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1. Introduction to EiBI gravity

1915: General Relativity (metric theory)

Senle] = 1 | I*xVEIR() 2N o)

o It provides precise descriptions to a variety of
phenomena in our universe for almost a century.

o It also suffers various troublesome theoretical problems:
dark matter/energy, nonrenormalization, singularity...
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1. Introduction to EiBI gravity

Modified Gravity

o Scalar-tensor (Brans-Dicke) gravity

F(R) gravity, critical gravity (Hong Lii), and other
general higher-order theories

Horava-Lifschitz gravity
Models of extra dimensions: KK, ADD, RS, DGP
Born-Infeld Gravity

Bimetric theories
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Four formalisms of gravity theories:
o Metric-affine formalism: I’;\W and g, independent,

S6 = SlguwsTuuls  Sm = Smlguw, Ths ¥l (2)
The hypermomentum: ANV = — 2‘ |5?ﬁM .
—|8KL MN

Tmn does not represents the usual meaning of a
energy-momentum-stress tensor, the hypermomentum
also describes matter characteristics.

o Palatini formalism: Fz‘y and g, independent,

Sc = Sclguw- Tl Sm = Smlgu:¥. (3)
@ Metric formalism: F;\W = { f;,,}. only g,
SG = SG[g,uu]a SI\/I — SI\/I[gw/a %ZJ] (4)
@ Purely affine formalism: only Ff;,,
Se =SalM),  Sm=Sml. ¢ (5)

Example: Eddington gravity.



An example: Classification of f(R) theories of gravity

#(R) GRAVITY

A . e
I'*,, and gy, independent
—

METRIC-AFFINE f(R) M=)
Snr = Sm(guv, )
PALATINI f(R) METRIC f(R)
\w /
(R) = H\ / (R)=R
f'(R)#0 GR f(R) 40
BRANS DICKE, wg = f% BRANS DICKE, wy =0

Taken from [T.P. Sotiriou, CQG 23(2006)1253].
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1924: Eddington gravity (purely affine gravity)

[A.S. Eddington, The mathematical Theory of Relativity, Cambridge Univ. Press, 1924]

Seadl) = 1o | 'y~ IRu (D] ©)|

The independent field is a symmetric affinity F)‘ = F)‘
R, is the symmetric part of its Ricci tensor.

The EoMs are given by V) (xR, (') = 0.

If we let g, = kR,,,(I"), then the EoMs become
V8w = 0, which is equivalent to

e 6 6 o

1
rlil’ - Eg/\p(gpuﬂf + 8puu — Buv,p)- (7)
o Further, let A = %, the EoMs can be written as
R;w(g) = /\gm/v (8)

where R, (g) is constructed with the metric g, now.
o Eddington’s theory is equivalent to GR with A.
e But it is incomplete because matter is not included.
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Duality of Sen[g] and Sgqd[l]
e Consider the Palatini action for gravity with A

Selg. T = d'xv/=g (8" Ru(T) —2N).  (9)

o Eliminating the connection using its own EoM gives

5EH[g]—7 d*xv/=g[R(g) — 2A]. (10)

e Eliminating the metric yields (A # 0) [annals Phys. 162(1985)31]

Sead[l] = /d“ A/ —lERw (D). (k=1/A) (11)

@ Splg,l is called the Parent action, while Sgy[g]| and
Seda[l'] are its daughters.

@ Sgnlg] and Sgqq[l'] are said to be dual to each other, and
in many respects they are equivalent.
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1934: Vector Born-Infeld theory

[M.Born, Proc.R.Soc.London A 143(1934)410; M.Born and M.Infeld, Proc.R.Soc.London A 144(1934)425].

1
SVBI = _ﬁ d4X —\gw, = )‘FHV|‘ (12)J

@ The Bl theory is a theory of nonlinear electrodynamics.
It reduces to Maxwell theory for small amplitudes.

o The EoMs are of second order.

@ The singularity of electric field for a point charge at the
origin is removed. So does the divergence of the
electron’s self-energy.

e But magnetic field for a point magnetic charge at the
origin and vector potential are still singular.

