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Generating Scale Invariant Density Perturbation 
in Contracting Universe



PLANCK

ns = 0.969± 0.010

(68%;Planck +WP+ highL + BAO)

P⇣ = As(k/k⇤)
ns�1

fNL = 2.7± 5.8(Local), � 42± 75(Equilateral), � 25± 39(Orthogonal)

Primordial (scalar) perturbations: adiabatic, nearly scale-invariant, negligible non-Gaussianities

Consistent with single field slow-roll inflation!



Generation of scalar perturbation in single field model
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Power spectrum
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Bouncing universe: alternative to inflation

⌘
0

⌘ = �1

a

contracting phase hot expansion

|H�1| shrinks faster than a

k
as long as w > �1/3

|H�1|

H =
a0

a
= aH / 1

⌘
| k

aH
| ⇠ k|⌘|

k|⌘| � 1
k|⌘| ⌧ 1



H2 =
1

3M2
p

(
⇢m
a3

+
⇢r
a4

+
�2

a6
)� k

a2

Flattening and isotropizing the universe by the contracting phase

Without w>1 component

dominates the universe, highly anisotropic	


Belinsky, Khalatnikov & Lifshitz, Adv. Phys. (1970) 

With w>1 component

H2 =
1

3M2
p

(
⇢m
a3

+
⇢r
a4

+
�2

a6
+

⇢�

a3(1+w�)
)� k

a2

dominant, others are 
suppressedErickson, Wesley, Steinhardt, Turok, PRD(2004)



Fig. 1. The braneworld picture of our universe. Think of a sandwich: the filling is the
5-dimensinonal bulk spacetime, which is bounded by the two pieces of bread a.k.a.
the 4-dimensional boundary branes. There is no space “outside” of the sandwich,
but the branes can be infinite in all directions perpendicular to the line segment.
In the M-theory embedding, there are 6 additional internal dimensions at each
5-dimensional spacetime point.

Ekpyrotic 1 and cyclic cosmology are based on the braneworld picture of the
universe, in which spacetime is effectively 5-dimensional, but with one di-
mension not extending indefinitely, but being a line segment 2 , see Fig. 1. The
endpoints of this line segment (orbifold) are two (3+1)-dimensional boundary
branes. All matter and forces, except for gravity, are localized on the branes,
while gravity can propagate in the whole spacetime. Our universe, as we see it,
is identified with one of the boundary branes and, as long as the branes are far
apart, can interact with the other brane only via gravity. The ekpyrotic model

1 The name ekpyrosis can be translated as all-engulfing cosmic fire. In Stoic phi-
losophy, it represents the contractive phase of eternally-recurring destruction and
re-creation [1].
2 This setting will be discussed in detail in section 6, along with its motivation from
and embedding in heterotic M-theory.

3

Khoury, Ovrut, Steinhardt, Turok, PRD (2001); Steinhardt & Turok, PRD (2002)

Ekpyrotic phase: slow contraction with w>1

V
φ

φ φend beg

Fig. 2. The potential during ekpyrosis is negative and steeply falling; it can be
modeled by the exponential form V (φ) = −V0e−cφ.

Eventually, the inflaton, whose energy density is roughly constant, dominates
the cosmic evolution and determines the (roughly constant) Hubble parameter
while causing the scale factor to grow exponentially,

a ∝ eHt. (15)

We can define the relative energy density in the curvature as Ωκ ≡ −κ/(a2H2)
and in the anisotropies as Ωσ ≡ σ2/(3a6H2). During inflation, these relative
densities fall off quickly, and the universe is rendered exponentially flat; ac-
cording to (10) the flatness puzzle is then resolved as long as the scale factor
grows by at least 60 e-folds.

Now we will show how the same problem can be solved by having a contracting
phase before the standard expanding phase of the universe. The Friedmann
equation relates the Hubble parameter to the total energy density in the uni-
verse, which is the sum of kinetic and potential energy. Now suppose that,
instead of a flat potential, the scalar φ has a very steep, negative potential, as
shown in Fig. 2. As a concrete example, one can model the potential with a
negative exponential

V (φ) = −V0e
−cφ, (16)

where V0 and c are constants. Let us give one brief motivation for a negative
potential: foreshadowing a cyclic picture, we can ask if it is possible for the
universe to revert from an expanding to a contracting phase in a non-singular
way. Then at some point the Hubble parameter must go through zero, which
can be achieved by having a negative potential in order to cancel the positive
kinetic energy of matter. From (13) this automatically implies an equation
of state w > 1, and will be seen to have very powerful consequences. In a
contracting universe, the argument presented in the previous paragraph is
reversed, and one would initially expect the anisotropy term (proportional to
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ns = 3� 2

