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Overview

- Wall Crossing Phenomenon
- Coulomb and Higgs phase: Particles V.S. Quivers
- Intrinsic Higgs States and Quiver Invariants



Wall Crossing phenomenonCertain quantity changes discontinuously across acodimension-one wall in a space



Wall Crossing phenomenon

BPS index changes discontinuous across the wall of marginalstability in the moduli space of a supersymmetric theory



BPS index
- 4D N=2 SUSY:

QAα (A = 1, 2;α = 1, 2) , (
QAα
)† = Q̄Aα̇ , QAα = εαβQAβ ,

{QAα , Q̄Bβ̇} = 2σµαβ̇PµδAB , {QAα , QBβ } = 2δαβ εABZ .Bosonic symmetries: ISO(1, 3)× SU(2)R × U(1)R .

- For a massive state with mass M and central charge
Z = eiθ|Z |, define

R±α = 12 (e−iθ/2Q1
α ± eiθ/2σµαβ̇PµM−1Q̄2β̇) .The non-vanishing anticommutator is

{R±α , R̄±β̇ } = σµαβ̇PµM
−1 (M ∓ |Z |) .

Under SU(2)R , (R±α , σµαβ̇PµM−1R̄±β̇) transforms as adoublet
R±α → cosφ1 eiφ3R±α ± sinφ1 eiφ2σµαβ̇PµM−1R̄±β̇ .
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BPS index
- In the rest frame

{R±α , R̄±β̇ } = Iαβ̇ (M ∓ |Z |) .(
R±α , Iαβ̇R̄±β̇

) transforms as a doublet Under SU(2)R .

I M>|Z|: Long-rep Lj , [j ]⊗ (2[0] + [ 12 ])⊗ (2[0] + [ 12 ])
I M=|Z|: Short-rep Sj , [j ]⊗ (2[0]+ [ 12 ]), invariant under R+, R̄+

- The index of BPS spectrum
Ωγ = Tr′Hγ ((−1)2J3) = −12TrHγ (J23 (−1)2J3)

I "Tr’"Õignore the center of mass half-hyper contribution
I BPS multiplet Sj : (−1)2j (2j + 1)
I No contributions from long-rep: e.g. 2S0 + S 12 ↔ L0.
I No contributions from multi-particle state
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BPS index

- The refined version: Protected spin character[D. Gaiotto, G.W.Moore and A. Neitzke, 10’]
Ωγ(y) = Tr′Hγ ((−1)2J3y2(J3+I3))

I It is an index since there is a Femionic operator
Q = εAαQAα which is a singlet under J3 + I3 , anticommuteswith (−1)F , and is invertible on long-rep.

I BPS multiplet Sj :
(−1)2j yj+1 − y−j−1

y− y−1
I No contributions from long-rep since Q is invertible onlong-rep.
I No contributions from multi-particle state



Moduli space

- Moduli space: the space of vacua in the N = 2 theory,described by certain parameters, e.g.
u = 〈φ2〉

- If no states enter or leave the Hilbert space, the structureof the spectrum changes continuously under continuouschange of the parameters.
- Therefore, Ω is an invariant in the whole moduli space?
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Where is the Wall?

- Ω is invariant under any (continuous-)deformations of H1
γ .

- Ω could change when H1
γ mixes with multiparticlespectrum, e.g.

(2[0] + [12 ])p ⊗ (2[0] + [12 ])−p → [1/2]⊗ (2[0] + [12 ])
- Two inequalities:

M ≥ M1 +M2 = |Zγ1 |+ |Zγ2 |
M = |Zγ1+γ2 | = |Zγ1 + Zγ2 | ≤ |Zγ1 |+ |Zγ2 |

- The wall of marginal stability locates at Zγ1/Zγ2 ∈ R+
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Wall Crossing phenomenon

- N = 2 pure SU(2) SYM in 4D

- How to describe the jump?



