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Review of Entanglement entropy(EE) and Rényi entropy(RE)
Replica trick

Holographic Entanglement entropy

Generalized gravitational entropy

Rényi entropy in AdS3/CFT,

Einstein equation from HEE

Conclusion and discussions
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EE

Entanglement entropy

Divide the system to be A and B such that H: = Ha ® Hp and
prot = W)V
Reduced density matrix: pa = trgpsor

von Neumann entanglement entropy: Sy = —trpalnpa

It is the entropy for an observer who is only accessible to A and not
to B
Simplest case: two spin system
Q W) =(Natlha)@(Ns+][1)s)/2=52=0
© Entangled state:
W) = (I Ma@ | he+[a®|1e+) = Sa = log2
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EE

Properties

e For a pure state |V), Sy = Sg, otherwise Sy # Sp

@ The thermal entropy could be obtained as a particular case of EE,
just taking A as the whole system

@ Subadditivity: Sa.g < Sa+ S
@ Strong subadditivity(SSA): Lieb-Ruskai 1973

Sarerc+ S < Sars + Seic (1.1)

@@
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EE

Physical implication

It is hard to be observed directly in Lab.

@ It has been computed numerically in CM systems: spin chains,
lattice models, ...

Encodes valuable information of the system: dynamical d.o.f.

Various applications: as quantum order parameter in CM,
characterize non-equilibrium states, ...

A bridge between gravity and QFT, in particular CFT (as we will see
soon)

A new window to study AdS/CFT correspondence, especially
AdS;/CFT,.
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EE

Rényi entropy

@ More generally one can define the Rényi entanglement entropy, or in
short the Rényi entropy, of A and B as

gm_ 1

log Trapfh.
A n—1 g 1TApA

@ It is easy to see that the entanglement entropy and the Rényi
entropy are related by
Sa = lim (.
A n—1 A

@ The relation provides a practical way to compute EE
(Recall that Sp = —trpalnpa)
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EE

Rényi mutual information

@ Choose two subsystems A and B which are not necessarily each
other's complement
@ Define the Rényi mutual information of A and B

=0+ s il

@ For n =1, it is called mutual information, which measures the
entanglement between A and B: two entangled systems are
correlated because they share an amount of information that is not
foreseen classically

e From subadditivity, we know /(A, B) >0
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The vacuum in QFT is highly entangled

Consider a QFT on a (d + 1)-dim. manifold R x M, where R is time
direction

Subsystem: a d-dim. submanifold A € M at a fixed time

In this case, the EE Sp is called the geometric entropy as it depends
on the geometry of AL sombelii ctal. 1986, M. Srednicki 9304048

Area(0A)

Sa = 76117—1 + subleading terms

where JA is the boundary of A, € is the UV cutoff and 7 is a
constant depending on the system

This suggests that entanglement between A and B occurs at the
boundary most strongly
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@ The area law is for the local QFT, could be proved rigorously for free
field theoriespienio et.ai. 20042005

@ It holds for both ground state states and finite temperature systems
@ It is violated for highly excited states

© Two exceptions: 2D CFT and QFT with Fermi surfaces

@ Volume law in non-local QFT shiba et.al. 2013

@ The Rényi entropy could be defined similarly

@ In a sense, the entanglement entropy is a generalization of " Wilson
loop”

@ It is really hard to compute in QFT, even for free field theory
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EE Replica

Replica trick

@ The standard way is to use replica tricks. cafian etal. 9401072

@ Here, we only focus on the 2D CFT, which provides more analytic
results

@ In Euclidean path-integral, the ground state wave-functional is
represented byFigures from T. Takayanagi's lecture in 7th Asian winter school

-
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1
I
I
I

N

Path integrate

Figure: cf. T. Takayanagi
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EE Replica

Replica trick Il

[IDA](vb: t=0

It (pA J'=

= a path integral over

n-sheeted Riemann surface X

h y
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EE Replica

Replica trick Il

@ Replica trick: computation in product orbifold (CFT),/Z,
@ Branch points: twist operators with dimension

@ One interval case
1

Tepls = (06, 05(0,0))c = et ~E(770),

from which the Rényi entropy for one interval could be reade. catabrese and

Sp=< <1+1> jog £,
6 n €
0',

J.L. Cardy 0405152

(C‘FT )/
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EE Replica

Multi-intervals

@ In the case of N intervals, there are more branch cuts so that the
Riemann surface is of genus (n — 1)(N — 1), where n is the number
of replica

o If we have multiple intervals A = [z, 2] U - U[zn-1, 22n],
Trpy = (0(zen, Zon)F(22n—-1, Z2n—-1) - - - 0(22, 22)5 (21, Z1)) -

o It is very difficult to compute (partition function on higher genus RS)

@ Nevertheless, in the case that the intervals are short, we may use
operator product expansion(OPE) to compute

Zg / z1 Zy 23 Z4
WL ot Y
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EE Replica

@ Even in 2D field theory, the computation is very difficult: partition
function on a higher genus Riemann surface

@ A few exceptions in 2D CFT:
o One single intervalC. Holzhey et.al. 9403108
c /
54 = < log -
A7 3 & €
where c is the central charge
o The situations of a compactified circle or an infinite system at finite

temperature
° Rényi entropyP. Calabrese and J.L. Cardy 0405152

c 1 L
Snfg (1+;) Iogg,

o A free boson on a compactified circle
o Ising model

@ In higher dim., very limited knowledge

@ Asking help from gravity, in the light of AdS/CFT correspondence
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HEE

Holographic principle in quantum gravity

@ Black hole entropy: (in Einstein gravity)Bekenstein-Hawking 1970s
3

GNFL
@ Holographic principle: quantum gravity in any volume is naturally

formulated in terms of d.o.f. on its surface, one per Planck area't
Hooft 1993, L. Susskind 1994

S_

Area(Horizon) (2.1)

Bin Chen, PKU Recent Developments in Entanglement (Rényi) entropy



HEE

AdS/CFT correspondence

Quantum gravity in AdS spacetime is dual to a CFT at AdS boundaryJ.
Maldacena 1997

@ A concrete realization of
holographic principle
CFT
@ A new definition of quantum e AdS
gravity
guanturm
tghaeung; gravity
@ Strong-weak duality: provides
new way to study the strong
coupling problem in QFT =
AdS/QCD, AdS/CMT etc.
conformal
houndary
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HEE

Holographic entanglement entropy

e AdS/CFT: A field theory could be holographically described by a
higher-dim. gravity

@ Ryu and Takayanagi(2006): Find a codimension two minimal
surface ¥ 4 in the bulk that is homogeneous to A

@ The entanglement entropy (for
Einstein gravity)

_ Area(Xa)

A= aGn ¢

@ The area law is reminiscent of

black hole entropy /
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HEE

Motivation of EE

The information in B
is encoded here.