@ The nonabelian extensions were found in string theory.
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1998: Born-Infeld gravity(metric theory)

[Deser and Gibbons, CQG 15 (1998) L35]

Sale] = [ @'/l ~ FRu(@) + XuRL (3)]

@ A gravitational analog of the Bl electrodynamics.
e X, contains quadratic or higher terms in curvature.
@ It must be chosen such that the action is free of ghost.

o For the vector Bl theory, the EoMs are of second order.
For the spin-2 Bl gravity theory this is not automatic
and requires the addition of X, (R).
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2010: Eddington Inspired Born-Infeld (EiBIl) gravity

(metric-affine or Palatini theory) [Bafiados and Ferreira, PRL 105 (2010) 011101]

SEiBI[ga r? ] = ﬁ% fd4X (\/ _‘guu a4 HR}LV(F) - )‘\/ _g) + SMa (14)

Sm = Sulg, T, ®] (metric-affine) or Sy = Su[g, P] (Palatini).  (15)

@ We mainly consider the Palatini theory.

@ When kR > g and Sy, = 0, Sgigi — Sedd-
@ When kR < g, the EiBI gravity reproduces ‘GR’:

. 1 a4 = . Kp2 Kpoupy 2
SE.B|~7167TG/d X/ g(R 2/\efr+4R 2RVRH+O(H) + Sum, (16)

where Aggr = (A — 1) /k.

o In the nonrelativistic limit, the EiBl theory gives the
modified Poisson equation V¢ = —1p—2V2),

o It reproduces Einstein gravity precisely within the
vacuum but deviates from it in the presence of source.

Yu-Xiao Liu EiBl Gravity



2010: Eddington Inspired Born-Infeld (EiBl) gravity

(metric-affine or Palatini theory) [Baiiados and Ferreira, PRL 105 (2010) 011101]

Semile, T, @] = e 2 [ d*x (/=T + £Ru(N) = W=E) + Sw, (17)

Sm = Swlg, T, ®] (metric-affine) or Sy = Su[g, P] (Palatini).  (18)

@ When )\ =1 (no cosmological constant), the theory can
be formulated as a bimetric-like theory [peisate and steinhofr, PPL
109(2012)021101]:

s = 3 [ dvma(Rial+ )
- i/d“x(ﬁq“”guu ~2Vg) + Sulg. ol (19

@ The metric representing the physical spacetime is only
g because that is the one coupled to matter.
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The EoMs for EiBI gravity
o By varying the action with respect to the metric gives

(20)
e Variation to the connection gives V,(g,, + xR, (")) = 0.

e By introducing an auxiliary metric g, = g,, + kR, ('),
we have V,q,, = 0 and so I is just the Christoffel
symbol of g,,.

o Then the gravitational equations are rewritten as

V=34 = \—gg” —ry=g T, = (21
Quw = g/w‘i‘/‘?R;w(q)- (22)

The above equations and matter field equations form a
complete set of equations of the theory.

o Here, g""q,\ = &}, g"gun = 8. TP =gg’ T,,.
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@ Does the EiBI gravity theory remove singularities?

o For a homogeneous and isotropic universe coupling to an
ideal fluid, there is a maximum density pg, which
corresponds to a minimum length ag in cosmology.

e ;c<0v —
a/ag 0 EHf bbb e
4 - PRL 105 (2010)011101 1

2 F k>0 —
O71|||1|1|||||11|||||1|l7

0.6 0.7 0.8 0.9 1

@ The EiBI theory avoids thLe Big Bang singularity, and the
universe may be entirely singularity free.

o This type of evolution is interesting because it eliminates
a physical divergence but also generates an early stage of
inflation without including any unknown type of matter.
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Motivation:

@ What's the properties of a charged back hole, early
universe, and braneworld in the EiBIl gravtiy theory?

@ Are the linear perturbations stable in early universe in
EiBl gravity?
@ Are the linear perturbations stable in braneworld model

in EiBI gravity? Can 4D Newtonian potential be
recovered on the brane?

So, we discuss
@ strong gravitational lensing by the charged EiBl BH,
o the full linear perturbations of the EiBl cosmology, and

o the linear tensor perturbation of the EiBl braneworld and
localization of gravity on the brane.
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2. Strong gravitational lensing by charged EiBlI BH

2. Strong gravitational lensing by charged
EiBI BH
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2. Strong gravitational lensing by charged EiBI BH

We study the charged black hole solution in EiBl gravity.

o Consider an electromagnetic field with

Ly = —14=FuwF". The energy-momentum is
Ty =~ (FuFS — g FopFo” 2
wy — E( poly — Zgul/ op ) ( 3)

We only consider the electrostatic field with Ay # 0.