Kontsevich-Soibelman’s Magic
- Twisted torus algebra

Xγ1Xγ2 = (−1)〈γ1,γ2〉Xγ1+γ2 ,
〈γ1, γ2〉: Schwinger product of charges

- Automorphism of twisted torus algebra
Kγ : Xγ′ → Xγ′(1− Xγ)〈γ′,γ〉 ,

- Co-dimension one locus: Cγ = (u, arg(−Zγ(u))

- Wall-crossing formalism [M. Kontsevich and Y. Soibelman, 08’]
A(P) =∏

Cγ

K±Ω(γ)
γ = 1
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Kontsevich-Soibelman’s Magic

- Examples:
I 〈γ1, γ2〉 = 1:

Kγ2 Kγ1 = Kγ1 Kγ1+γ2 Kγ2Argyres-Douglas A2 theory
I 〈γ1, γ2〉 = 2:

K(2,−1) · K(0,1)= K(0,1) · K(2,1) · K(4,1) . . . K−2(2,0) . . . K(6,−1) · K(4,−1) · K(2,−1)
N = 2 pure SU(2) SYM in 4D



A Proof by Physicists[D. Gaiotto, G.W. Moore and A. Neitzke, 09’, 10’]

- Adding a very heavy extenal BPS particle with argZ = θ:
Lθ = exp [i ∫ dt

(
A0 + e−iθφ + eiθφ̄)]

- The Hilbert space is modified:
H → HLθ , Ωγ(Lθ) = Tr′HLθ ,γ ((−1)2J3)

- BPS bound: M ≥ Re(eiθZγ)
- Any BPS state is a bound state of Lθ and BPS particles inthe original theory.
- The bound states appear/disappear when θ crosses
− argZγh .

- The bound state configuration is decided by the balance ofclassical forces
rh = 〈γh, γc〉2Im[eiθZγh ]



A Proof by Physicists

- Let FLθ =∑γ Ωγ(Lθ)Xγ
- When θ crosses − argZγh , FLθ is transformed by

Xγ → Xγ(1− Xγh)±Ωγh 〈γ,γh〉
It is K±Ωγhγh !

- Travel along any closed loop, FLθ must come back to itself.
- If the theory has "enough" line operators Lθ , we will have∏

Cγ

K±Ω(γ)
γ = 1



Microscopic origin:
- A BPS one-particle state is generically a bound stateconsisting of more than one charge centers, which arespatially distributed according to balance of classicalforces. [K. Lee and P. Yi, 98’]

- Wall-crossing: the size of such bound states becomeinfinitely large as a marginal stability wall is approached,e.g.,

R ∼ 〈γ1, γ2〉2Im[Z̄γ1Zγ2 ]
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Low energy dynamics of BPS States

- Can we computing Ωγ based on the bound states picture?
- Starting from a set of known BPS states with charge γi asa basis set

I The charge γ of any given BPS state can be written as
γ =∑i niγi (ni ∈ Z+)

- The low energy dynamics of ni i-type BPS states isdescribed by a Quantum Mechanics with four supercharges, with SO(4) R- symmetry coming from SO(3)spatial rotation and SU(2)R in the 4D N = 2 theory.
- A BPS bound state with charge γ =∑i niγi is related to aSUSY invariant vacuum of the system.
- The corresponding refined BPS index is

Ω(y) = TrQM ((−1)2J3y2(J3+I3))



The Coulomb phase dynamics
- The Coulomb phase description: BPS particles interactingwith Lorentz force
- Written in N = 1 superspace

ΦAa = xAa − iθψAa , ΛA = iλA + iθbA
then add the N = 4 SUSY Constraints by hand

- Kinetic term
L1 = ∫

dθ
(
i2gabABDΦA

aΦ̇B
b − 12hABΛADΨB − ifaABΦ̇A

aΛB + 13!cabcABCDΦA
aDΦB

bDΦC
c

+ 12!nabABCDΦA
aDΦB

bΛC + 12!ma
ABCΦA

aΛBΛC + 13! lABCΛAΛBΛC)
N = 4 SUSY Constraints: all the couplings are decidedby a single function L, e.g.