+*-
~~._An observer

AdS

“d+2

in global Coordinate
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HEE

Remarks on HEE

@ RT formula has passed some nontrivial tests
@ Satisfies the area law from its definition
@ Reproduce one interval EE in 2D CFT
© Conformal anomaly
@ Obeys SSA: Saigic + Sg < Sats + Seic

[Headrick-TT 07]

A A
B = > Y v Y Y

= B ZBly )= 8,5t 80c28 npe T,
c C C
A A A
BEX =B >8[ = S, +5,..>8,+8S,
C G C
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HEE

Generalization

@ It has been intensely studied since its proposal

@ Covariant RT for dynamical spacetime: extremal surfaces in the
Lorentzian spacetime. If there are more than one extremal surfaces,
pick the one with smallest area. Hubeny et.al. 2007

@ In the presence of black hole: the minima surfaces may wrap the
horizon, in which the thermal Bekenstein-Hawking entropy
contributes to the EE, so that Sy # Sg

© Higher curvature case Huang etal 2011, de Boer etal. 2011

© High spin gravity de Boer etal. 2013, Ammon et.al. 2013

@ Central issue: how to prove it?

Bin Chen, PKU Recent Developments in Entanglement (Rényi) entropy



HEE

Proof of HEE

@ In 2+ 1 dimension, RT formula has been proven recently by T.
Hartman (1303.6955) and T. Faulkner (1303.7221) independently

@ Moreover, the quantum corrections to the HRE has been computed
in T. Barrella et.al. (1306.4682)

@ Such corrections have been confirmed by direct CFT computation BC
and J-j. Zhang (1309.5453)

@ In higher dimension (d > 3), it has been shown recently by A.
Lewkowycz and J. Maldacena (1304.4926) from generalized gravitational
entropy point of view (see also D.V. Fursaev (0606184) and H. Casini et.al.
(1102.0440))

@ The basic idea is related to the conical singularity method in
computing the BH entropy
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HEE

Black hole entropy

@ The Euclidean black hole ds? = r2dr2 4+ dr? + - -

@ 7 ~ T + 27 to make geometry regular
o Correspondingly the temperature is just T = Ty

@ A nice way to derive the Bekenstein-Hawking entropy is to use the
conical singularity method, which could be understood from the
replica trick
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HEE

Replica trick

e von Neumann entropy

S=—trplnp=—(0, — 1) Intrp"[r=1
o With the partition function Z, = trp”

S = —n0y(log[Z(n)] — nlog[Z(1)])n=1

@ Classically, the saddle point approximation gives In Z, = —1I,

@ In order to use the above formula to compute entropy, one has to
consider the spacetime with a conical singularity, 7 ~ 7+ 2wn

@ Near the singularity, the spacetime is a product C, x ¥, where ¥ is
the horizon surface. Near &
Rivpo = Ruvpo +27(1 — n)eu €p0ds

where n(;) are two orthonormal vectors orthogonal to the horizon
surface ¥ and
ny o p v M v
e = nigynigy — Ny
@ From the action of the classical solution, one may read the entropy
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HEE

Wald formula

For a general gravity action | = — fM dd“x\/EL, the black hole entropy
could be derived by using the same trick. This leads to famous Wald
formula

Sw :27r/ d?tyvh oL
b

= €€
nv€po
6R,ul/pa

@ Actually, in the case of stationary black hole, there is always a U(1)
Killing symmetry along 7 such that we are allowed to consider an
infinitesimal deficit angle

@ Only valid when the extrinsic curvatures of the embedding of X in
M vanish
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GGE GB

Generalized gravitational entropy(GGE)

e Different from BH, the boundary has no U(1) symmetry

@ One may still apply the replica trick to compute the entropyFursaev
0606184

@ Corresponding to the boundary manifold after n replica, there could
be a bulk configuration M,, which may be not well-definedHeadrick
1006.0047

@ The difference between smooth geometry corresponding to trap}
and the singular geometry resulted from orbifolding is of order
O((n — 1)?), due to Einstein eq.

@ Therefore Sgce = See

@ For Rényi entropy, one has to find smooth geometry, as we will show
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GGE GB

Generalized gravitational entropy Il

@ Instead of working with M,,, one may work directly with its orbifold
M,/ Z, directly

@ As the boundary of M, keeps the replica symmetry, after orbifolding,
it is the same as the original boundary

@ But in the bulk, the Z, fixed points form a co-dim. 2 surface ¥,
with opening angle 27w /n

@ Question: how to determine the ¥, especially at n — 1 limit?

DD
P-G-Q-
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GGE GB

Cosmic string(brane) method |

@ As n — 1, the spacetime is produced by a light cosmic string, which
induce a conical singularity
@ At the vicinity of a hypersurface, the metric could be locally

ds? = gadx®dx” + (hj + 2x* K(ay;)dy'dy’ + - --
with g, sdx®dx?® = (dx1)? + (dx?)? = dr? + r’d¢? = dzdz
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GGE GB

Cosmic string(brane) method |

There could be extrinsic curvatures for the embedding of ¥ in M,
Replica trick n = 1 + € with € being infinitesimally small
Conical singularity localized on ¥,

Squashed Conical geometry
ds® = 2P g sdx™dx” 4 (hj + 2x* K(a);j)dyidyj + -

with p = —elnr = =5 In(z2)
Expand around both € = 0 and r = 0, and focus on J,p ~ £ terms
in zz and zz components of Einstein equation

8n T, = 2K(z)8zp + -
87T Tzz = 2K(§)8§p —+ .-

This gives the minimal area condition K(,) =0, a=1,2
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GGE

Proof of RT formula

@ As in BH case, the nontrivial contribution to the EE is from the
boundary of ¥;

@ The Einstein-Hilbert action of the configuration gives RT formula

Ser — Area of X;
FET 4Gy

@ From the variation of the RT functional, we certainly obtain the
minimal surface condition