1 + 3w
> 2.5

The curvature perturbation produced in single field Ekpyrotic 
model has a strongly blue spectrum, excluded by observations

Khoury & Steinhardt, PRL (2010)

Rapid varying w model

V = V0(1� e�
c
M �)

w ' �1 ! w � 1

Scale-invariant perturbations are generated during the transition

Large non-Gaussianities, not compatible with results of PLANCK
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Multi fields

Standard entropic mechanism
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Fig. 6. The trajectory in field space reflects off a boundary at φ2 = 0. The en-
tropy perturbation, denoted δs, is orthogonal to the trajectory. The bending causes
the conversion of entropy modes into adiabatic modes δσ, which are perturbations
tangential to the trajectory.

Conversion during kinetic energy domination

In the original ekpyrotic and cyclic models, the phase dominated by the steep,
ekpyrotic potential V (φ) comes to an end (at t = tend < 0) before the big
crunch/big bang transition (t = 0), and the universe becomes dominated by
the kinetic energy of the scalar fields, as we saw in section 3. Consequently,
the equation of state at t = tend changes from ϵek ≫ 1 to ϵ = 3 (corresponding
to w → 1, the equation of state for a kinetic energy dominated universe). The
conversion from entropic to curvature perturbations then takes place during
this kinetic energy dominated phase [61]. The conversion occurs naturally in
the heterotic M-theory embedding of the cyclic model because the negative-
tension brane bounces off a spacetime singularity [67] – creating a bend in
the trajectory in field space in the 4-dimensional effective theory – before it
collides with the positive-tension brane (the big crunch/big bang transition).
This will be explained in detail in section 6. Here, all we need to know is that
in the 4-dimensional effective description there are two scalar field moduli, φ1

and φ2, living on the half-plane −∞ < φ1 < ∞, −∞ < φ2 < 0. In other words,
there is a boundary to moduli space at φ2 = 0. Furthermore, the cosmological
solution of interest is one in which φ2 encounters this boundary φ2 = 0, and
reflects off it at time t = tref ; see Figure 6. This bending of the trajectory
automatically induces the conversion of entropy to curvature perturbations.
Here we will not restrict the analysis to this particular example, but we will
consider the general situation in which the scalar field trajectory bends in
a smooth way during the phase of kinetic energy domination following an
ekpyrotic phase.

In general, in the presence of N scalar fields with general Kähler metric gij(φ)
on scalar field space, the equation for the evolution of the curvature pertur-

33

During the Ekpyrotic phase, adiabatic perturbation is negligibly 
small, entropy perturbation is scale-invariant.	

After the Ekpyrotic phase, entropy perturbation converts into 
the adiabatic perturbation. The conversion happens when ✓0 6= 0

Lehners, McFadden, Turok & Steinhardt, PRD (2007)
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All we need is a single steep and nearly exponential potential along �, as well as a tachyonic

mass for �, leaving tremendous freedom in specifying the global shape of the potential. The
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Figure 1: General shape of the potential during the ekpyrotic phase. The arrow indicates

the desired solution, corresponding to rolling down a steep, negative and quasi-exponential

potential along �, while remaining perched on top of a tachyonic ridge along �.

This novel framework greatly expands the class of allowed ekpyrotic potential — see

Fig. 1 for a generic example. In Sec. 3.2 we derive the spectral tilt for the most general

New Ekpyrotic potential and find that it depends on three parameters: the usual fast-
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Buchbinder, Khoury & Ovrut, JHEP (2007)
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The conversion to adiabatic perturbation can only take place 
after the bounce via	

(1) curvaton mechanism	

(2) modulated preheating
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Non-Gaussianities were small, Fertig, Lehners and Mallwitz, arXiv:1310.8133

arXiv:1404.1265
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These isocurvature modes are then converted into density
perturbations which source structure in the post-bang
universe.
A simple example of an action describing the standard

ekpyrotic mechanism is
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where V1, V2, c1, c2 are constants and the two fields have
separate ekpyrotic potentials. (Here and throughout
this paper we choose units such that M2

