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Overview

- Wall Crossing Phenomenon
- Coulomb and Higgs phase: Particles V.S. Quivers

- Intrinsic Higgs States and Quiver Invariants
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- For a massive state with mass M and central charge
Z = e'9|Z|, define
+ _ 1 —i8/2 N1 02 1 p As~1A2B
Re = (e7%20) + %ot PM~ 0%) .

The non-vanishing anticommutator is

{RZ.RZ} =, PuM™ M F1Z)) .

Under SU(2)g, (R;—’, 0;'/§.3l3”/\/1*1 I_?J—’B) transforms as a
doublet

RE — cos ¢1 P RE & sin ¢ e“/)zagBP“Mq/_?iB.
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- In the rest frame

{Re R} =T1,5M=|2Z]).
(Rg, IaBI_?iB) transforms as a doublet Under SU(2)g.

> M>|Z|: Long-rep L;, [j]® (2[0] + [5)) ® (2(0] + [3])
» M=|Z|: Short-rep S;, [j]® (2[0]+[}]), invariant under R*, R*

- The index of BPS spectrum

Q, =T, ((=122) = = 3T, (1))

"Tr" * ignore the center of mass half-hyper contribution
BPS multiplet S;: (—1)%(2j + 1)

No contributions from long-rep: e.g. 259 + 51j < L.
No contributions from multi-particle state

Vv V VAV,



- The refined version: Protected spin character
S _1\253,,2(53+h5)
Qy(y) = Ty, ((—1)2y20+)

» It is an index since there is a Femionic operator
O = €4,0% which is a singlet under /3 + 5, anticommutes
with (—1)F , and is invertible on long-rep.

» BPS multiplet S;:

» No contributions from long-rep since Q is invertible on
long-rep.
» No contributions from multi-particle state
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- Moduli space: the space of vacua in the N = 2 theory,
described by certain parameters, e.g.

u = (¢

- If no states enter or leave the Hilbert space, the structure
of the spectrum changes continuously under continuous
change of the parameters.

- Therefore, Q is an invariant in the whole moduli space?
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Where is the Wall?

- Q is invariant under any (continuous-)deformations of ’Hl,.

- Q) could change when Hl, mixes with multiparticle
spectrum, e.g.

(210] + [5Dp ® (2[0] + [3])-p — [1/2]® (2[0] + [3])
- Two inequalities:

M > My + M, = |2, | + |2,
M = |ZV1+V2| & |ZV1 +ZY2| < |ZV1| I |ZV2|

- The wall of marginal stability locates at Z,/Z,, € R*



Wall Crossing phenomenon

- N =2 pure SU(2) SYM in 4D

2,0)
(2n,1)
(2n+2,-1)

- How to describe the jump?
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Kontsevich-Soibelman’s Magic

- Twisted torus algebra
Xn Xy = (=120 1

(v1,¥2): Schwinger product of charges
- Automorphism of twisted torus algebra

Ko X Xou(1 = X )70

- Co-dimension one locus: C, = (u, arg(—Z,(u))

- Wall-crossing formalism

A(P) = |_| K;_‘-Q(V) =g
G



Kontsevich-Soibelman’s Magic

- Examples:
> (v y2) =1

Ky, Ky, = Ky, Kyi+y, Ky,

Argyres-Douglas A; theory
» (vi,v2) =2

K,y - Ko,
= Ko - Ko - Kayy - Kgj)

N =2 pure SU(2) SYM in 4D

. Kig—1) - Kia,—1) - Kig, -1y



A Proof by Physicists

- Adding a very heavy extenal BPS particle with argZ = 6:
Lo = exp [i/c/t (Ao +e 0+ ei9(7))]
- The Hilbert space is modified:
Moty Oyllo) =T, ((=1%)

- BPS bound: M > Re(ef®Z,)

- Any BPS state is a bound state of Lg and BPS particles in
the original theory.

- The bound states appear/disappear when 6 crosses
—argZy,.

- The bound state configuration is decided by the balance of

classical forces
(Vhr Vc>

= 2imle®Z,,]



A Proof by Physicists

- Let Fr, = Y, Q,(Lo)X,

= — d ’ { "a "
When 6 crosses —arqgZ,,, F, is transformed by

Xy = Xy(1 = Xy ) Ommtr-ve)

+0
Itis Ky, ™!
- Travel along any closed loop, F;, must come back to itself.

- If the theory has "enough" line operators Lg, we will have

+Q
[ <00 =1
CV



Microscopic origin:

- A BPS one-particle state is generically a bound state
consisting of more than one charge centers, which are
spatially distributed according to balance of classical
forces.