Bin Chen, PKU Recent Developments in Entanglement (Rényi) entropy



GGE

Motivation

@ In Einstein gravity, GGE = HEE
@ One interesting question: higher derivative gravity?
@ Such terms appear as o'-correction in string theory
@ For black hole, the entropy is given by the Wald functional, or
equivalently Jacobson-Myers functional
© However, for HEE, the situation is less clear
© It is even more unclear for GGE
e For simplicity, let us focus on Gauss-Bonnet(GB) gravity, even
though all the arguments could be applied to Lovelock gravity
without trouble

Bin Chen, PKU Recent Developments in Entanglement (Rényi) entropy



GGE

Gauss-Bonnet gravity

@ The action and the equation of motion are

1
leg = ———— d9+! R—2A+ AL
GB ]_67'('G “ X\/E[ + GB] +

Leg = R? — 4R, R™ + Ry pe R*P°

Ruz/ + 2A(RRMV — 2RMPRUP — 2Rpnguo’1/ + Rupa)\R,,poA)
1
_Egp,l/ [R — 2N + /\(R2 _ 4RpURPU + Rpa)\TRpU)\T)] _ 87TGTW,

@ There are at most second derivatives of metric
@ Black hole entropy from Wald formlula

Sce = i/ d? Yy Vh (1 + 20R)
4G Js

@ We call it Wald functional
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GGE GB

@ Definition of the projected curvature

m,u,upo’ = h>\ hl k% he R)\an

w'vlipta
R = 7R 00
R = "R,

@ The induced metric

huw = 8uv — N)NA) — NER)uN )
@ Black hole horizon has vanishing extrinsic curvature
@ Black hole entropy is just

See = i/ d¥tyVvh(1+2\R)
4G Js

@ R is the intrinsic curvature of X
@ It can be got from Hamiltonian method Jacobson-Myers 9305016
@ We call it Jacobson-Myers functional
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GGE GB

HEE in higher curvature gravity

The area of ¥ is expected to be replaced by another functional
Wald functional or Jacobson-Myers functional?

Or another functional with differences proportional to extrinsic
curvatures

It was not clear for general higher curvature gravity, few months ago

For GB and more general Lovelock gravity it was suggested that it
was Jacobson-Myers functional, rather than Wald functional, which
gives HEE

de Bore-Kluxizi-Parnachev 1101.5781, Hung-Myers-Smolkin 1101.5813

JM functional reproduced successfully the universal contribution to
EE for CFT, relating to the trace anomaly

Y could be not a minimal surface, what is it?
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GGE

> in Gauss-Bonnet gravity

@ The functional for HEE is

1 A
See=— | dyVh(1+2\R) + = / d?72y\/oK
4G Jx G Jos

The variation of the functional gives

Evaluate the functional at ¥ gives the HEE

The embedding of ¥ in M is given by x* = X*(y)
The induced metric on X is hj = 0;X*0; X" g

The extremal condition of the Jacobson-Myers functional for
Gauss-Bonnet gravity is equivalent to

. P
[h” — 4\ <R'f - 2Rh”>} Ka)j =0, a=1,2

(]

Setting A = 0 we could get the minimal surface condition
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GGE GB

Constraint equation from replica trick

@ Assume the metric near the string behaves as before
ds? = e gopdx®dx? + (hj + 2x*K(ayi)dy'dy’ + - --

with p = —elnr = =5 In(zZ)
o Expand around both ¢ = 0 and r = 0, and focus on J,p ~ f terms
in zz and zz components of Einstein equation

@ In the end, we obtain the constraint equation
N 1
[h” — 4\ (9‘{” — 29%”)] K)j =0, a=12

@ In maximal symmetry cases this gives minimal surface

o Compare with equation from Jacobson-Myers functional
W —ax (R — 2R0) | Koy =0, a=1,2
- D) (@) =Y *=4

@ They are obviously different for general non-minimal surface
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GGE

REMEIS

@ Obviously, the constraint equations from replica trick and JM
functional are different

@ In the case of static geometry, the difference between two constraint
equations becomes

ij jk i
—~2) [Koy Koy Ky — 3Ky Koy K + 2K )ikt Ko

@ This is consistent with the result from another groupA. Bhattacharyya

et.al. 1305.6694

@ When the cubic terms of extrinsic curvatures are much smaller than
the linear term, the difference is negligible

@ Our results do not contradict with the results in Myers et.al. 1101.5813

o It seems that GGE and HEE(Jacobson-Myers functional) are in
conflict in Lovelock gravity
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GGE

Regularized squashed cone

@ Come back to the metric:
ds® = e gopdx®dx® + (hj + 2x*K(ay;i)dy'dy’ + - --

with p = —elnr = =5 In(zZ)

@ It turns out that this “regularized” squashed cone metric is not
regular enough

@ It has curvature singularity near r =0

@ One has to make further regularization on the extrinsic curvature
partsFursaev et.al. 1306.4000

r2 4 b2n2

ds® =
° r’ 4 p?

42 4 27 (hy + " cos(r) K + " sin(r) K(ry3)

o With this regularized metric, the e.o.m. of cosmic string is exactly
the same as the one read from JM functionalA. Bhattacharyya et.al.
1308.5748

@ In Lovelock gravity, GGE = HEE!
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GGE

Further development

@ The key point in the above treatment is the regularized squashed
conic geometry near the embedded surface

@ The regularization factor before the extrinsic curvature is essential

@ More interestingly, with such regularization, people proposed the
functional for the HEE in other higher curvature gravity Fursaev et.al.
1306.4000, Xi Dong 1310.5713

@ In particular, the functional could be more conveniently written as
the Wald functional plus correction terms depending on the extrinsic
curvatures
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HRE

Rényi entropy in AdS3/CFT,

@ More analytic results for Rényi entropy in AdS3/CFT,

@ On gravity side, the configurations with replica symmetry at the
boundary could be constructed explicity

@ On the CFT side, 2D CFT is more tractable, and has been studied
for some time

@ The precise match is possible
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HRE

One-interval case

Conformal transformation:

wlil"L i Z — Zl
' 2z — 29

Z(M,,) ~ Z(sphere) 17

Almost but not quite!
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HRE HRE P

Rényi entropy of a single interval

@ Recall that
ds® = dzdz = ®*dwdw = e*?ds?