Pl ≡ 1, where
M2

Pl = (8πG)−1 is the reduced Planck mass and G is
Newton’s constant.) The background evolution is deter-
mined by the linear combination of these potentials, or
equivalently, after performing a rotation in field space, by
the adiabatic field, σ, (defined to point tangentially along

the background trajectory, with σ̇ = (φ̇1
2
+φ̇2

2
)1/2) while

the evolution of perturbations is governed by the entropy
field, s (which is, by definition, perpendicular to the σ-
field). At the end of the ekpyrotic phase and before the
bounce, the background trajectory bends and the isocur-
vature perturbations are converted into adiabatic ones.
However, it is well-known that these ekyprotic solu-

tions for φ1 and φ2 are unstable, in that the σ direction
runs along a ridge in the potential that is unstable to vari-
ations in the s direction (possible consequences in a cyclic
context were discussed in [17, 18]). Also, to obtain nearly
scale-invariant spectra requires a steep negative potential
which results in the generation of non-negligible non-
Gaussianity during the ekpyrotic phase that dominates
the non-Gaussianity generated during the conversion of
entropic fluctuations to curvature fluctuations after the
ekpyrotic phase [19–22]. Furthermore, the steepness of
the potential and the instability involve additional tun-
ing of parameters and initial conditions such that, from
a theoretical point of view, it would be desirable to find
an alternative approach that avoids them.
In this paper, we explore a new type of entropic mech-

anism in which there are two scalar fields, as before, but
only one has a steep negative potential, V (φ). This first
field, φ, dominates the energy density and is the source of
the ekpyrotic equation of state. The second field, χ, has
a negligible potential, perhaps precisely zero potential,
but its kinetic energy density is multiplied by a func-
tion of the first field, Ω2(φ), with a non-linear sigma-
model type interaction. A specific example of this model
was introduced in [23] and [24] where both the poten-
tial and the non-trivial kinetic coupling are proportional
to e−λφ, where λ is a positive constant. This model,
which is characterized by a constant equation of state
ϵ, admits stable scaling solutions that generate (nearly)
scale-invariant spectra and, as shown by [25], the bispec-
trum of this model vanishes such that no non-Gaussianity
is produced during the ekpyrotic phase. As such, these

models fit well within the Planck2013 bounds on non-
Gaussianity; hence it is worthwhile studying how general
these results are.

Here, we show that these results can be extended to
an entire class of ekpyrotic models: we show that scale-
invariant entropic perturbations can be produced contin-
uously as modes leave the horizon for any time-dependent
ekpyrotic background equation of state. This has the
additional advantage of reducing fine-tuning constraints.
The corresponding background solutions are stable and
the bispectrum of these perturbations vanishes, such that
no non-Gaussianity is produced during the ekpyrotic
phase. Hence, the only contribution to non-Gaussianity
comes from the non-linearity of the conversion process
during which entropic perturbations are turned into adi-
abatic ones.

The paper is organized as follows. In Sec. 2 we in-
troduce a generic action involving two fields, derive the
background equations of motions and briefly discuss their
properties. In Sec. 3 we derive the equations of motion at
first order in perturbation theory and show that for each
background potential, V (φ), we can define a non-trivial
field-space metric such that the spectrum of entropy per-
turbations, produced by the χ-field, is scale-invariant.
We illustrate our finding on a simple class of ekpyrotic
models with equation-of-state parameter ϵ = ϵ̄(−τ)p,
where p > 0. In Sec. 4 we compute the bispectrum of
the perturbations and we show that, for models with
constant spectral tilt, no non-Gaussianity is generated
during the ekpyrotic phase. We conclude in Sec. 5 by
summarizing our results and discussing directions for fu-
ture research.

II. SETUP

We shall consider the following action involving two
scalar fields and a non-trivial field-space metric,

S =

∫

d4x
√
−g

(

R

2
−

1

2
∂µφ∂

µφ− V (φ)

−
1

2
Ω2(φ)∂µχ∂

µχ

)

. (4)

Here we work in units where the reduced Planck mass
M−2

Pl
= 8πG = 1. With a steep negative potential V (φ),

the first field, φ, dominates the energy density and is the
source of the ekpyrotic equation of state. We are assum-
ing that the potential does not depend on the second
field, χ; however, the kinetic term of χ is multiplied by a
function of the first field, Ω2(φ), with a non-linear sigma-
model type interaction. Varying the action with respect
to the metric and the fields leads to the equations of mo-