hAB = δab∂aA∂bBL



The Coulomb phase dynamics
- Lorentz interaction between dyons:

L2 = ∫ dθ
(
iKA(Φ)ΛA − iWAa(Φ)DΦAa)

N = 4 SUSY constraints
∂AaKB = 12 εabc (∂AbWBc − ∂BcWAb) ,

εabc∂Ab∂BcKC = 0 , ∂Aa∂BaKC = 0 .
- The N = 4 SUSY constraints implies

WAa = ∑
B

〈γA, γB〉2 WDirac
a (~xA − ~xB)

KA = Im [e−iθZA] = Im [e−iθZA]− 12 ∑
B 6=A

〈γA, γB〉
| ~xA − ~xB|

- The scalar potential V ∼ K2
⇒ The moduli space Mn = ({xAa | KA = 0} − R3) /Γ



The Coulomb phase dynamics
- The R symmetry is SO(4) = SU(2)L × SU(2)R . SU(2)L isthe rotation group, while SU(2)R is descendant of SU(2)R-symmetry of the underlying 4D N = 2 theory.

I The generators:
Ja = La +∑

A

(
− i8 εabc [ψ̂Ab, ψ̂Ac ]− i4 [ψ̂Aa, λ̂A ])

Ia = ∑
A

(
− i8 εabc [ψ̂Ab, ψ̂Ac ] + i4 [ψ̂Aa, λ̂A ])

I xAa : (3, 1); ψAm = {ψAa, λA} and super charge Qm: (2, 2).
- MPS formula:[ J. Manschot, B. Pioline and A. Sen, 10’]The index is given by a sum of fixed point contributions.Due to the y2J3 factor in the index, the fixed pointconfigurations are the solutions of KA = 0 with allparticles aligning on the z-axis.
- An observation: all the known Coulomb branch BPS statesare SU(2)R singlet.



The Higgs phase dynamics: Quiver Theory
- The Higgs phase description: Quiver quantum mechanics[F. Denef, 02’]
- Quiver: Nodes+Arrows

U(N1)
U(N2)U(N3)

W = cmnpΦa1ā2m Φa2ā3n Φa3ā1p
γ12
��

γ31 CC

γ23oo

I Node v : a U(Nv ) vector multiplet (Av , X iv , λv , Dv ); a FIparameter ζv ;
I Arrow s(v → w):a bifundamental chiral multiplet(φs, ψs, F s), in the (N̄v ,Nw ) of U(Nv )× U(Nw );Number of arrows=〈γv , γw〉
I Closed loop: a superpotential



The Higgs phase dynamics: Brane picture

- The N = 2 theory: Type II on a CY3
- The BPS particles: The D-branes wrap on asupersymmetric cycle
- 〈γ1, γ2〉: the intersecting number between two cycles
- U(Ni) nodes: a basis of the cycles wrapped with NiD-branes
- Bifundamental fields: open-strings attached between twoD-branes on different cycles



The Higgs phase dynamics
- The R symmetry is SO(4) = SU(2)L × SU(2)R . (Q1, Q2)transforms as a doublet under the rotation group SU(2)L,and (Q1, Q̄1̇) transforms as a doublet under the SU(2)Rwhich is descendant of SU(2) R-symmetry of theunderlying 4D N = 2 theory. Especially, I3 can beidentified as the overall U(1) on Qα .
- The moduli space: a Kähler manifold
M = {φa | ∂W∂φa = 0,∑

a:→v φ
a†φa−

∑
a:v→φ

aφa† = ζv}/
∏
v
U(Nv )

- On the moduli space, the rotation SU(2) is identified asthe SU(2)Lefschetz
L3 = (l− d)/2 , L+ = K∧ , L− = KyIt is acting on the cohomology H(M) =⊕lHl(M) and

d = dimCM .



The Higgs phase dynamics

- Acting on Hp,q(M), the overall U(1) generator I3 isidentified as
I3 = (p− q)/2Obviously, [I3, L1,2,3] = 0.