@ The partition function is
Z(ds?) = () 7(d3?)

where )
c
S = 5 (n — n) In(|z1 — z2|/€)

@ This is nothing but the Weyl anomaly
@ It leads to the Rényi entropy of a single interval

C

So=73 <1 + ,17) In(|z1 — 2| /e)

@ The similar idea has been applied to the computation of
semi-classical partition functions of various gravitational
configurations in AdS3 gravity Krasnov(2000), Zograf and Takhtadzhyan(1988)
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Another way |

L)) i s

(CFT )/

Zp,(ds®) =< o (21)0-(22) > |(cFryr) 2,

@ On a complex plane, < T(w) > = 0, therefore,

w-plane

c
T(2) >z-plane™ E{W’ z}

where the Schwarzian is defined as
w!!! 3 /w 2
w2 =0 =3 (W)
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HRE

Another way Il

@ As a result

i
n< T(2) >z-plane= Z (z—z, (z—z,-)
i=1,2

with

c 1 ___  2hy
h, = 12(” n), m= L ——

@ On the other hand

< T rbU+(Zl)0'_(22) >|
z-plane™ ~ _ o (z1)0_(2) > (CFT)"/Z,

n<T(z)>
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HRE

Another way IlI

@ From conformal Ward identity

he 0;
< Topo (1) (22) >= (> + <oi(zn)o_(z) >

’_ (z—=2z) (z—2z)

@ So we can identify
© The scaling dimension of twist operator: hy = hy, = 5(n—n"")
@ Accessory parameter:

2h,

Z1 — 22

1= % <op(zn)o_(z) >= (4.1)

@ Integrating the accessory parameter gives us the Rényi entropy!
@ This holds for the multiple intervals as well
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Proof of RT formula in AdS3: A sk

Bulk Solution?

L

Boundary
conditions

(not minimal surface
but actual 3d manifold)

Find the bulk gravity solutions B” such that 0B” =%,

Key point: all solutions of AdS3 gravity could be obtained by
BY = H3/T, where I, is the subgroup of isometry SL(2, C)
Consider the handlebody solutions, I, is the schottky group
I, acts on C such that C/T, =X,

@ The classical bulk action reproduces RT formula (for multi-intervals)
9S,  cn
82,' - 6 i

(4.2)
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HRE rescription  Application

Schottky uniformization

draw 2g circles and identify pair wise: 53(27 €)
C1 ~

Cm — Lm (Cm)
. L I', :freely generated

: @ by Li,La,... Ly
L,
@ Fundamental

Tlu, domain of quotient

Krasnov

Figure: c.f. Faulkner
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Bulk solutions

2 __ dri4dwdw

A cycles
contractible in bulk

B cycles generate
the L,,identifications

Figure: c.f. Faulkner
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In other words, the holographic Renyi entropy(HRE) is given by the
classical action of the corresponding gravitational configurations

v; is fixed by the monodromy problem of an ordinary differential
equation

For the same ¥ ,, there could be more than one B”
In the classical gravity limit, keep only the solution of least action

This formula is universal, even for other 3D gravity theory with a
AdS3 VaCUUIMCB et.al. 1401.0261

An independent proof by T. Hartman (1303.6955) used the CFT
techniques

The RT formula is the classical contribution to the HRE
Recall that in AdS3/CFT,, ¢ = 2L

In the large ¢ limit, we may discover the weak gravity result, even
with quantum correction

Why quantum correction?
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HRE cription  Application

Quantum correction

@ For large separation, the mutual information is vanishing

Jal B

@ The mutual information satisfies m. wolf et.al. 0704.3906

| <O0a-0p>—<0a>< 0>
2|0al?|08

I(A,B) >

@ /(A, B) is only vanishing to the leading order in Gy
@ It should be nonzero, with quantum correctionst. Faulkner et.al. 1307.2802

@ With the bulk solution in AdSs, the 1-loop quantum correction of graviton
to the Rényi entropy has been computedr. sarella et.al. 1306.4682

Bin Chen, PKU Recent Developments in Entanglement (Rényi) entropy



HRE

Classical part of HRE in f(R)

o Consider a general 3D gravity theory with a AdS3 vacuum,

1
I = R / d3X\/§£(guua v/u R;w) + Ibndya (43)
@ Without the gravitational CS term,

C_3£m/3
T 8G

(44)

where L, is the value of the Lagrangian density at the AdS vacuum.

@ Classical HRE 55
n cn
-4, 4.5
2, 57 (4.5)

@ In the case with CS term,

05, . _n(cL + CR) _
9z 0 "

(4.6)
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HRE ’re: Application

Two-interval case

o= tw
£ / /_. -
£ 7 w(z)

e Find the coordinate w(z), which is single-valued on M,

@ It is determined by the differential equation

*Z( (z—z)? Zjizl_>¢(z)—0 (4.7)

@ There are two independent solutions v and ),, and

Y1(2)
Pa(2)

w(z) =
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@ The solutions have monodromies:
1 — aYr + ba,ha — cipr + dipo,

=>w— L(w) =245 ad — be =

@ The accessory parameters are dete
monodromy at infinity and on eith

[T/
2 A\

g

Bin Chen, PKU

1
rmined by requiring trivial
er the A-cycle or B-cycle

/1\___/"
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For the case of two intervals with small cross ratio x, one can get the
classical part of the holographic Rényi mutual information to order

8
X" Faulkner 1303.7221, Barrella et.al. 1306.4682

/cl (48 (n—1)(n+1)?x? + (c+8)(n—1)(n+1)*x°
n 288n3 288n3

(c—}—E)(n—l)(n-&-l)Z(1309n4—2n2—11)><4
+ 41472007
(c+8)(n—1)(n+1)*(589n* —2n° —11)x° 49
+ 20736007 (4.9)
(c+2)(n—1)(n+1)*(805139n° —4244n° —23397n" —86n°+188 ) x°
+ 313528320n™

the terms proportional to x” and x® + O(x°).

The classical HRE has nothing to do with the asymptotic conditions. It
takes a universal form, depending only on the central charge.
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1-loop correction to HRE

@ The gravitational configurations for HRE are generated by the
Schottky group
@ Consider the fluctuations around these configurations
@ Pure AdS; gravity, only massless gravitons
© Higher spin gravity, higher spin fluctuations
@ For chiral gravity, only massless right-moving graviton
@ For log gravity, massless gravitons and log mode
@ For NMG, massless gravitons and/or log modes
@ The partition function, which is just S,, in these cases have been
studied before

@ For higher S, the strategy is the same.
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HRE

1-loop correction to HRE

@ As all the configurations are locally AdS3, we may use the heat
kernel method to compute the contribution

) 1—|00p partition functionciombi et.al. 0804.1773, vin 0710.2120

Z1-loop _ H H H |1 - qm| (4.10)

YEP s m=s

Here the product over s is with respect to the spins of massless
fields and P is a set of representatives of primitive conjugacy classes
of the Schottky group I'. g, is defined by writing the two

eigenvalues of v € I as g=*/? with lgy| < 1.