Microscopic origin:

- A BPS one-particle state is generically a bound state
consisting of more than one charge centers, which are
spatially distributed according to balance of classical
forces.

- Wall-crossing: the size of such bound states become
infinitely large as a marginal stability wall is approached,
e.g.

(v1,v2)
2l m[Zy1 Zy,]

R ~



Low energy dynamics of BPS States

- Can we computing Q, based on the bound states picture?

- Starting from a set of known BPS states with charge y; as
a basis set

» The charge y of any given BPS state can be written as
y =2 nivi(ni € ZF)

- The low energy dynamics of n; i-type BPS states is
described by a Quantum Mechanics with four super
charges, with SO(4) R- symmetry coming from SO(3)
spatial rotation and SU(2)g in the 4D N = 2 theory.

- A BPS bound state with charge y =) ; n;y; is related to a
SUSY invariant vacuum of the system.

- The corresponding refined BPS index is

Q(U) s TFQM (_1)213g2(/3+/3))



The Coulomb phase dynamics

- The Coulomb phase description: BPS particles interacting
with Lorentz force

- Written in N’ = 1 superspace
oA = x4 — gy, A =it + iob”

then add the N/ = 4 SUSY Constraints by hand
- Kinetic term
By = / de(ggggoqﬂjcbf — 1hagN' DWB — iffdOA5 + L cibe DO2DOE DOE
+ 555 DOIDOENE + L mGs  PANBAC + L lapc NP ABAC

20

N =4 SUSY Constraints: all the couplings are decided
by a single function L, e.g.

e



The Coulomb phase dynamics
- Lorentz interaction between dyons:
L= / dO (ICA(PIN' — DWaq (D) DDA")
N = 4 SUSY constraints

04K = 3 €avc (0asWne — 03 Was)
€apc0a08Kc = 0, 04498aKc = 0.

- The N' = 4 SUSY constraints implies

Wiy = Z <VAZYB>WDrraC( > )—(>B)
B

0= etz etz Ly 0

- The scalar potential V ~ K?
= The moduli space M, = ({x* | Ka =0} — R3) Il



The Coulomb phase dynamics

- The R symmetry is SO(4) = SU(2). x SU(2)r. SU(2), is
the rotation group, while SU(2)r is descendant of SU(2)
R-symmetry of the underlying 4D N = 2 theory.

» The generators:

PN +Z( £ Catel [ Ac]_j[JJAaI;\A])

> (—g cabe [, 7]+ 5 [L//*“,ﬁ/*])

A

la

» XA (3,1); ¢ = {¢Y, X} and super charge Q,: (2,2).

- MPS formula:
The index is given by a sum of fixed point contributions.
Due to the y?5 factor in the index, the fixed point
configurations are the solutions of 4 = 0 with all
particles aligning on the z-axis.

- An observation: all the known Coulomb branch BPS states
are SU(2)g singlet.



The Higgs phase dynamics: Quiver Theory

- The Higgs phase description: Quiver quantum mechanics

- Quiver: Nodes+Arrows

V3

1 Y12 L a0 0203 40301
Q W = Cmnp(l)m by (I)p

» Node v: a U(N,) vector multiplet (A,, X, A,, D,); a FI
parameter {,;

» Arrow s(v — w):a bifundamental chiral multiplet
(¢°, ¥*, F®), in the (N,, N,) of U(N,) x U(N,);
Number of arrows=(y,, y,,)

» Closed loop: a superpotential



The Higgs phase dynamics: Brane picture

- The N = 2 theory: Type Il on a CY3

- The BPS particles: The D-branes wrap on a
supersymmetric cycle

- {y1, y2): the intersecting number between two cycles

- U(N;) nodes: a basis of the cycles wrapped with N;
D-branes

- Bifundamental fields: open-strings attached between two
D-branes on different cycles



The Higgs phase dynamics

- The R symmetry is SO(4) = SU(2). x SU(2)r. (Q1, Q2)
transforms as a doublet under the rotation group SU(2),,
and (Q1, (_21) transforms as a doublet under the SU(2)r
which is descendant of SU(2) R-symmetry of the
underlying 4D N = 2 theory. Especially, /5 can be
identified as the overall U(1) on Q.

- The moduli space: a Kahler manifold

M = {(/)a | g(‘/;l; = Z (/)a'/"(/)a_Z Oa(/)a'i' . CV}/l_l U(NV)

a.—v av—

- On the moduli space, the rotation SU(2) is identified as
the SU(2)Lefschetz

Ly=(—-d)2, Li=KA, L_=KJ

It is acting on the cohomology H(M) = @, H'(M) and
d = dimeM.