- The protected spin character is computed in the Higgsphase as
ΩHiggs(y) = tr (−1)2L3y2L3+2I3= tr (−1) l−dy l−d+p−q= tr (−1)p+q−dy2p−d



Quivers with oriented closed loops
- For quivers without oriented closed loop, ΩC = ΩH
- For quivers with oriented closed loops,

I ΩC 6= ΩH in general. [F. Denef, G.W. Moore, 07’]
I The scaling solutions in Coulomb phase make the modulispace non-compact. The naive fixed point formulae isdivergent at y = 1. The MPS formula with a minimalsubtraction scheme which is consistent with wall-crossingwas proposed.[ J. Manschot, B. Pioline and A. Sen, 10’]
I Superpotential appears in Higgs phase.
I Both phases share the D term data ζv = Im(e−iθZv ), butonly Higgs phase contains the data of superpotential.Coulomb phase index is related to the ambient space

X = {φa | ∑
a:→v φ

a†φa −
∑
a:v→φ

aφa† = ζv}/
∏
v
U(Nv )

of Higgs phase moduli space M?
I In the N = 2 supergravity, ΩH −Ωc is related to the indexof single centered BPS black holes which are alwaysangular momentum singlet.[ J. Manschot, B. Pioline and A. Sen, 10’]



Conjectures
- Conjecture I: In the k-th branch of the moduli spaceΩ(k)Coulomb(y) = (−y)−dkDk (−y)
i∗Mk

(H(Xk )): pull-back of the ambient cohomology;
dk : thecomplex dimension of Mk ;
Dk (x): the reduced Poincaré polynomial

Dk (x) ≡∑
l
xl dim [i∗Mk (Hl(Xk ))]

- Conjecture II: The Intrinsic Higgs states in
H(Mk )− i∗Mk

(H(Xk )) are essentially depend on the middlecohomology. The corresponding index(−y)−dkχξ=−y2(Mk )− (−y)−dkDk (−y)is a branch independent invariant of the quiver.
χξ =∑p

∑
q(−1)qhp,q ξp: the refined Euler character



Abelian Cyclic Quivers

- Cyclic (n+ 1)-Gon:

Zn
H1L, ... , Zn

HanL

Zn+1
H1L, ... , Zn+1

Han+1L

Z1
H1L, ... , Z1

Ha1L

Z2
H1L, ... , Z2

Ha2L

Ζ3

Ζn

Ζn+1Ζ1

Ζ2



Abelian Cyclic Quivers

- D-term conditions
|Zn+1|2 − |Z1|2 = ζ1 ,
|Z1|2 − |Z2|2 = ζ2 ,...
|Zn|2 − |Zn+1|2 = ζn+1 ,

- Superpotential
W = a1∑

β1=1 · · ·
an+1∑
βn+1=1 cβ1β2 ···βn+1Z (β1)1 Z (β2)2 · · ·Z (βn+1)

n+1 ,

- Branches: One of the Zi vanishing
I 1. Generic cβ1β2···βn+1 ⇒ generic F-term algebraic equations.
I 2. F-term conditions have scaling symmetries Zi → λiZi.
⇒ No solution to F-term conditions with all Zi nontrivial.



Abelian Cyclic Quivers: i∗Mk
(H(Xk ))

- k-th Branch: ∑k
i=I ζi > 0 , ∑J

i=k+1 ζi < 0
- Ambient space
Xk = CPa1−1 × · · · × CPak−1−1 × CPak+1−1 × · · · × CPan+1−1

- The ak F-terms ∂ZkW = 0 define a complete intersecting.The complex dimension dk =∑n+1
i=1 ai − 2ak − n .