@ The contributions of the fields with different spins could be
separated.
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HRE

Strategy

@ Find the Schottky group I' corresponding to M,
o Generate P = {non-repeated words up to conjugation}, e.g.

P={l1, Lo, LT 157, Laly ~ Loly, ..}

Compute eigenvalues of these words and sum over their contributions

Two-interval case (—1, —y), (v, 1) with small cross ratio
x =4y /(y +1)?
@ Find ; by imposing trivial monodromy
@ Solve the equation for ¢(z) in |z] << 1 and |z| >> y
© Match the solutions and construct L;
© Only finitely many words contribute to each order in y
@ For two intervals with small cross ratio,
@ Metric fluctuations, up to x%garelis etal. 1306.4652
@ Spin 3 and/or 4 fluctuations, up to x® scetal 13125510
© Metric log mode, up to x5 Be etal. 14010061

@ One interval in the torus case, both low and high temperature sarei

et.al. 1306.4682
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Questions

Q1: Is the holographic computation of quantum correction of Renyi
entropy correct?

In the large c limit, such quantum correction should correspond to
the subleading terms independent of ¢

We showed that for two disjoint intervals with small cross ratio x,
the CFT result matches exactly with 1-loop HRE

Q2: how about the situation with matter coupling?

We discussed the case with higher spin fields

The results are remarkably good ...

Q3: how about other 3D gravity theories, CTMG or CNMG?
Quite interesting, all in good agreement
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HRE

HS/CFT correspondence

@ The higher spin theory in AdS3 is relatively easy

@ It could be defined in terms of Chern-Simons theory with gauge
group SL(n,R), describing the interacting fields with spin from 2 to
n;

@ With generalized Brown-Henneaux b.c., spin n gravity in AdSs has
W, asym. symmetry algebra, with the same central charge
CL =Cr = 3//2G

@ In our work, we considered

@ the spin 3 HS gravity, which is dual to a CFT with W(2,3) symmetry

@ the spin 4 HS gravity, which is dual to a CFT with W(2,3,4)
symmetry

@ the spin 4 HS gravity, which is dual to a CFT with W(2,4) symmetry
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HRE

Dictionary

@ massless graviton < stress tensor

@ massless spin 3 field +» W3 field with conformal weight (3, 0)
(holomorphic sector)

@ massless spin 4 field +» W, field with conformal weight (4, 0)
(holomorphic sector)
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Bulk computation

@ We focus on the AdS3 vacuum, which corresponds to the vacuum of
dual CFT

@ The gravitational configurations corresponding to the higher genus
RS due to the replica trick are the same as the ones in pure gravity

@ Therefore the classical HRE is invariant

@ But we must consider the other fluctuations in computing quantum
correction

@ This could be done using the heat kernel method
@ We computed the 1-loop correction to HRE to order x®
@ The difficult part is on the CFT side
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HRE HRE Prescription Application

Correlators in 2D CFT

@ In a 2D CFT, all the operators could be written in terms of
quasiprimary fields and their derivatives

o We write the quasiprimary operators as ¢; with conformal weights h;
and h;

@ The correlation functions of two and three quasiprimary operators on
complex plane C are

= = i0ij
<¢,‘(Z,‘, zf)¢j(zj7 zj)>C - z%ahl-igj.i,,- ’

i “ij
(9i(zi,z))pi(zj, Z) Pi( 2k, Zk)
_ G
T Thith—hy hjth—h; Pithg—h; Rtk —F i B Rk 0
Z.. Z. Z., Z.. Z. Z.,
if jk ik if jk ik

with z; = z; — z; and Z; = Z; — Z;.
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HRE

OPE in 2D CFT

HRE Prescription A

The OPE of two quasiprimary operators could be generally written as

¢i(z,2)¢;(0,0) = Z 3 ik ik 1

mAar
ml ¢l phith—h—mzhi+h— hk—ra 9"$x(0,0),
m,r>0

where the summation k is over all quasiprimary operators and

cm o

A = hy+hj—hj+m—1 5 = hy+hj—hj+r—1 Ck Ci
ijk — m ) ijk r ) j —

Y Chirm—1 U 2hytr—1 v Ak

with the binomial coefficient being ¢ = FOct)

T(y+1)F(x—y+1)"
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HRE  Prescription Appli

@ The replica trick requires us to study a orbifold CFT: (CFT),/Z,

@ The CFT, has central charge nc with ¢ being the central charge of
CFTy, and the stress tensors are

where T(zj), T(Z;) are the stress tensors of the j-th copy of the
original CFT and z; is the coordinate of the j-th copy of the
Riemann surface R, y.

21 Z9
p— [ [ ]
CFT oy o_
£ 4 (CFT)/Z.,
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HRE HRE Prescription A

Quasiprimaries in CFT,

We denote the linear independent quasiprimary operators of CFT, as
®y(z,z) with conformal wights hx and hx. The product of quasiprimary
operators in each copy forms a quasiprimary operator of CFT,,

n—1
q)K(Z»E) = H¢kj(zj72j)a
j=0
and in this case there are

n—1 n—1 n—1
K:{kj}, aK = Hakj, hK:thj, T‘IK:ZI_'I/V.
Jj=0 Jj=0 Jj=0

Note that not all of the quasiprimary operators of CFT, could be written
in the above form.
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HRE HRE Prescription Application

General prescription

When the intervals are short, we have the OPE of the twist operators

=\~ _ a? é;( 1 mar
0(z,2)5(0,0) = C"Z dk Z ﬁﬁma 0" dk(0,0),
K m,r>0

with the summation K being over all the independent quasiprimary operators
of CFT,. Here

m T
m __ ChK+m—1 =r __ ChKJrr—l
akK = T aKk = F -
2hi+m—1 2hy+r—1

@ For a quasiprimary operator ®x, the OPE coefficient is
Ck = cnﬁ_%("_%)dx,
@ The OPE coefficient of its derivatives ™9y is

—¢(p=1 EREED
C;(m,r) =l 6(" n)+m+rdK7K7K

ml rl*
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HRE HRE Prescription

Vacuum Verma module

@ For a concrete CFT model, the summation should be over all the
conformal blocks