Analogies I: Conformal rolling model Rubakov, JCAP (2009)
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Analogies II: Galilean Genesis Creminelli, Nicolis, Trincherini, JCAP (2010)
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Solution, emergent universe
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SO(4, 2) ! SO(4, 1)

Coupling to a massless scalar

Phenomenological Lagrangian non-linearly realized conformal symmetry was 
constructed in Hinterbichler & Khoury, JCAP (2012); Hinterbichler, Joyce, Khoury, 
JCAP (2012)



Inflation Models with Flat Potentials



BICEP：Background Imaging of Cosmic Extragalactic Polarization 
            （宇宙河外偏振背景成像）
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FIG. 2.— BICEP2 power spectrum results for signal (black points) and temporal-split jackknife (blue points). The red curves show the lensed-⇤CDM theory
expectations — in the case of BB an r = 0.2 spectrum is also shown. The error bars are the standard deviations of the lensed-⇤CDM+noise simulations. The
probability to exceed (PTE) the observed value of a simple �2 statistic is given (as evaluated against the simulations). Note the very different y-axis scales for the
jackknife spectra (other than BB). See the text for additional discussion of the BB spectrum.
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simulations. The color scale displays the E-mode scalar and B-mode pseudoscalar patterns while the lines display the equivalent magnitude and orientation of
linear polarization. Note that excess B-mode is detected over lensing+noise with high signal-to-noise ratio in the map (s/n > 2 per map mode at `⇡ 70). (Also
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FIG. 11.— Modified constraints on the tensor-to-scalar ratio r when sub-
tracting each of the foreground models shown in Figure 6 from the BICEP2
BB bandpowers. The line styles and colors match Figure 6 with dashed for
auto spectra and solid for cross spectra. The probability that each of these
models reflects reality is hard to assess — see the text for discussion.

atic contamination, and shown that foreground is highly un-
likely to contribute a large fraction of our observed signal, we
must ask what extensions to the standard model might resolve
this situation.

One obvious modification is to allow the initial scalar per-
turbation spectrum to depart from the simple power law form
which is assumed in the base ⇤CDM model. A standard
way in which this is done is by introducing a “running” pa-
rameter dns/d lnk. In Planck Collaboration XVI (2013) the
constraint relaxes to r < 0.26 (95% confidence) when run-
ning is allowed with dns/d lnk = -0.022± 0.010 (68%) (for
the Planck+WP+highL data combination). In Figure 13 we
show the constraint contours when allowing running as taken
from Figure 23 of Planck Collaboration XVI (2013), and how
these change when the BICEP2 data are added. The red con-
tours on the plot are simply the Monte Carlo Markov Chains
(MCMC) (Gamerman & Lopes 2006; Lewis & Bridle 2002)
provided with the Planck data release38 (and are thus iden-
tical to those shown in that Planck paper). We then apply

38 As downloaded from http://www.sciops.esa.int/
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FIG. 12.— Joint constraints on the tensor-to-scalar ratio r and the lensing
scale factor AL using the BICEP2 BB bandpowers 1–5. One and two � con-
tours are shown. The horizontal dotted lines show the 1� constraint from
Planck Collaboration XVI (2013). The BICEP2 data are compatible with the
expected amplitude of the lensing B-mode which is detected at 2.7�.
importance sampling (Hastings 1970) to these chains using
our r likelihood as shown in Figure 10 to derive the blue
contours, for which the running parameter constraint shifts
to dns/d lnk = -0.028±0.009 (68%).

The point of Figure 13 is not to endorse running as the cor-
rect explanation of the observed deficit of low ` T T power.
It is simply to illustrate one example of a simple model ex-
tension beyond standard ⇤CDM+tensors which can resolve
the apparent tension between previous T T measurements and
the direct evidence for tensors provided by our B-mode mea-
surements — probably there are others. Of course one might
also speculate that the tension could be reduced within the
standard ⇤CDM+tensors model, for example if ⌧ or other pa-
rameters were allowed to shift. We anticipate a broad range
of possibilities will be explored.

12. CONCLUSIONS

We have described the observations, data reduction, sim-
ulation and power spectrum analysis of all three seasons of
data taken by the BICEP2 experiment. The polarization maps
presented here are the deepest ever made at degree angular

wikiSI/planckpla section “Cosmological Parameters”.