- For the ambient space, Hp,q(Xk ) with p 6= q are null, and
P [Xk ](x) = ∏

i6=k (1− x2ai)(1− x2)n =∑b2l(Xk ) · x2l
- Lefschetz hyperplane theorem:
Hp,q(Mk ) with p 6= q, p+ q < dk are null
Dk (x) = bdk (Xk ) · xdk + ∑

0≤2l<dk b2l(Xk ) · (x2l + x2dk−2l)



Abelian Cyclic Quivers: Ω(k)Coulomb(y)
- MPS Formula

Ω(k)Coulomb(y) = (−1)n+1∑
i=1 ai−n(y− y−1)n [Gk (y) + (−1)nGk (y−1) +Hk (y) + (−1)nHk (y−1)]

Gk (y) + (−1)nGk (y−1) =∑
p
s(p) yn+1∑

i=1 ai sign[zi−zi+1 ]
, s(p) = sign[detM ] ,

Mi,i = ai
zi − zi+1
|zi − zi+1|3 + ai+1 zi+1 − zi+2

|zi+1 − zi+2|3 ,
Mi,i+1 = Mi+1,i = −ai+1 zi+1 − zi+2

|zi+1 − zi+2|3 .
- The subtraction polynomial

Hk (y) = ∑
0≤l<n

l−
∑n+1
i=1 ai∈2Z

λl yl ,

the coefficients λl are decided uniquely by requiring thatΩ(k)Coulomb(y) is finite when y = 1.



Abelian Cyclic Quivers: Ω(k)Coulomb(y)
- The index is invariant within each branch, so that we maypick a particularly convenient set of FI constants andsimplify the problem.
- At ζk = −ζk+1 > 0, ζi = 0(i 6= k, k + 1) the fixed points are

|zk − zk+1| = ak
ρ , |zi − zi+1| = ai

ρ + ζk (i 6= k) ,∑
i6=k sign[zi − zi+1] ai

ρ + ζk + sign[zk − zk+1]akρ =∑
i

(zi − zi+1) = 0
- The fixed points contribution is

Gk (y) = ∑
{ti 6=k=±1}

[∏
i 6=k ti

]
· Θ(∑

i6=k aiti − ak
)
y
∑
i 6=k aiti−ak ,

Θ(x) =
1 for x ≥ 00 for x < 0



Abelian Cyclic Quivers: Proof of conjecture I
- Uniqueness of the Hk was guaranteed by threerequirements: regularity of index at y = 1, definite parityof Gk , and parity of Hk coinciding with that of Gk .
- The first conjecture is equivalent to

ynGk (y−1)∣∣∣∣∣nonpositive= ynG̃k (y−1) ≡ y−dk ∏
i6=k
(1− y2ai) ∣∣∣∣∣nonpositive

- Proof:
ynGk (y−1)∣∣∣∣∣nonpositive= yn

∑
{ti 6=k=±1}

[∏
i 6=k ti

]
· Θ(∑

i 6=k aiti − ak
)
y
−
∑
i 6=k aiti+ak

∣∣∣∣∣nonpositive
= ∑

{ti 6=k=±1}
[∏
i 6=k ti

]
· Θ(∑

i6=k aiti − ak − n
)
y
−
∑
i 6=k aiti+ak+n∣∣∣∣∣nonpositive= ynG̃k (y−1) .



Abelian Cyclic Quivers: H(Xk )
- The Adjunction formula:

td(TMk ) = ∏
i 6=k
(

Ji1− eJi
)ai ·(1− e−∑i 6=k Ji∑

i6=k Ji
)ak

chξ (T ∗Mk ) = ∑
p

ch(∧pT ∗Mk ) ξp = ∏
i6=k

(1 + ξe−Ji )ai1 + ξ
 ·( 11 + ξe−∑i 6=k Ji

)ak

where Ji is the Kähler form from each CPai−1 factor in Xk .
- Applying the Hirzebruch-Riemann-Roch formula

χξ (Mk ) = ∫
Mk

td(TMk ) · chξ (T ∗Mk )
= ∫

Xk
td(TMk ) · chξ (T ∗Mk ) · (∑

i6=k Ji
)ak

= 1(1 + ξ)n
∫
Xk

∏
i6=k
(
Ji

1 + ξe−Ji1− e−Ji
)ai ·( 1− e−∑i 6=k Ji1 + ξe−∑i 6=k Ji

)ak



Abelian Cyclic Quivers: Proof of conjecture II
- Let ωi ≡ e−Ji ,Ω(k)Higgs(y) = (−y)−dkχξ=−y2 (Mk )= (−1)dkyak ∏

i6=k
yai − y−ai
y− y−1

+(−y)n+2−∑i ai(y2 − 1)n ∏
i

∮
ωi=1

dωi2πi
[∏

i

(1− y2ωi1− ωi
)ai]