@ For pure AdSs3 gravity, it is enough to consider the vacuum Verma
module

e From AdS/CFT, the graviton fluctuation corresponds to the stress
tensor in CFT which is in the vacuum module

@ Moreover, from the study of quantum gravity in AdSs, it has been
known that the pure gravity partition function could be reproduced
frOm the vacuum moduleMaloney and Witten, 0712.0155

@ For HS AdSs gravity, it is necessary to include the quasi-primary
operators from W fields
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HRE HRE Prescription A

How to compute the OPE coefficients

o For usual OPE, they depend on the three point functions

@ For the OPE of twist operators, we may just focus on the one
interval case, in the small interval limite. calabrese et.al. 10115482

@ When there is one interval A = [0, ¢], we consider the expectation
value of one quasiprimary operator ®(z,z) on R, 1, and then we
have

2 (e (2,2)r,, = (Pk(2,2)0 (L, £)5(0,0))c.

@ Using the OPE of twist operators and the orthogonality of
quasiprimary operators of CFT,, we have

1 A _F =
i = i M, 2 E (@2, D)),

with ak being a normalization coefficient.

@ The key ingredients in the OPE of twist operators is the coefficients
ak and dk.
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HRE Prescription A

Holomorphic quasiprimary operators in CFT;

Explicitly the holomorphic quasiprimary operators of first few levels are
listed as follows.

o At level 0, it is the identity operator 1

o At level 2, there is one quasiprimary operator the stress tensor T.

o Atlevel 4,itis O = (TT)— 20°T.

o At level 6, they are Q = (9TOT) — 20%(TT) + 50T and

R =P+ Srocias) Q with P = (T(TT)) - J02(TT) + 0°T.
@ At level 8, more complicated construction

We use the notation (AB)(z) representing the normal ordering of two
operators A(z) and B(z). Note that at level 6, P(z) and Q(z) are not
orthogonal. After using the Gram-Schmidt orthogonalization process, we
get the orthogonalized operators Q(z) and R(z).
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HRE HRE Prescription App

Normalization factor o

Firstly one define the state |k) = ¢x(0,0)|0), with |0) being the vacuum
state of the CFT on C, and then

= (k|K).

For example, for the operator O(z) we have

0) = (L2L2 - 2L4) 0),

c(5¢c +22)

10 '
Similarly, for other quasiprimary operators, their normalization factors are
respectively

and then

ap =

4 e _C . Ac(70c+29)
1= 4 T — 27 Q= 63 )
3c(2¢c — 1)(5¢ + 22)(7c + 68)

aR =

4(70c + 29)
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HRE HRE Prescription A

Quasiprimaries in CFT;

There are also the antiholomorphic quasiprimary operators T,0, Qand
R, as well as the quasiprimary operators with mixing holomorphic and
antiholomorphic parts. Explicitly, at each level Ly + Ly, we have

o At level 0, itis 1.

o At level 2, they are T and T.

o At level 4, they are O, Oand TT.

o At level 6, they are @, R, O, R, TO and TO.

Note that here the quasiprimary operators are just trivial multiplications
of the holomorphic and antiholomorphic parts, because that the OPE of
T and T has no singular terms.
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HRE

Quasiprimaries in CFT,

HRE Prescription App

The quasiprimary operators are listed as below.

Lo quasiprimary operators degeneracies #

0 1 1 1

2 T(ZJ) n n

4 T(z_ll) T(ij) with jl < j2 @ @
O(z) n

> Sjii(2) with 1 <o (1) 1)

T(zJI)T(ZJZ)T(ZJ3) with j1 < jo < J3 w
T(Zjl)o(zjz) With _jl 7£J2 n(n —11) X

6 U, (2) with j1 < o "("2— ) n(n+ g(n+5)
9(z) n
R(z) n
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HRE Prescription Application

Note that the j's listed above vary as 0 < j < n—1, and also the
operators

Sjljz (Z) = T(Zjl)laT(ij) - ’aT(zh)T(ZJz)v
Uyi(e) = QOT(5)0T(24) — o T(5)T(z) ~ o T(2:) T(zz)

can not be factorized into the operators at different copies.
The coefficients ay for these operators could be calculated easily

oarT = —Cz as =2¢%  «a = —C3
T — 4 I S = ) TTT — 8 I
c2(5¢c +22) 20c?
aTo = ————---:

20 @ M7 g
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HRE  Prescription Appl

The coefficient dy

To compute dkx we consider the multivalued transformation

2 f(2) = (2_15)1/",

z

which maps the Riemann surface R,1 to the complex plane C. With some
efforts, we find dk's for various operators listed above,

di=1 dT:n2—1 L2 1 i (n2_1)2
’ 12n2 "’ T ™ 8n%c sj‘. 144n2
1J2
do = (n2 — 1)2 L2 L G
288 7 S 16n°c 51-5- ’
1J2
b 1 1 2-1( 1 1 1 2 1)}
diF = T 822 52 52 + g6n6 <4+4 4) +7(r17728n6) )
€ 51250035 ¢ Shi Shis J1j3
T B S Gt Y ~ (n* —1)* (2(35¢ + 61)n* — 93)
TO ™ 96nbe st ' 3456m° T T 5760n5(70c + 29) ’
Here sj,j, = sin 7”01;1'2) and ¢, = cos 7"("1,,_j2).
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n Application

We choose the coordinate of the cylinder be z and the subsystem A
to be an interval A = [0, /] with ¢ < L.

The Rényi entanglement entropy of A is known exactly p. calabrese and J.

Cardy 0405152
c 1 L . 7wt
Sp = 3 <1 + n) log <7re sin L) . (4.11)

From OPE of twist operators

—<

Trp = (o(4,0)5(0,0)) = ot~ E("5) 3™ dye P (04(0,0))1,
K

Due to the translational invariance, the expectation value of one
operator on the cylinder (®«(z,Z)), must be independent of the
coordinates, and so the derivative terms vanish uniformly.
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HRE RE P on Application

Finite size correction

@ The holo. and anti-holo. sectors are decoupled, the computation
could be simplified more

2
TrpZ = Cng—%(n—%) <Z dKZhK <¢K(O)>L> ’
K

with K being the summation over all the linear independent
holomorphic quasiprimary operators.