Well fit to single field slow roll inflation model



Primordial perturbations: !
initial conditions seeded anisotropies and large scale structures  

spectral indices: ns , nt

scale invariance: ns = 1, nt = 0
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Challinor & Peiris, arXiv:0903.5158                  r=0.22

Scalar                  Tensor

T, E: dominated by scalar perturbation 
B: large scales (l<100) dominated by primordial gravitational waves; 
    small scales dominated by lensing effect



Mechanisms to produce primordial perturbations

Scalar

Tensor

Inflation (single field)

Ekpyrotic/Cyclic Cosmology: negligible tensor perturbation

Observation r<0.13 (95%CL), WMAP9, G. Hinshaw et al., arXiv:1212.5226

Primordial perturbations from quantum fluctuations 

r = 0.2

L =
1

2
(@�)2 � V (�)

V 1/4 ⇠ 2⇥ 1016 GeV

Gravitational waves, spacetime ripples, quantized!
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Mechanisms to produce primordial perturbations

Scalar

Tensor

Inflation (single field)

Ekpyrotic/Cyclic Cosmology: negligible tensor perturbation

Observation r<0.13 (95%CL), WMAP9, G. Hinshaw et al., arXiv:1212.5226
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Symmetries to protect the flatness of the inflaton potential

1, supersymmetry 
!
SUSY provides flat directions, but is broken during inflation due to positive 
vacuum energy. 
!
Supergravity corrections give a mass~H to any flat directions,  
Coperland, Liddle, Lyth, Stewart and Wands, PRD (1994) 
!
Spoils slow-roll condition |⌘| < 1, m =

p
V�� < H



2, shift symmetry

Natural inflation model, Freese, Frieman and Olinto, PRL (1990)
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Freese and Kinney, arXiv: 1403.5277



Extranatural inflation, extra dimensional version of natural inflation 
Arkani-Hamed, Cheng, Creminelli and Randall, PRL(2003)

5d model, extra dimension compactified on a circle R 
Abelian field  
Extra component       propagates in the bulk 
no local potential due to higher dimensional gauge invariance 
shift symmetry, similar to 4d PNGB

Aa

A5

Non-local potential for Wilson loop                      in the presence of  
charged fields in the bulk

of the gauge invariant Wilson loop

eiθ = ei
∮

A5dx5

(10)

will however be generated in presence of charged fields in the bulk. At energies below 1/R,

θ is a 4d field with a Lagrangian of the form

L =
1

2 g2
4(2πR)2

(∂θ)2 − V (θ) + · · · (11)

where g2
4 = g2

5/(2πR) is the 4D gauge coupling, and the potential V (θ) is given at one-loop

by [22, 23, 24, 25, 26]
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1
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3

64π6
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cos(nqθ)

n5
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where FI = 0(1) for massless bosonic (fermionic) fields of charge q coupled to A5. Note

that the potential is of the same form as in natural inflation (with small corrections from

additional terms in the sum), with the effective decay constant given by

feff =
1

2πg4dR
. (13)

It is easily seen that feff can be bigger than MP for sufficiently small g4d; the slow-roll

condition feff ≫ MP requires only that

2πg4dMP R ≪ 1 . (14)

The canonically normalized field is φ = θfeff . Due to the higher dimensional nature of the

model, the potential (12) can be trusted even when the 4d field φ takes values above MP ; no

dangerous higher-dimension operator can be generated in a local higher-dimensional theory.

This conclusion is quite important as it is commonly believed that any inflation model with

field values above MP cannot be justified from a particle physics point of view; we see that

this conclusion is valid only if we restrict to purely 4d models. Quantum gravity corrections

to the potential (12) are negligible if the extra dimension is bigger than the Planck length,

different from what is expected in a 4d PNGB model. Again locality in the extra space is

the key feature; virtual black holes cannot spoil the gauge invariance and do not introduce

a local potential for A5, while non-local effects are exponentially suppressed by ∼ e−2πM5R,

because the typical length scale of quantum gravity effects (the 5d Planck length M−1
5 ) is

much smaller than the size of the extra dimension.
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g24 = g25/(2⇡R)

Massless charged fields, one-loop
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the key feature; virtual black holes cannot spoil the gauge invariance and do not introduce

a local potential for A5, while non-local effects are exponentially suppressed by ∼ e−2πM5R,

because the typical length scale of quantum gravity effects (the 5d Planck length M−1
5 ) is

much smaller than the size of the extra dimension.
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model. The flatness condition, in the simplest scenario
with a single PNGB, requires the scale of spontaneous
symmetry breaking and the values of the inflaton during
the slow roll above the Planck scale, taking the model
outside the regime of validity of an effective field theory
description. Moreover, it is expected that the gravity-
induced higher-dimensional operators are not suppressed.