@ Assume a static spherically symmetric spacetime metric

ds? = —2(r)F(r)de + ;’() LA 4 s 0d ), (24)

e and the auxiliary metric q,,,

dr?

F(r)

ds”? = —G2(r)F(r)dt® + + H(r)(d¥? + sin® ¥d¢?).(25)
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2. Strong gravitational lensing by charged EiBI BH

From the EoMs

Quv = gul/""KR/LIM
VTag" = A/ ge" — Briy g T,

and the Maxwell equations, we have

G(r) :¢(>\— "ri:z) H(r) = ry/ A+ "Tf‘:z, F(r) = f()\— %?2)_1.

G/ Hl F/ H/ G/ F/ G/l F// 2 1
4— — 42— 43— _ 42— 4 — = —|—_
CH T FH T e F ¢ T F ,{F(A_ncg
r4

H/I Fl HI Gl Fl G// F// 2 1
4= 42— 43" 422 4+ = (= _
H+FH+GF+G+F ,.;F<A_ncg
Iz

1 +F’H’+G’H’+H’2+H” _ 1( 1
HF FH GH R H —  kF Aercg
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2. Strong gravitational lensing by charged EiBI BH

@ The solution is
- e E(r) = Q 32
YO = e O e ()

r\/m (/\r4 —r2 4 QZ)()\r4 — NQZ)
Flr) = Art — Q2 [7 rA v/ rt + kQ? - 2\/XM](33)

@ In the limit of r — oo,

Q 2M (1= kA1 +KA/2)) Q2 A
P(r) =1, E(r)%ﬁ, f(r)%lfTJr( TR )r—27§r2. (34)

@ In the limit of r — 0,

2 2
W(r) = ﬁ, E(r) — % F(r) — 3%. (35)
o When Q =0, we have y(r) =1, f(r)=1-2M _ %rz.
e When x =0, we get the RN-AdS/dS solution:

W(r)=1, E(r) =9, f(nN=1-2M 4 & A2
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2. Strong gravitational lensing by charged EiBI BH

e Asymptotic flat solution (A =1 or A = 0):
_” E(r) = Q
Vi k@ Vi rQ?

N Q9
rm -V +RQ2 1@,
) = [Er=2)y 3\ ers)

- kQ?
+% ﬁF(iarcsinh(mr)’ _1) B 2M:| - (37)

where F(x, m) is the elliptic integral of the first kind.
o In the limit of r — o,

2
r% F(r) = 1——M+Q—+2“Q

Y(r) = (36)

w(r) — 1, E(r) — +0O(r7%). (38)

@ In the limit of r — 0,

r2 1 @
¢(r)_> ﬁa E(r)_) ﬁv f(r)_) 3? (39)
o In the limit of r — \/\/kQ,
1 1
w(r)%ﬁ, E(r)ﬁﬁ’ f(r)%OOA (40)
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2. Strong gravitational lensing by charged EiBI

1.2 2
]
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3 0.6} ,.' B - ] = E
[ «=0.1, ¢=0.0) —1f P [ —— («=0.1, 0=0.0) ]
04r ----(«=05,0=02) 1 Vi === = (=05, 0=02)
1 Al ’ "
1 — — 9k o E
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r

The metric functions ¢(r) and f(r).
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° Rlg] = g" Rlglu o (r* — kQ?)73
° gMVR[q],uV = g'm/(q;w - g,ul/)/"{ = 8/k.

r*+rQ? r*—kQ?
o R[] = ¢""R[q]u = 8 +(,?+Q‘C/,;§E,4,h82)/ﬂ
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2. Strong gravitational lensing by charged EiBI BH

The outer horizon r, as a function of «.

) L . A
0.9 [Fr=r--ae —
< o8
- =00
——- Q=01
0.7 g=02
,,,,,, Q:O,}
........ 0=035
0.6

@ The outer horizon r, decreases with « and Q.
e For RN black hole in GR, the outer horizon r, decreases

with Q (r+ = M £ VM? — Q?).



2. Strong gravitational lensing by charged EiBI BH

Next, we consider strong gravitational lensing by the
charged EiBI BH.