The Higgs phase dynamics

- Acting on HP'9(M), the overall U(1) generator £ is
identified as

=(p—q)2
Obviously, [, L123] = 0.

- The protected spin character is computed in the Higgs
phase as

QHiggs(_Lj) = (_1)2L392L3+2/3
= ftr (_1)l—dy [~d+p—q
tr (_‘| )P+q—dy2p—d



Quivers with oriented closed loops

- For
- For
>
|

quivers without oriented closed loop, Q¢ = Qpy
quivers with oriented closed loops,

Q¢ # Qp in general.

The scaling solutions in Coulomb phase make the moduli
space non-compact. The naive fixed point formulae is
divergent at y = 1. The MPS formula with a minimal

subtraction scheme which is consistent with wall-crossing
was proposed.

» Superpotential appears in Higgs phase.
» Both phases share the D term data ¢, = Im(e=Z,), but

only Higgs phase contains the data of superpotential.
Coulomb phase index is related to the ambient space
X={¢"| }_¢T¢° =3 ¢°0"" = [ UN)
a:—v av— v
of Higgs phase moduli space M?
In the N = 2 supergravity, Qy — Qc is related to the index

of single centered BPS black holes which are always
angular momentum singlet.



Conjectures

- Conjecture I: In the k-th branch of the moduli space

QY o) = (—y) "% Di(~y)

iy, (H(Xk)): pull-back of the ambient cohomology;
di: thecomplex dimension of Mj;
Dy (x): the reduced Poincaré polynomial

Dy (x Zx dim [lM (Xk))]

- Conjecture IlI: The Intrinsic Higgs states in
H(M) — i}, (H(Xk)) are essentially depend on the middle
cohomology. The corresponding index

(=) xee_ 2 (M) — (—y) ™% Dic(—y)

is a branch independent invariant of the quiver.
L p,g Tp. A - . :
Xe =2, 2 q(=1)9hP9 &P: the refined Euler character



Abelian Cyclic Quivers

- Cyclic (n + 1)-Gon:



Abelian Cyclic Quivers

- D-term conditions

|ZoaP =12 = &,
ZP-1zP = &,
|Z”|2 I |Z”+1 |2 = Cn+1 ’
- Superpotential
aiq a1
B B BH
W= Z e Z 631/32“~B,1+1Z1( 1)ZZ( D Z:(7+1+1) ’
B1=1 Bn+1=1

- Branches: One of the Z; vanishing
» 1. Generic cg,g,.-g,., = generic F-term algebraic equations.
» 2. F-term conditions have scaling symmetries Z; — A;Z;.
= No solution to F-term conditions with all Z; nontrivial.



Abelian Cyclic Quivers: iy, (H(Xk))

- k-th Branch: Zf-(:, ¢G>0, Z{:kﬁ (<0
- Ambient space

Xe = CP— 1 x ... x CP%1~1 x CP%+1~1 x ... x CPon+1~"

- The ay F-terms dz W = 0 define a complete intersecting.
: . 1
The complex dimension dy = Z?ﬂ a;—2d, —n .

- For the ambient space, H”'q(Xk) with p # g are null, and

Hl#k
P[Xi(x) = W Z b2(Xk) -
- Lefschetz hyperplane theorem:

HP9(My) with p # g, p + g < d are null

Dix) = ba(Xe) - x4 ) baulXe) - (¢ + x*47)
0<2l<dy



Abelian Cyclic Quivers: QCoulomb(J)

- MPS Formula

n+1
Y ai—n
(==

Q(k)
(y—y=)n

Coulomb (U)

n+1

- K 2 aisign[zi—zi41]
Gly) + (=1)"Gely™) =Y s(p) y= .

p
Zi — Zit1 Zit1 — Zit2
M = a; 3t din
|zi — Zi| |Zis1 — Zis2|
Zi+1 — Zi+2

M1 = Mip1,; = —digq ¢
|Zi+1 e Zi+2|

- The subtraction polynomial

Hiy)= Y Ay',

0<l<n
=y 1+ oye2z

[Gily) + (=1)"Gily™") + Hily) +

(=1)"Hily™)]

s(p) = sign[det M],

the coefficients A; are decided uniquely by requiring that

Q

COLIlomb( y) is finite when y = 1.



Abelian Cyclic Quivers: QCoulomb(J)

- The index is invariant within each branch, so that we may
pick a particularly convenient set of Fl constants and
simplify the problem.