These issues have been recently re-examined in the
context of extra dimensions (called extra-natural infla-
tion in Ref. 13). Consider a five-dimensional Abelian
gauge field model with the fifth dimension compactified
on a circle of radius R, we identify the inflaton field θ with
the gauge-invariant Wilson loop of the extra component
A5 propagating in the bulk,

θ = g5

∮
dx5A5 , (4)

where g5 is the five-dimensional gauge coupling constant.
At energies below 1/R, θ is a four-dimensional field with
an effective Lagrangian

L =
1

2g2
4(2πR)2

(∂θ)2 − V (θ) , (5)

with g2
4 = g2

5/2πR the four-dimensional effective gauge
coupling constant. The non-local potential V (θ) is gen-
erated in the presence of particles charged under the
Abelian symmetry [16].

For bulk fields with bare masses Ma and charges qa the
potential takes the form [17]

V (θ) =
1

128π6R4
Tr

[
V (rF

a , θ) − V (rB
a , θ)

]
, (6)

where the trace is over the number of degrees of freedom,
and the superscripts F and B stand for fermions and
bosons respectively. Here

V (ra, θ) = x2
a Li3(rae−xa) + 3xa Li4(rae−xa)

+ 3 Li5(rae−xa) + h.c. , (7)

with

ra = eiqaθ , xa = 2πRMa , (8)

and the poly-logarithm function Lik(z) are

Lik(z) =
∞∑

n=1

zn

nk
. (9)

For massless particles (xa = 0) considered in Ref. 13 the
potential is

V (θ) = − 3

64π6R4

∑

I

(−)FI

∞∑

n=1

cos(nqθ)

n5
, (10)

where FI = 0 and 1 stand for massless bosonic and
fermionic fields, respectively.

Neglecting the higher power terms in Eq. (10), one
obtains the same form of the potential as that of the
natural inflation model. The effective decay constant of
the spontaneously broken Abelian symmetry is

feff =
1

2πg4R
, (11)

which can be naturally greater than MP for a suffi-
ciently small coupling constant g4 [13]. Moreover, due
to the extra dimension nature, gravity-induced higher-
dimensional operators are generally exponentially sup-
pressed. This solves the forementioned problems of the
four-dimensional natural inflation model1. The extra-
natural model predicts a red-tilted scalar spectrum with
negligible spectral runnings, same as that of the natural
inflation.

The model we propose in this paper includes one
massless and one massive fields2 coupled to A5, i.e.,
M1 = 0, M2

>∼ 1/R, the corresponding potential for
θ is

V (θ) = − 3

64π6R4

∞∑

n=1

1

n3

[

(−)F1
cos(nq1θ)

n2

+ (−)F2e−nx2

(
x2

2

3
+

x2

n
+

1

n2

)
cos(nq2θ)

]

.(12)

Neglecting the higher power terms in the sum, and defin-
ing a canonical field φ = feffθ, the effective Lagrangian
of our model becomes3

L =
1

2
(∂φ)2 −V0

[
1− cos

(
q1φ

feff

)
−σ cos

(
q2φ

feff

)]
, (13)

where

σ = (−)F2+1e−x2

(
x2

2

3
+ x2 + 1

)
, V0 =

3

64π6R4
. (14)

Note that in our calculations we have added a σ-
dependent term to the potential, Eq. (13), to make it
vanish at the minimum. For σ = 0, this potential coin-
cides with that of the natural inflation model.

The slow-roll parameters of Eq. (1) are

ϵ =
µ2

2

(sin θ̃ + σκ sin κθ̃)2

[1 − cos θ̃ − σ cosκθ̃]2
, (15)

1 If natural inflation model includes a large Z in the kinetic
term[18], redefining the field gives rise to an effective decay con-
stant feff =

√

Zf , which ( as well as the inflaton field itself )
can also be larger than Mp, however a question remained is how
to get a large Z naturally[19].

2 Massive particles have also been considered in Ref. 20, in the
context of extra-dimensional quintessence models.

3 For a specific presentation, we set F1 = 1. The F1 = 0 case is
equivalent since it only corresponds to a co-ordinate shift in the
potential.