@ Rewrite the spacetime metric as

ds? = —A(r)dt? + B(r)dr® + C(r)(d6? + sin® d$?), (41)
A(r) =9 (nf(r), B(r)=1f(nN"Y C(r)=r (42)

I(zxo)

a-(:r-:o-) K

N
R—

Consider that a photon incomes
from infinity with the impact

parameter u, reaches a minimum
distance ry, then returns to infinity.

d¢
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I(xo)

N

@ The deflection angle is

a(r) = 1(n) —, (43)

B B Oog&r_ >~ /B/Cdr
l(ro)—/d¢—2/ro Cdr =2 i \/W.(M)

@ When ry approaches some certain points, the photon can
complete one loop or more than one loop before
reaching the observer.

e When ry approaches the radius rps of the photon sphere,
the photon will surround the black hole all the time if
there is no perturbation.
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2. Strong gravitational lensing by charged EiBI BH

The equation determining the radius of the photon sphere ry

is r A'(r) = 2A(r). rps = 3/2 for Q = 0.
WS
1.4
w13 ST
kﬂ.
)
——— Q=01
0=02
Lip 003
. 0=035
1.0 .
00 02 04 06 08 1.0
K

The radius of photon sphere r,s as a function of «.
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2. Strong gravitational lensing by charged EiBI BH

Consider the lensing that the photon passes very close
the photon sphere. The deflection angle can be expanded
with a logarithmic term [pro 66(2002)103001],

6D
a(f) = —ay log ( oL _ 1) + a. (45)
Ups

The strong deflection limit coefficients a;, a> depend on 1,

R(0, rps) R(z, ros) — 2rps\/ABCps

a = —, _— (46)
2\/ X2(rps) C(l _22)
r2 (2A(rps) — r2A" (rps))
= —m+} log PSP __psT 1P 47
ar 7+ Ir(rps) + a1 log upsrpsA3/2(rps) (47)
(48)
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2. Strong gravitational lensing by charged EiBlI BH

Lens geometry

source lens observer
plane plane plane
1@

o

D, Dae

Dos
The lens equation is [Phys. Rev. D 62, 084003 (2000)]

D
tan 3 =tanf — —Ls[tan(a—Q)—i-tan 6]. (49)
Dos
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2. Strong gravitational lensing by charged EiBlI BH

Relation between strong field limit coefficients and observable
quantities [PRD 66(2002)103001]

Ooo = =2, s=01 — o =0 1, F=ex/.  (50)

where F is the ratio between the flux of the first image and the
sum of the others.

Bk

. .
n=1 n=0

the outermost
61 relativistic image
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2. Strong gravitational lensing by charged EiBI BH

An example

@ The lens is supposed to be the supermassive black hole
located at the center of our Milk Way.
o It is described by the EiBl black hole metric (24).

@ The mass of the black hole is estimated to be
M = 4.4 x 10°M,, with M. the mass of the sun.

@ The distance from us is around Do = 8.5 kpc.

Yu-Xiao Liu EiBl Gravity



2. Strong gravitational lensing by charged EiBI BH

K Q Ooo s rm ups/ Rs ar a»
Sch-BH 0.0 26.510 0.0332 6.8219 2.598 1.000 -0.4002
0.1 26.311 0.0340 6.7909 2.581 1.005 -0.3993
0.2 25.779 0.0368 6.9899 2.526 1.020 -0.3972
RN-BH 0.3 24788 0.0433 6.4858 2.429 1.052 -0.3965
0.35 24.084 0.0493 6.3190 2.360 1.080 -0.4001
0.1 26.326 0.0341 6.7886 2.580 1.004 -0.3994
0.2 25.751 0.0372 6.6789 2.524 1.021 -0.3974
0.1 0.3 24722 0.0445 6.4522 2.423 1.057 -0.3982
0.35 23980 0.0518 6.2609 2.350 1.090 -0.4068
0.1 26.304 0.0344 6.7791 2.578 1.006 -0.3995
0.2 25.658 0.0387 6.6327 2.515 1.029 -0.3989
0.5 0.3 24.445 0.0507 6.2975 2.396 1.083 -0.4102
0.35 23519 0.0658 5.9611 2.305 1.144  -0.4445
0.1 26.277 0.0347 6.7669 2.575 1.008 -0.3997
0.2 25,531 0.0408 6.5698 2.502 1.038 -0.4017
1.0 0.3 24.049 0.0624 6.0350 2.357 1.130 -0.4473
0.35 22.764 0.1087 5.2286 2.231 1.305 -0.6902

