
in NS limit

• We explicitly check our higher genus formulae satisfy the equations

from the saddle point method up to some low genus. It would be nice

to directly show the saddle point method is consistent with the holo-

morphic anomaly equation and gap boundary conditions, and therefore

prove the equivalence to all genera.

• Under certain simple assumptions, the holomorphic anomaly equation in

the Nekrasov-Shatashvili limit can be derived from the equation ∂F(ã)
∂ã =

ãD for deformed dual period.

∂E2
F (n,0) =

1

24

n−1∑
l=1

∂aF
(l,0)∂aF

(n−l,0)



• Basic idea: understand how ∂E2
and ∂a commute with each others. We

find

∂E2
∂aFk = ∂a∂E2

Fk −
kπi

6
(∂aτ)Fk,

where Fk is a tensor with k lower indices.

• We expand equation for deformed dual period, and derive the holomor-

phic anomaly equation in NS limit by induction.

0 =
∂F(ã, ε)

∂ã
− ãD

=
∞∑
n=1

∞∑
k=0

∂k+1
a F (n,0)(a)

(ã− a)k

k!
ε2n

+
∞∑
k=0

∂k+1
a (−2πiτ)

(ã− a)k+2

(k + 2)!
− [2πiτ(ã− a) + (ãD − aD)]



2.3. Modular Anomaly from Holomorphic Anomaly in Mass De-

formed N=2 Superconformal Field Theories
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Modular anomaly and holomorphic anomaly

• we consider two well-known superconformal field theories, namely the

SU(2) N = 2 gauge theories with an adjoint hypermultiplet and with

Nf = 4 fundamental hypermultiplets.

• In the first theory the supersymmetry is enhanced to N = 4 and the

gauge coupling is corrected by neither perturbative nor instanton con-

tributions. For the second theory the gauge coupling is renormalized

by instanton effects, as seen from the Nekrasov partition function.

• We turn on mass parameters in the theories, which break the conformal

symmetry and keep the N = 2 supersymmetry. The first theory with

mass deformation is also known as the N = 2∗ theory. In both theories

the gauge coupling is renormalized by mass deformation.



• Two types of anomaly equations, namely the modular anomaly and

holomorphic anomaly, have been discovered in the literature. We pro-

vide a clean solution to the long standing puzzle about their precise

relation, and obtain some universal formulae.

• Modular anomaly: We can expand the instanton partition functions

of the two theories around the large modulus point in the Coulomb

branch, i.e. where the v.e.v. of the scalar in the vector multiplet is

large. As power series of the flat coordinate a, the coefficients consist

of Eisenstein series and Jacobi theta functions as shown by Minahan

et al, Billo et al.

• Physically, the quasi-modularity comes from the SL(2,Z) duality which

acts on the gauge coupling constant. Here the quasi-modular forms are

weighted homogenous polynomials of the Eisenstein series E2, E4, E6.

The E2 series transforms with a shift under S-duality so it is not exactly

modular. The modular anomaly equations relate the partial derivative

of instanton partition function with respect to E2 to lower order terms.



• Comparing with Holomorphic anomaly from topological string theory:

• It was strongly believed that these two approaches are related. However
there are apparent differences between them, and no clear derivation
from one to the other is available in the literature. In the modular
anomaly equation, the partition functions are expanded around large
Coulomb modulus point and the argument of the quasi-modular forms
is the bare coupling, while the holomorphic anomaly approach gives
exact amplitudes at any points of moduli space and the argument of
quasi-modular forms is the renormalized gauge coupling.

• Furthermore, the modular anomaly appears already at genus zero while
the holomorphic anomaly appears only at higher genus.

• A similar issue also appears in the studies of topological strings on a
class of elliptically fibered Calabi-Yau manifolds Alim et al:2012, Klemm
et al:2012. In a related paper (work in progress) we will resolve this long
standing issue. The idea is similar but the details are more complicated
for compact Calabi-Yau models.



2.4. Dijkgraaf-Vafa conjecture and β-deformed matrix models
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Introduction

• One of Dijkgraaf-Vafa’s conjectures (2002) states the equivalence of

the following two theories:

1. The Hermitian matrix model

Z = eF =
1

Vol(U(N))

∫
[DΦ]e

−trW (Φ)
gs , (19)

where Φ is a N×N Hermitian matrix and the matrix potential W (Φ)

is a degree n+ 1 polynomial.

2. The B-model topological string theory on the local Calabi-Yau 3-

fold, described by a curve in C4 coordinate (u, v, x, y)

uv = y2 +W ′(x)2 + f(x), (20)

where f(x) is a degree n−1 polynomial whose coefficients parametrize

the complex structure moduli of the Calabi-Yau geometry.