2

model. The flatness condition, in the simplest scenario
with a single PNGB, requires the scale of spontaneous
symmetry breaking and the values of the inflaton during
the slow roll above the Planck scale, taking the model
outside the regime of validity of an effective field theory
description. Moreover, it is expected that the gravity-
induced higher-dimensional operators are not suppressed.

These issues have been recently re-examined in the
context of extra dimensions (called extra-natural infla-
tion in Ref. 13). Consider a five-dimensional Abelian
gauge field model with the fifth dimension compactified
on a circle of radius R, we identify the inflaton field θ with
the gauge-invariant Wilson loop of the extra component
A5 propagating in the bulk,

θ = g5

∮
dx5A5 , (4)

where g5 is the five-dimensional gauge coupling constant.
At energies below 1/R, θ is a four-dimensional field with
an effective Lagrangian

L =
1

2g2
4(2πR)2

(∂θ)2 − V (θ) , (5)

with g2
4 = g2

5/2πR the four-dimensional effective gauge
coupling constant. The non-local potential V (θ) is gen-
erated in the presence of particles charged under the
Abelian symmetry [16].

For bulk fields with bare masses Ma and charges qa the
potential takes the form [17]

V (θ) =
1

128π6R4
Tr

[
V (rF

a , θ) − V (rB
a , θ)

]
, (6)

where the trace is over the number of degrees of freedom,
and the superscripts F and B stand for fermions and
bosons respectively. Here

V (ra, θ) = x2
a Li3(rae−xa) + 3xa Li4(rae−xa)

+ 3 Li5(rae−xa) + h.c. , (7)

with

ra = eiqaθ , xa = 2πRMa , (8)

and the poly-logarithm function Lik(z) are

Lik(z) =
∞∑

n=1

zn

nk
. (9)

For massless particles (xa = 0) considered in Ref. 13 the
potential is

V (θ) = − 3

64π6R4

∑

I

(−)FI

∞∑

n=1

cos(nqθ)

n5
, (10)

where FI = 0 and 1 stand for massless bosonic and
fermionic fields, respectively.

Neglecting the higher power terms in Eq. (10), one
obtains the same form of the potential as that of the
natural inflation model. The effective decay constant of
the spontaneously broken Abelian symmetry is

feff =
1

2πg4R
, (11)

which can be naturally greater than MP for a suffi-
ciently small coupling constant g4 [13]. Moreover, due
to the extra dimension nature, gravity-induced higher-
dimensional operators are generally exponentially sup-
pressed. This solves the forementioned problems of the
four-dimensional natural inflation model1. The extra-
natural model predicts a red-tilted scalar spectrum with
negligible spectral runnings, same as that of the natural
inflation.

The model we propose in this paper includes one
massless and one massive fields2 coupled to A5, i.e.,
M1 = 0, M2
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θ is
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Note that in our calculations we have added a σ-
dependent term to the potential, Eq. (13), to make it
vanish at the minimum. For σ = 0, this potential coin-
cides with that of the natural inflation model.

The slow-roll parameters of Eq. (1) are

ϵ =
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1 If natural inflation model includes a large Z in the kinetic
term[18], redefining the field gives rise to an effective decay con-
stant feff =

√

Zf , which ( as well as the inflaton field itself )
can also be larger than Mp, however a question remained is how
to get a large Z naturally[19].

2 Massive particles have also been considered in Ref. 20, in the
context of extra-dimensional quintessence models.

3 For a specific presentation, we set F1 = 1. The F1 = 0 case is
equivalent since it only corresponds to a co-ordinate shift in the
potential.

Massive charged fields in the bulk, one-loop

Delgado, Pomarol and Quiros, PRD (1999)
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An inflation model with large variations in spectral index
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Recent fits of cosmological parameters by the Wilkinson Microwave Anisotropy Probe (WMAP)
measurement favor a primordial scalar spectrum with varying index. This result, if stands, could
severely constrain inflation model buildings. Most extant slow-roll inflation models allow for only
a tiny amount of scale variations in the spectrum. We propose in this paper an extra-dimensional
inflation model which is natural theoretically and can generate the required variations of the spectral
index as implied by the WMAP for suitable choices of parameters.
PACS number(s): 98.80.Cq, 11.10.Kk