Numerical estimation for the observables and the strong deflection
limit coefficients. r,, = 2.5log¥.
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ng gravitational lensing by charged EiBl BH

0w (i arcsecs)
s (1 arcsecs)

K K
&

7 AR RAR Bl

3.5 0o o . L]
n=2 n=1 n=0

5.0
00 02 04 06 08 10 s I
60 61 relativistic image
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2. Strong gravitational lensing by charged EiBlI BH

Conclusion

e We found a charged EiBI black hole solution.

@ With the increase of x and Q,
0~ and r, decrease, while s increases.

I AR AR Bt
b0 o ® ) [ ]
n=2 n=1 n=0
S the outermost
B0 61 relativistic image
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3. Cosmology in EiBI gravity

3. Cosmology in EiBl gravity

EiBl Gravity



3. Cosmology in EiBI gravity

3.1 The background metrics

o The background space-time metric is

ds? = g dxtdx” (51)
= —dt? + a%(t)d;dx dx. (52)

@ The background auxiliary metric is

ds”? = qudx"dx” (53)
—X3(t)dt? + Y3(t)a*(t)d;dx'dxl.  (54)
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3. Cosmology in EiBI gravity

3.2 The background field equations
o The 1st field equation reads

mq"” =N/~ lguwlg" — r\/~|gu|T",

where TH = Pgh” + (P + p)utu”, i.e.,

Y3

7:)\—1—/1/), XY =\ —kP.

o The 2nd field equation g, = g, + kR..(q):

- i Y aX ay XY
X_1+3ﬁ[a+Y ax Ty T xv)
Y25 ® aX | av XV .V
Y2=1+n—<3+2a——3—+63————+
X2\ga

2 ax %y T xvyTvy"

(55)

(56)
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3. Cosmology in EiBI gravity

3.3 The perturbed metrics

@ The perturbed space-time metric is

d$?2 = gudxtdx” = (gu + Hu)dx"dx”
= (—1 + hoo(X))dl‘2 + 32(t)(5ij + h/j(X))dXide
+2ho;(x)dtdx". (58)

o The perturbed auxiliary metric is

d¥? = Gudx*dx’ = (qu + My )dxtdx”
= X%(t)(—1+ yo0(x))dt? + a%(t) Y2(t)(5; + vi(x))dx dx!
+2Y2(t)y0i(x)dtdx". (59)

Yu-Xiao Liu EiBl Gravity



3. Cosmology in EiBI gravity

3.4 The perturbation of the energy-momentum tensor
e The perturbation of T, = Pg' + (P + p)u*u”

6T = 6p+ phoo, (60)
5T = —a?phoi+a (P + p)ou;, (61)
STV = a 25Ps; — a 2Phj. (62)
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3.5 Decomposition of the perturbed metric and Ju;

@ The scalar-vector- decomposition of h,,
hoo = —E, hio=0iF+ G, (63)
hij = Ad;j+09;0;B+09;C;i+0;C; + Dy, (64)

where 9'C; = 9'G; = 0, 9'D;; = 0, and D;' = 0.
@ The scalar-vector decomposition of du;

Suj = 0;6u+U;, (9'6U; = 0). (65)
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3. Cosmology in EiBI gravity

3.6 The first-order perturbations of the field equations

[Yang, Du, and Liu, PRD 88(2013)124037]
@ 7 scalar modes A, B,E,F,6p,0P,0u
LI Y aX aY XY a Y.
2 S+ 0)E
yIE+ 2(a + Y)

1 X? a2
- E a2
v +3( aX+ aY XY

2y?°? 2Ty
—3EA VB - (2 - L Y )eA+ V) otV
2 2
‘Q(Qf_f)v F_E—2X V20p 3k __,X* V2P
4 Y2>\+np 4% Y2A—kP
3w dp_ 3k 5P
R e e R L s
1 3 Y ax ay 35P
SR CHy -k Y o )](/\+np x— P
R A L *zao[P:”vM

(66)
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3. Cosmology in EiBI gravity