- At = —Cx+1 > 0, ¢, =0(i #+ k, k +1) the fixed points are

a a; .
|Zk—Zk+1|=?k. C|IZi—Zi+1|=p+7( (Hék),
Z sign[z; — zi41|—— + sign[zx — zk+1]— Z(z,- —z41)=0
i#k p+ c P i
- The fixed points contribution is
Y aiti—ay
Gly) = Z [l_lti] (Zﬂlf —Clk) &L
{tipr=21} ik i#k
1 for x>0
SIS
0 forx<o



Abelian Cyclic Quivers: Proof of conjecture |

- Uniqueness of the Hy was guaranteed by three
requirements: reqularity of index at y = 1, definite parity
of G, and parity of Hy coinciding with that of Gk.

- The first conjecture is equivalent to

= y”Ck(Uq) = <ydk |_| (1 . y2a,-))

ik

y"Gily™)

nonpositive nonpositive

- Proof:

y"Gily™)

nonpositive

=3 aiti+a
- v ¥ [ o T atma)s
{tigk=21}  i#k i#k nonpositive
— Y ajti+ag+n
= ¥ [ e(Tati-a=n)y =
{tip==1}  i#k iFk nonpositive

- U”CI<(U_1) .



Abelian Cyclic Quivers: H(X)

- The Adjunction formula:

( A‘Il" )ai 1= e_Zi#k‘/i =
I_l 1—eli Z[;ékji

1 —Jiyai 1 B
che(T*My) = Zch(/\PT*Mk) P — |:|_| ( "'1{:’5 ) :| . (1 + fom Lok )

P i#k

td(TM) = l

where J; is the Kéhler form from each CP%~" factor in X.

- Applying the Hirzebruch-Riemann-Roch formula

Xx&(Mk)

/ td(7 M) - che(T* M)
My

= /thcI(TMk) cha(T*My) - (;J:)

. 1*/ |_|(j.1+567/i)a[ [ 1 e i
IR RS S TRe ! 14 &e Lk

i#k




Abelian Cyclic Quivers: Proof of conjecture Il
- Let w; = e,

nggs(y) e ( _/) 'XE**J (Mk)

. ( 1)dkLﬂk|—|J

i#k

( J)n+2 Y ai |_|% 17@/2‘4)[ a; : 1
(y2 =1 P 121:1 [ 1— w; 1—y?[]; wi

[S S -~ gu;(fak ,C,kJrak g —y
= Q(Hl)ggs(J) Q(Hl;gs(g) = (=1)d? M -
o= ke 7Y

- From the expression of Gi(y), we get
Gi(y) + (=1)"Gily™") = Giely) = (=1)" Gy ™)

U — —1\n
( 1)[]}(71 gakfa,(/ _ é(/{akJr‘{W ) ya, —y@
y—y- o

(k) (k)
Coulomb(J) QCoulomb(U)

gl Q)

nggs(y) Coulomb (4) is independent of k.



Numerical illustration

- 3-gon with a1 =4,a02 =5,a3 =6

26

26 .



More general quivers

- Ambient space: maximal reduced quiver without loop
The branches for a multi-loop quiver are described by the
non-empty branches of its maximal reduced quiver without
loop, e.g.

» Vanishing of the edge 31: 65 >0, 6, <0.
» Four different branches depending on the sign of 6, and 6,4



More general quivers

- Abelian quiver: Toric data, easy to deal with
- How to deal with nonabelian gauge group?
» Fully Abelianize varieties X of the nonabelian varieties X

» Additional insertion:

e.g. for a single U(n): |_|,-<j T=U=J)
i—Jj



More general quivers

- Coulomb phase computation: MPS type of partition sum

Lo BT A,

- A one to one map for cases without intrinsic Higgs:

mll e C L B .
1—(]i—/j)2_1 1_(ji_jj)2_1+5lj
N
c(A)

= 14(012+013+023)+(012013+012023+013023+012013023)



Su mmarty

The relation between PSC in 4D N = 2 theory and refined
index in N' = 4 QM.

Proof of the two conjecture about the Coulomb phase and
the Higgs phase indices for cyclic quiver.

- More general quivers:

» The basic way of computing Higgs cohomology is
established
» Certain smart improvement is needed

More future directions:

» Can we directly compute Qju¢rinsic, €.9., by localization...?

» The relation between Q¢rinsic and black hole entropy

» Whether and how Kontsevich-Soibelman algebra know
about the quiver invariants?



IThank You!