@ In the end, we could find the Rényi entanglement entropy

1
S, = —1 log Trpa

< 1+1 o {7772@27 VA B T Al 40 g 8
5 n €c 7 6L2 180L* 2835L6 L))

which matches (4.11) to the order of O(£°).
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HRE HRE >n Application

Application Il: Two intervals with small cross ratio

We choose A =[0,y] U[1,1+ y] with y being small, and thus the cross
ratio is x = y?

Trpp = (o(1+y,1+y)5(1,1)o(y,y)5(0,0))c

_ 2 —5(n— (ZQKO'Z 2hk

m(m+p)!
Z (-) Tl KaKChK+m+p "
m,p>0

@ With the coefficients dx obtained before, the computation is
straightforward but tedious
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Application

Rényi mutual information

@ The Rényi mutual information is

I, log Trph,

n—1
_ I:ree 4 Inl—loop + /3_l00p 4o

c 1 y
(14 Z)log Z
3(—‘_n)0ge+

@ Here we have classified the contributions according to the order of
the inverse of central charge % which in the large c limit corresponds
to tree, 1-loop, and 2-loop contributions in the gravity side

Q /7% ~ O(c) terms
@ 117°% ~ O(c°) terms
@ 127°% ~ O(1/c) terms

@ After some highly nontrivial summations...
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HRE I re: n Application

Useful formulae |

Define .
e
1
fm(n) = 2m?
j=1 (sm ”J)
we need
("P=1)(n?+11
fi(n) = f(n) = L),
) 2n*4+23n?+191
fs(n) = ( 945 )7
(n —1) n?+11)(3n*+10n?+227
fa(n) = (- 121575 )7
(n®—1)(2n®+35n°+321n* 421250 +14797
fs(n) = ( 93555 )v
1 - n(nzfl)(n274)(n2+47)
s2.s2. 62 T 2835 ’

.= j1i2 i2d3 “iis
0<j1<p<z<n—1
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HRE tion Application

Useful formulae 1l

_ n(n*—1)(n*—4)(19n°+875n°+22317n"+505625n°+5691964)

Z ;
T4 4
Sivi Sinis Siva 273648375

0<1<pp<jz<n—1

1 n(nzfl)(n72)(n2+11)

1 1
E: (54. + o +54.>: %
J1J2 J2J3 J1J3

0<ji<jp<jz<n—1
2
) _ n(n?—1)(n—2)(n*+11)(3n* +8n°+26n+152n+531)

28350

0<j1<jp<jz<n—1
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HRE HRE P Application

Mutual information: classical part

The tree part, or the classical part, being proportional to the central
charge ¢, originates only from the vacuum module

Jtree _ c(n—l)(n+1)2><2 + c(n—l)(n-&—l)zx3
n = 14413 144n3
c(n—l)(n+1)2(1309n4—2n2—11)x4
+ 207360n7
c(n—1)(n+1)?(589n* —2n*—11)x°
+ 10368017
" c(n—1)(n+1)?(805139n® —4244n° —23397n* —86n°+188)x°
156764160011
+ (the terms proportional to x” and x®) + O (x9)

It matches the result in M. Headrick 1006.0047, T. Hartman 1303.6955,
T. Faulkner 1303.7221 up to order x3.
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Application

Mutual information: 1-loop correction from graviton

The quantum 1-loop part from the stress tensor, being proportional to

9, is

I(z)l,mop _ (n+1)(n*+11)(3n"+100°+227)x*
n - 362880017
(n+1)(109n°+1495n°+11307n* +81905n° —8416 ) x°
5087520007
(n+1)(1444050n"°+19112974n° +140565305n° +1000527837n* — 1677312550 — 14142911 ) x°
5230697472001

+ (the terms proportional to x” and x%) + O (x%) .

It matches exactly the result in M. Headrick 1006.0047, T. Barrella
1306.4682 up to order x&.
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Application

ual information: 1-loop correction in W;

The quantum 1-loop part in CFT with W3 symmetry, being proportional
to 9, is

I(2,3)1floop o

N = ...

n (n+1)x°(3610816n"° +47796776n°4-351567243n°4-2502467423n" —412426559n°4-10856301)
1307674368000n1

+(the terms proportional to x” and x%) + O(x?),

I(2)17/oop

e the “-." being the x* x® parts of

@ The extra contribution starts to appear from order x°, as the
conformal weight of Wj field is three

o It exactly matches the 1-loop correction to HRE to order x®
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Application

Mutual information: 2-loop correction

Remarkably there is also the quantum 2-loop contribution, being
proportional to 1/c,

(n+1)(n*—4)(19n°+875n°+22317n" +505625n"+5691964)x°
7005398400001 c

+(the terms proportional to x” and x®) + O (x9),

2—loo,
[5—1oop

This is novel, expected to be confirmed by 2-loop computation in gravity

@ When n = 2, the two-loop correction is vanishing, as S, is 1-loop
exact

@ When n > 2, there should be nonvanishing 2-loop correctionxi vin,

0710.2129
@ The extra contribution from Wj field appears at order x®

@ Actually there is nonvanishing quantum 3-loop contribution, being
proportional to 1/c?, for S,,n > 3.
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HRE in AdS3/LCFTy

@ No local physical d.o.f. in 3D Einstein gravity;

@ To have local gravitational degree of freedom, one may add
higher-derivative terms;

@ A simple choice is to add a gravitational Chern-Simons term, which
is parity breaking and topological:speser ctal. 1082

1 v g 2 g T
ICS = Z/d?’xv—ng)\ﬁt I";\J <6M|_pu + 3I_W|_Vp)
@ The AdS3 vacuum
ds? = 12— (dx")" = (dx")” — 2cosh(2p)d* dx~ + dp?).

@ The linear fluctuations around the AdS3 vacuum obey a third order
differential equation

o If jul # 1, there are two massless boundary gravitons ht, h® and a
local massive graviton hV.