2Y? s Y @ ax _ay Y XY 1a°Y2.
T Gty ox Ty T T xy)ET e A
128°Y2.3 Y.- 1_, Y2 5 Y.,

A E—ZVPA— (S + 2)V°F

> xz GHy)E—35Y x2(G TV

1a%Y? _a Y X 12°Y?,5a Y ; 5

- S43- — YA+ = S+ 2)3A B
+5 %z (3 +3Y X) + 5%z (a+Y)(3 +V°B)

Kk a’Y? ép K a’Y? 6P
i xe 8080)\4—/-6,0_1 xz 0035
K V36p _ v25'D)_132( ép 6P )

4 N+kp AN—kP 2 "X+kp A—kP
+Eazy2(é+Z+2‘f_é£+6éz+2ﬁ_ﬁz)

2 X2 'a Y a2 aX ayY Y2 XY

5p 36P kaY? _a Y X Sp

()\Jrﬁp onp) T xe (75+77_Y)8°/\+np

kaY? _a Y X 5P Y2 8 Y. P4+p s
“axe G 3y T e (G ), Vo

(67)
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3. Cosmology in EiBI gravity

(g *)E A_Ea,\frp +g°AiF;-P )':D-:—pru
_g(g é(x\jpmp /\35P )=0. (68)
12°Y2 . 1a°Y?, Y X Y?.
R ATy g By T (B0 3y - (B f
—;(§—§+3¥)F+ ,\6PP 80(P+p5) (69)
2 . Y
+n%(§ 5 )P+p5
0P = wdp (the state equation), (70)

55+32(50+ 6P) + 3(P+ p)(3A+ V*B) — a (P + p)V*(F — 6u) = 0. (71)
. _ .
0P + 5(P+ p)E + (P + p)si + (P + p)du + 3§(P + p)du = 0. (72)

The last two come from the perturbation of the conservation equation.
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3. Cosmology in EiBI gravity

e 3 transverse vector modes C;, G;, 6 U;

20 _2o2 —2 P o2s, P+p o, _
V2C — a 2V2Gi + ka A+/§pV6U’+2)\—|—/{p6U’_O’ (73)
(P—i—p)éU;+(P+p')5U,—+3§(P+p)6U,— =0, (74)
2Y?.  APY? a4 Y X Y? .
-G+ (32 430 - X)c 32
Y2 a2 X P—|—p
—ﬁ(g—y+37)cj+ﬂ730()\+ ay;) (75)
: Y P+p
x2G X 3Tl s
o 1 transverse-traceless tensor mode Dj;
242 2Y2 3 ' '
a‘y- . Y Y X
~V2D; + Djj + 3 +3o - <)Dj=0. (76
) X2 ) X2 ( Y X) ( )
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3. The stability of the perturbations

o The perturbation equations involve
7 scalar modes A, B, E, F,6p,0P,du,
3 transverse vector modes C;, G;,0U;, and
1 transverse-traceless tensor mode Dj;.

@ For scalar modes, we work in the Newtonian gauge

(B=F=0).
o For vector modes, we fix the gauge freedom to eliminate
C.

o All the remaining perturbed modes can be solved.
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3.1 Thecase k >0

For k > 0, the approximate background solution near the
maximum density (t — —o0) is given by
[Escamilla-Rivera, Banados, and Ferreira, PRD 85(2012)087302],
[Scargill, Banados, and Ferreira, PRD 86 (2012) 103533]

a(t) = ag[l+ eP(t—0)],
X(t) = 2eiblt—n) (77)
Y(t) = 2esb(t0) (b= (8/3k)2).
l:\ | 1T 11 ‘ | | 1T 11 | T 11 |_
a 4 :_ PRL 105 (2010)011101 _:
a C ]
B2 k>0 ]
I S I N A
06 07 08 0.9 1

t
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3.1 Thecase k >0

A. Scalar perturbations (t — —oo, in the Eddington region)
[Yang, Du, and Liu, PRD 88(2013)124037]

A ~ ¢+ ok’it+ C3e%b(t*t°), (78)
E ~ (c4+ csk’t)eblt=t0), (79)
5p ~ (c6+ crk’t)elt=t) (80)
Su =~ cg+ coedlt=0), (81)

e They are stable for kK = 0 modes (infinite wavelength
limit),
@ but unstable for k # 0 modes.
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3.1 Thecase k >0

B. Transverse vector modes [Yang, Du, and Liu, PRD 88(2013)124037]
G,' ~ (10, 5U, ~ C11.- (82)

@ They are stable in the Eddington region.