• The matrix model and the topological string free energy F are conjec-

tured to be equal.

• We will take large N limit in the matrix model. There is a natural large

N expansion of the matrix model free energy organized by the genus of

the Feynman diagram. At each genus, there is a further perturbative

expansion in terms of the t’Hooft parameter

ti = gsNi, (21)

where the N eigenvalues of the matrix are distributed continuously

around the critical points of the matrix potential N =
∑
iNi.

• The genus expansion of the matrix model is identified with the genus

expansion of the topological string. The t’Hooft parameters (21) in

the matrix model is identified with the periods, or flat coordinates of

the Calabi-Yau geometry.



Origin of the conjecture

• The Gopakumar-Vafa duality relates the large N Chern- Simons theory

on S3 with A-model topological strings on the resolved conifold. This

is an example of open-closed string duality.

D-brane on 3-sphere

Open StringClosed string

Conifold geometry Chern-Simons theory

• The Dijkgraaf-Vafa conjecture is morally the mirror of the Gopakumar-

Vafa duality. The open string theory is a holomorphic Chern-Simon

theory deformed by the potential W (Φ), which turns out to reduce to

a matrix model.



Some previous works on DV conjecture

• For the genus zero case, the leading planar free energy is known as the

prepotential F(0). Dijkgraaf and Vafa showed that the both sides of

the duality satisfy the period equation

ti =
∮
Ai
λdx,

∂F(0)

∂ti
=
∮
Bi
λdx, (22)

where λdx =
√
W ′(x)2 + f(x)dx is a differential one-form, reduced from

the unique holomorphic 3-form of the Calabi-Yau geometry.

• The genus one case is checked by Klemm, Marino and Theisen, hep-

th/0211216; Dijkgraaf, Sinkovics and Temurhan, hep-th/0211241.

• In my previous work HM and A. Klemm, hep-th/0605195, we check the

conjecture at genus two. Later, Klemm, Marino and Rauch, arXiv:1002.3846,

pushed the calculations to much higher genus using the gap condition

near the conifold divisor.



DV conjecture and β-deformation

• Recently there have been some interests in refined topological string
theory, which originate from the Ω deformation in supersymmetric
gauge theory. It is expected that the Dijkgraaf-Vafa conjecture can
be generalized to the refined case.

• Here the refinement corresponds to the β-deformation of the matrix
models.

• The topological expansion of ordinary matrix model free energy has
been constructed from the spectral curves [Akemann; Eynard, Orantin,
math-ph/0702045], known as the topological recursion method. It can
be generalized to the β-deformed case [Chekhov, Eynard].

• However, the topological recursion method is still too difficult for many
practical calculations, even more for the β-deformed case. In this paper
we provide some higher genus formulae from the refined topological
string method.



β-deformed matrix models

• The matrix integral can be written in terms of eigenvalues

Z = eF =
1

N !(2π)N

∫
(
∏
i

dλi)∆2(λ)e
−
∑
i
W (λi)
gs , (23)

where λi (i = 1,2 · · · , N) are the eigenvalues of the Hermitian matrix Φ,

and ∆(λ) =
∏
i<j(λi−λj) is the well known Vandermonde determinant.

• The β-deformation replaces the matrix integrand by its β power, so the

partition function becomes

Z(β) = eF (β) =
1

N !(2π)N

∫
(
∏
i

dλi)∆2β(λ)e
− β
gs

∑
iW (λi). (24)



• We find the exact formulas for the genus two amplitudes F(2,0), F(0,2)

and F(1,1) using the topological B-model methods of holomorphic

anomaly equation and boundary conditions. These formulas are very

difficult to obtain from traditional matrix model method. We check

the expansions near the point (z1, z2) = (0,0) agree with the higher

order terms from perturbative matrix model calculations.

• It would be interesting to prove our formulas from the topological

recursion method of Eynard et al.



2.5. Relation with quantum integrable models

References:

1. Y. Hatsuda, M. Marino, S. Moriyama and K. Okuyama, “Non-

perturbative effects and the refined topological string,” arXiv:1306.1734

[hep-th].

2. J. Kallen and M. Marino, “Instanton effects and quantum spectral

curves,” arXiv:1308.6485 [hep-th].