· 11− y2∏
i ωi

⇒ Ω(k)Higgs(y)−Ω(k ′)Higgs(y) = (−1)dk−1 yak−ak ′ − y−ak+ak ′
y− y−1 ∏

i 6=k,k ′
yai − y−ai
y− y−1

- From the expression of Gk (y), we get
Gk (y) + (−1)nGk (y−1)− Gk ′ (y)− (−1)nGk ′ (y−1)(y− y−1)n= (−1)dk−1 yak−ak ′ − y−ak+ak ′

y− y−1 ∏
i6=k,k ′

yai − y−ai
y− y−1

= Ω(k)Coulomb(y)−Ω(k ′)Coulomb(y)
- Ω(k)Higgs(y)−Ω(k)Coulomb(y) is independent of k .



Numerical illustration

- 3-gon with a1 = 4, a2 = 5, a3 = 6
10 00 2 00 0 0 00 0 3 0 00 0 26 26 0 00 0 3 0 00 0 0 00 2 00 01

,

10 00 2 00 26 26 00 2 00 01
,

126 26 .1



More general quivers
- Ambient space: maximal reduced quiver without loopThe branches for a multi-loop quiver are described by thenon-empty branches of its maximal reduced quiver withoutloop, e.g.

θ1

θ2

θ3

θ4
γ12
��

γ23
��

γ14
��

γ34
  

γ31

OO

⇒

θ1

θ2

θ3

θ4
γ12
��

γ23
��

γ14
��

γ34
  

I Vanishing of the edge 31: θ3 > 0 , θ1 < 0 .
I Four different branches depending on the sign of θ2 and θ4



More general quivers
- Abelian quiver: Toric data, easy to deal with
- How to deal with nonabelian gauge group?[Bumsig Kim et.al]

I Fully Abelianize varieties X̃ of the nonabelian varieties X
U(1)

U(2)U(2)
γ12
��

γ31
CC

γ23oo

⇒

U(1)

U(1)U(1)
U(1)U(1)

γ12
!!

γ31
==

γ23oo γ12

��

γ31

II

γ23
vv

γ23
hh

γ23oo

I Additional insertion:∫
X
a = 1

|W |

∫
X̃
â ∧ e(∆)

c(∆)e.g. for a single U(n): ∏i<j
−(Ji−Jj )21−(Ji−Jj )2



More general quivers

- Coulomb phase computation: MPS type of partition sum
U(3)

U(1)U(1)
γ12
��

γ31 DD
γ23oo

=
γ1 γ1 γ1

γ2γ3 ��$$ ��

DDOO ::

oo

+
γ1 2γ1

γ2γ3 $$

OO

oo
��

::
+

3γ1

γ2γ3 ��

DD

oo

- A one to one map for cases without intrinsic Higgs:
−(Ji − Jj )21− (Ji − Jj )2 = 1− 11− (Ji − Jj )2 = 1 + δij

e(∆)
c(∆) = 1+(δ12+δ13+δ23)+(δ12δ13+δ12δ23+δ13δ23+δ12δ13δ23)



Summary

- The relation between PSC in 4D N = 2 theory and refinedindex in N = 4 QM.
- Proof of the two conjecture about the Coulomb phase andthe Higgs phase indices for cyclic quiver.
- More general quivers:

I The basic way of computing Higgs cohomology isestablished
I Certain smart improvement is needed

- More future directions:
I Can we directly compute ΩIntrinsic , e.g., by localization...?
I The relation between ΩIntrinsic and black hole entropy
I Whether and how Kontsevich-Soibelman algebra knowabout the quiver invariants?



Thank You!