C. Transverse-traceless tensor mode

Djj =~ ciot + c13. (83)

o It causes an instability as claimed in [PRD 85(2012)087302].
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3.2 Thecase Kk <0

For k < 0, the approximate background solution near the
maximum density (t — 0) is given by

[Escamilla-Rivera, Banados, and Ferreira, PRD 85(2012)087302],

[Scargill, Banados, and Ferreira, PRD 86 (2012) 103533]

2
a = aB(1—§|t|2), (84)
X = (2/V3) (—r/2M* || 3, (85)
Y = (2/V3) (=2/r)* ]z, (86)
l:\|II\I‘IIII|\III|II\I_
4 o PRL 105 (2010)011101 =
a o[ E
071|||1|1|||||11||||1|7
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3.2 Thecase Kk <0

The perturbations (at t — 0) are approximately given by
[Yang, Du, and Liu, PRD 88(2013)124037]

A ~ Glt]2 + Gltf, (87a)
E ~ Glt| 2+ Glt|2F, (87b)
5p =~ Gs|t|2 + Go|t]°, (87¢)
Su =~ Glt|2 + Gglt| "1t (87d)
oU; = Gy, G~ Clo‘trz. (876)

1 Niew:5 _ /it
~ |t 2(Cult] 2 + Giolt] 2 ), (87f)

where C; are functions of wave vector and € = —1“2’;22 > 0.
B
The scalar, vector, and modes will all cause

instabilities in the Eddington region for k < 0.
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4. Braneworld in EiBI gravity

4. Braneworld in EiBI gravity
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4. Braneworld in EiBI gravity

4.1 The model

@ We consider a braneworld model in 5D EiBI theory.
The brane is generated by a scalar field with the
lagrangian

Lule. 6] = v/ “Tgral |~ 56" omoons — V(6)].  (89)

o The ansatz for the spacetime metric is
ds®> = gundxMdxN = a®(y ). dxtdx” + dy?, (89)

where a?(y) is the warp factor and y denotes the
physical coordinate of extra dimension.

@ The auxiliary metric can be assumed as
ds” = qundxMdx™N = u(y)ndx”dx” + v(y)dy?,  (90)
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4. Braneworld in EiBI gravity

@ The EoMs are

ud'v' = 2v(u + uu')

2
= b
u=at 4uv? ’
o 2 "
v:1+b““‘/+v(;’ 2ud”), (91)
u<v
nw OV
4 J—
<Z5+<Z5 =35
—_ 1_ 1 _ 4 _ _2
where t==,3=_33%, v==,3=_73, and

=1 = A+ be(V £ 5¢72).
@ There are three functions and three equations.
But not all of these equations are independent.

@ In order to solve the above equations,
we need to give the explicit form of V(¢),
or give another relation between a(y) and ¢(y).
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4.2 The brane solutions

4.2 The brane solutions
o Model A: ¢/'(y) = Ka*"(y)

ay) = sech% (ky), (k=2n/\/3b(4n+3)) (92)

o(y) = (E(/ky/2 2) + sech? (ky) sinh(ky)), (93)
n/3)3/2
V(y) = ‘ T e )~ . (09

A .
N . |\
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Braneworld in 5D EiBI gravity

4.2 Stability of tensor fluctuations

@ The TT tensor fluctuations of the metrics:

d32 = 2(y)lu + hu(x. y)ldxdx” +dy?, (95)
d3? = u(y) [ + Y (x, ¥)]dx*dx” + v(y)dy?, (96)

where h,, are TT: 0*h,, =0, n*"h,, = 0.
o The perturbation equations are

20w/
W+ (= S, + OWh, =0, (97)
o By making a coordinate transformation dy = u(z )dz

v(2)
Eq. (97) can be rewritten as

30,u(z)
2u(z)

Yu-Xiao Liu EiBl Gravity

Oz 2y + 22D hy, + 0@ h,, = 0. (98)




Braneworld in 5D EiBI gravity

e By making the KK decomposition h,,, = ¢,,(x)f(z)h(z),
where f(z) = exp(— [ %’;)dz, we can get the following
two equations

D(4)5W(x) = m?e,(x), (99)

[— 92 + U(2)] h(z) = m*h(z). (100)
e The effective potential U(z) is given by
/Z 2 1! z

U(z) = 2:(2)3 _f f((z)). (101)
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Braneworld in 5D EiBI gravity

e Eq. (100) can be written as the supersymmetric form
LTL h(z) = m? h(z), (102)

where L= (—d/dz+f'/f), L'=(d/dz+ f'/f).

o As the operator LT[ is hermitian and positive definite,
this ensures that m> > 0.