@ However, 3D TMG in AdSs is not well-defined for generic value u/,
either because of the instability or negative energy for black hole;

@ At the critical point pu/ = £1, 3D TMG in AdS3 could be
well-defined
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HRE in AdS3/LCFTy
Chiral gravity

@ Both local mode and left-moving graviton are just pure gauge at the
critical point;

@ The only physical d.o.f. is the right-moving boundary graviton;

o Conjecture: chiral gravity is holographically dual to a 2D chiral CFT
by imposing self-consistent Brown-Henneaux B.C.;w.Li, w.Song and A. Strominger

1998

3/
=0, R=

@ The Brown-Henneaux B.C.

hyr =0(1) hio=0(1) hy,=0(e™?
h_+ — h+_ h__ O( ) h_p - O(ei2p)
hp+ = h+p h = h hpp = 0(672”)
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HRE in AdS3/LCFTy

Log gravity

@ There is actually a logarithmic mode at the critical point crumier et.al. 2008
. hM —pt
h'°e = lim —————.
pul—1 /1/ -1

@ Such mode has been excluded by Brown-Henneaux b.c.;

@ However there exists another set of consistent boundary conditions,
which include the log. mode

hiy=0(1) h,o=0(1) hy,=0(e?)
hoy=hi— h_=0(p) h_,=0(pe ) |,
hpr =hyp  hpo=h_,  h,,=0(e”%)

@ It has been conjectured that under this set of B.C., the CTMG at the
critical point is dual to a Iogarithmic CFT. Grumiller et.al. 2008, A. Moloney et.al. 2009

@ The quantum gravity is defined with respect to the asymptotic
boundary conditions
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HRE in AdS3/LCFTy

New massive gravity at critical point

_ 1 3 1 Qv 3 2 2
S= 167rG/dX V g[UR+m2(R#VR 8R) 2 m<],

@ Various vacua, here we focus on the AdS3
o In general, two massless graviton ht, hR and two massive ones h™+
@ At the critical point
2m?l? = —o,
the massive modes h™* coincide with the massless modes h- and
hR, and there appear the left- and right-moving logarithmic modes

lo, lo,
hl_ 3 and hRg Y. Liu and Y.-w. Sun 2009, D. Grumiller et.al. 2009

@ Brown-Henneaux B.C.:

3/ 1

CL=Cr = m(a + 2/2m2)'

@ At the critical point, Log. B.C. to include the left- and/or
right-moving log mode
© At the critical point, the central charges are vanishing
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HRE in AdS3/LCFTy

HRE in TMG and NMG

@ The classical contribution is given as discussed before

9S, _ n(cL+cRr)

0z, 1 "
@ The 1-loop correction is up to the fluctuations
o For example, in TMG the 1-loop thermal partition function is

oo o0 oo

11
ZTMgop H |2 H H aﬁr

r= 2 m=2 m=0

@ Similarly the 1-loop correction to HRE is

o8 Zite” =~ 3 Y g (1 )3 Y00 " o1 - a7a?).

~EP r=2 YEP m=2 m=0

@ For NMG, even the central charge is vanishing such that the
classical HRE is zero, the 1-loop correction is not vanishing
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HRE in AdS3\‘LCFT3
CFT side

@ For chiral gravity, only right moving sector of a CFT is needed. The
computation could be read from known results

@ For log. gravity case, we need to treat a special kind of
CFT—logarithmic CFT with ¢ =0

@ We introduce an extra primary field in an ordinary CFT and taking
¢ — 0 limit

@ This allows us to construct the quasi-primary fields and compute
OPE of twist operators as before

e Finally, we find consistent pictures in both CTMG/LCFT and
CNMG/LCFT correspondence
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1st law of thermodynamics

@ Consider the variation of the state |¢) >— | > +4]y >
@ It induces the variation of EE:

0S4 = 71’!‘(5/)/4 In pA) =5 < Hp > (61)

where Hy defined by pa = e "4 is called modular Hamiltonian or
the entanglement Hamiltonian.

@ The above relation could be taken as the quantum version of the 1st
law of thermodynamics Blanco et.al. 1305.3182
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Other
Linearized Einstein equation

What's the implication of this 1st law on gravity?
Consider the CFT with AdS gravity dual
Focus on the case that A =ball

If the initial state is the vacuum state |0 >, corresponding to pure
AdS, then the small perturbation |¢) > corresponds to the pure AdS
with perturbation

/2
ds®> = ;(dzz + dxtdx, + 29 H,,, dxtdx") (6.2)
Then the 1st law §Sg = dEg = Linearized gravitational

€qUatiONSLashkari et.al. 1308.3716, Faulkner et.al. 1312.7856

Similar story for higher curvature gravities
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Conclusion
Conclusion

@ Rényi entropy and its 1-loop quantum correction in the AdSs3 gravity
shed new light on the AdS3;/CFT, correspondence

@ We developed the short interval expansion of twist operators by
considering the derivatives of the quasiprimary operators, in the
ground state of CFT

@ This allowed us to get the subleading contributions of Rényi entropy

@ To order 8 in the short interval expansion, we reproduced exactly the
classical and 1-loop quantum contributions to the Rényi entropy,
even in the theory with higher spin charges

@ In the context of AdS3/LCFT, correspondence, we find consistent
picture from the study of Rényi entropy

@ Strong support of holographic computation of EE and RE, even with
quantum correction (beyond RT formula)

Bin Chen, PKU Recent Developments in Entanglement (Rényi) entropy



Conclusion
Discussion

@ Rényi entropy opens a new window to study the AdS;/CFT,
correspondence

@ In the case of two disjoint intervals, the Rényi entropy S, is just the
partition function on a torus with a modular parameter. This
partition function corresponds to the 1-loop determinant of physical
fluctuations around the thermal AdS space.

@ The higher Rényi entropy S,,, n > 2 present new challenges and
criterion? Our studies seem suggest that once the genus-1 partition
function is in match with the 1-loop bulk partition function, so do
the higher Rényi entropies S,(n > 2) at least to 1-loop. A general
proof?

@ What's the CFT dual of quantum AdS3 gravity e witen 1088, 5. Carlip 050302, A.

Maloney and E. Witten 0712.0155
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Conclusion
Discussion

o First of all, it would be interesting to compute the Rényi entropy of a
concrete CFT model, considering the limited knowledge on this issue

@ Higher loop corrections around the gravitational configurations
whose boundary is of genus greater than one?

@ Rényi entropy in excited states or thermal case work in progress
@ Quantum quench?cardy et.al. 2007,2014, S. Das et.al. ...

@ It would be nice to generalize our study to the case with more than
two intervals

@ It is certainly important to generalize our prescriptions to higher
dimensions
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Conclusion

Other topics

@ How the spacetime emerge? Entanglement renormalization ?swinge 2000,

Raamsdonk 2009, Lee 2009, Wall et.al. Takayanagi et.al. ...
@ The non-linear dynamics of gravity from thermodynamics of EE?

@ The entropy of "hole” in spacetimede soer etal. 2013, Myers et.al. 2014
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Thanks for your attention!
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