A spectral problem

• Consider the following integral kernel

ρ(x1, x2) =
1

~
1(

2 cosh x1
2

)1/2

1(
2 cosh x2

2

)1/2

1

2 cosh
(
π(x1−x2)

~
). (25)

The spectral problem is∫ ∞
−∞

ρ(x1, x2)φ(x2)dx2 = λφ(x1). (26)

• In operator formalism, we can write

ρ̂ = e−
1
2U(x̂)e−T (p̂)e−

1
2U(x̂). (27)

where x̂, p̂ are canonical position and momentum operators [x̂, p̂] = i~,

and

U(x) = log
(

2 cosh
x

2

)
, T (p) = log

(
2 cosh

p

2

)
. (28)



• The expectation value is then 〈x|ρ̂|x′〉 = ρ(x, x′), using the integral∫ ∞
−∞

eixpdp

2 cosh(p2)
=

π

cosh(πx)
(29)

• The operator ρ̂ has some properties.

1. it is Hermitian: ρ(x1, x2) = ρ(x2, x1).

2. It is non-negative. Denote |ψ〉 = e−
1
2U(x̂)|φ〉

〈φ|ρ̂|φ〉 = 〈ψ|e−T (p̂)|ψ〉 =
∫ ∞
−∞

dp

2 cosh(p2)
≥ 0 (30)

3. An upper bound for eigenvalues. Suppose φ(x) is normalized wave

function,∫ ∞
−∞

φ(x1)ρ(x1, x2)φ(x2)dx1dx2 ≤
∫ ∞
−∞

ρ(x1, x2)|φ(x1)|2dx1dx2

≤
∫ ∞
−∞

1

~
dx2

2 cosh
(
πx2
~
) =

1

2



• So we can write the eigenvalues of ρ̂ as λ = e−E, where the energy

levels

log(2) ≤ E0 ≤ E1 ≤ E2 ≤ · · · (31)

• Define ρ̂ = e−Ĥ. The classical Hamiltonian is

H = T (p) + U(x) = log(4 cosh(
x

2
) cosh(

p

2
)) (32)

The classical ground state energy is obtained at x = p = 0

E0 = log(4) (33)

• The Hamiltonian (32) turns out to be the a specialization of the curve

describing the mirror of local P1 × P1 Calabi-Yau manifold. It can be

also regarded as a relativistic deformation of the spectral curve of the

periodic Toda chain.

• It is not know how to solve the spectral problem analytically. One has

to use numerical or approximate method.



• Nekrasov-Shatashvili conjecture: The spectral problem is equivalent to

the Bohr-Sommerfeld quantization condition∮
p(x)dx = 2π~(n+

1

2
), (34)

where the period integral is the deformed B-period in the Nekrasov-

Shatashvili limit of the local Calabi-Yau manifold.

• The computation of the periods is familiar in mirror symmetry, by the

use of Picard-Fuchs differential equation. Setting the complex structure

parameters z1 = z2 = e−2E in the local P1 × P1 Calabi-Yau manifold,

we find the undeformed period

8ΠB

(
e−2E

)
−

4π2

3
= 8E2 −

4π2

3
− 8E

∑
`≥1

â
(0)
n e−2`E + 2

∑
`≥1

b̂
(0)
n e−2`E.



• Here the coefficients are written in Gamma and Digamma functions

Γ(x), ψ(x) as

â
(0)
` =

1

`

Γ
(
`+ 1

2

)
Γ(1

2)`!

2

16` ,

b̂
(0)
` =

4

`

Γ
(
`+ 1

2

)
Γ(1

2)`!

2

16`
[
ψ

(
`+

1

2

)
− ψ(`+ 1) + 2 log 2−

1

2`

]
.

• The Bohr-Sommerfeld quantization condition with undeformed period

correspond to the classical energy spectrum in ~→ 0. We can check the

classical ground state energy E0 = log(4) indeed satisfy the equation

8E2
0 −

4π2

3
− 8E0

∑
`≥1

â
(0)
n e−2`E0 + 2

∑
`≥1

b̂
(0)
n e−2`E0 = 0 (35)



• To compute the quantum energy spectrum, one needs to use the de-

formed period Nekrasov-Shatashvili limit, explained in previously. The

Planck constant ~ is identified with the ε parameter in the Nekrasov-

Shatashvili limit.

• However, it turns out that this is not enough. The deformed period

has singularities when ~
2π is an integer. In J. Kallen and M. Marino,

arXiv:1308.6485 [hep-th], Some non-perturbative corrections propor-

tional to e−
2πnE

~ are proposed using the ordinary topological string am-

plitudes. They checked that the non-perturbative corrections cancel

the singularities, and match the energy spectrum from numerical cal-

culations.

• It would be interesting to generalize to the idea to other Calabi-Yau

models.



Summary and outlook

• There are many questions to study. Find more methods to compute

(refined) topological string theory. Prove that the many methods are

equivalent.

• Solve a compact Calabi-Yau model completely (to any genus).

• How to define non-perturbative topological strings?



Thank You