@ Thus, the tensor perturbations are stable (no tachyonic
KK modes with m? < 0).

o The zero mode hJ) = £!2)(x) is normalizable and is the

4D massless graviton localized on the brane.

o The 4D Einstein gravity is recovered on the brane at low
energy.
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4.2 The brane solutions

Model A: ¢/(y) = Ka*"(y)
@ The function f(z) is turned out to be
_ 4n+3

f(z) =a(z)" ">, (103)
and the potential U(z) is
4n+3)0; ,a N (4n + 3)(4n + 1)(0,a)>

2a 432
@ The Hamiltonian can be factorized as

_(d (4n+3)0;a\ ( d  (4n+3)0;a
o= (g G20 (4 B30 o)

@ The zero mode is
ho(Z) = Noa 2 (Z) (106)

U(z) = ( (104)
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4.2 The brane solutions

Model B: ¢/(y) = K1 a*(y)(1 — K2 a*(y))
@ The function f(z) and the potential U(z) are

f(z)

U(z)

o The

1 1 1
a7 2(6 — Kpa® + 3KZa") T 3 (12 — 20K,a% + 9KZa*) T 7, (107)
3

Z3*2(6 — 8Kaa® + 3KZa") T2(12 — 20Kpa% + 9KZa*) T2 [(60480 — 445824K,a° (108)
1406496KZ 2" — 2501856K3 a° + 2760996K5 a° — 1944256K5 a"0 + 856140K3 a2

216216Kj a4 + 24057KS 2" 6)(8,a)% + 2a(12096 — T7760Kza° + 220416K3a* — 359856K a°

370236K; a° — 245036 K2 a'® + 103080KS a'? — 24048KJ 2™ + 2673@316)653} .

zero mode is

ho(z) = Coa?(6 — Koa® + 3K2a%)4 (12 — 20Kz a® + 9K2a*)4(109)

U(z) U(z) ho(z)
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Braneworld in 5D EiBI gravity

For both model A and model B
o The tensor perturbations are stable.
@ The zero mode h,(f)y) = gl(f)u)(x) is normalizable and is the
4D massless graviton localized on the brane.

@ The 4D Einstein gravity is recovered on the brane at low
energy.
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5. Conclusions

5. Conclusions
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5. Conclusions

We have discussed three issues in EiBl gravity theory:
o strong gravitational lensing by charged BH,
o full linear perturbations in cosmology in early universe,

@ tensor perturbations in braneworld.
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5. Conclusions

Black hole and strong gravitational lensing

e We found a charged EiBI black hole solution.

@ With the increase of x and Q,
0~ and r, decrease, while s increases.

r XA At et B9
.. [ 2
"
the outermost
61 relativistic image

Yu-Xiao Liu EiBI Gravity



5. Conclusions

Full linear perturbations in EiBl cosmology in early universe

o Linearly stability of the perturbations

Tensor | Vector Scalar
k<0 X X X

k>0 X V V(k=10), x(k#0)

o For these unstable (divergent) linear perturbations, the
condition |h,, | < 1 is not satisfied, so nonlinear
perturbations should be considered.

o Large scale structure formation [1403.0083]:
The linear growth of scalar perturbations deviates from
that in general relativity for modes with large k,
but the deviation is largely suppressed with the
expansion of the universe.
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5. Conclusions

Tensor perturbations in EiBl braneworld

@ We considered braneworld models in 5D EiBI theory.
The brane is generated by a scalar field.

@ Some regular brane solutions were found.
@ The TT tensor perturbation is always stable.

@ The zero mode can be localized on the brane, and it is
the 4D massless graviton on the brane.

@ So, the 4D Einstein gravity is recovered on the brane at
low energy.
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Thank youl!
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