The recently released Wilkinson Microwave Anisotropy
Probe (WMAP) data [1] have been used to fit the cos-
mological parameters and confront the predictions of in-
flationary scenarios respectively in Refs. 2 and 3. It
is found that the data (with no other significant pri-
ors) can be best fitted by a standard ΛCDM model
seeded by an almost scale-invariant, adiabatic, Gaus-
sian primordial fluctuation; predictions inferred from the
model also agree with other cosmological measurements
with high accuracies[4]. It is noted that there might
be possible discrepancies between predictions and obser-
vations on the largest and smallest scales. The prob-
lem at the smallest scales is improved when combined
with data from finer scale CMB experiments (ACBAR
and CBI) and structure formation measurements (2dF-
GRS and Lyman α forest), for which a varying scalar
primordial spectrum is favored by the best fit. At the
pivot scale k0 = 0.05 Mpc−1, the best-fit values for
the scalar power spectrum are ns = 0.93 ± 0.03 and
dns/d lnk = −0.031+0.016

−0.018 [2]; this means at a 2σ level
the spectrum runs from blue to red as the co-moving
wave number k increases. As noted, the suppression of
the power at the smallest scale might offer an interesting
solution to the problem of the standard ΛCDM model at
small scales [7].

The intriguing result of a varying spectral index needs
to be closely evaluated with improved statistics and with
future data. If stands, it could severely constrain infla-
tion model buildings. Most extant inflationary models
allow for only a tiny amount of scale variations. In this
paper we propose a single-field inflation model which is
natural theoretically and can generate the required vari-
ations of the spectral index as implied by the WMAP.

For the single-field slow-roll inflationary models, one
usually defines the following slow-roll parameters [8],

ϵ ≡ M2
P

2

(
V ′

V

)2

, η ≡ M2
P

V ′′

V
, ξ ≡ M4

P
V ′V ′′′

V 2
, (1)

where primes represent derivatives with respect to the
inflaton field, φ, and MP = 2.4 × 1018 GeV is the re-
duced Planck mass. Slow-roll approximation requires
ϵ, |η|, |ξ| ≪ 1 in the inflationary epoch.

The primordial curvature (scalar) and tensor pertur-
bation power spectra are given by [8]

PR ≈ V

24π2M4
P ϵ

∣∣∣∣
k=aH

, Ph ≈ 2V

3π2M4
P

∣∣∣∣
k=aH

, (2)

evaluated when a particular mode crosses out the hori-
zon. The tensor to scalar ratio r ≡ Ph/PR ≈ 16ϵ is
generally small in the slow-roll inflation. The spectral
indices and their running are the slopes and curvatures
of the power spectra. In terms of the slow-roll parame-
ters, for scalar perturbations, they are

ns − 1 ≈ −6ϵ + 2η,
dns

d ln k
≈ 16ϵη − 24ϵ2 − 2ξ. (3)

In most inflationary models, ϵ, |η| ∼ M2
P /(∆φ)2,

|ξ| ∼ M4
P /(∆φ)4, and the number of e-folding N ∼

(∆φ)2/M2
P , where ∆φ is the displacement of the homo-

geneous field φ, so there is a hierarchy in the slow-roll
parameters, ϵ, |η| ∼ N−1, |ξ| ∼ N−2, and the variations
of the spectral indices, dns/d lnk, are negligible.

To achieve a running spectrum in the order favored by
the WMAP, one has to consider inflation models with
more exotic potentials [9], such as the running mass
model [10] and models with oscillating primordial spec-
trum [11]. These models can generate significant spectral
runnings, which could be as large as ns − 1.

The Achilles heel of these inflationary models (and
of the inflation paradigm in general) lies, arguably, in
the difficulty of obtaining a sufficiently flat and stable
(against radiative corrections) inflaton potential from the
perspectives of particle physics. Symmetry principles
must be invoked. There are only two known symme-
tries which can protect the flatness of a scalar poten-
tial: supersymmetry and the shift symmetry for a Pseudo
Nambu-Goldstone Boson (PNGB). However, as shown in
Ref. 12 and recently re-emphasized in Refs. 13 and 14,
supersymmetry alone cannot protect the flatness of the
inflaton potential, since it is explicitly broken during in-
flation, and the gravitational effects generically give a
Hubble-scale mass correction to the inflaton.

The shift symmetry was first realized in the natural in-
flation model [15]. Still there are some difficulties in this
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model. The flatness condition, in the simplest scenario
with a single PNGB, requires the scale of spontaneous
symmetry breaking and the values of the inflaton during
the slow roll above the Planck scale, taking the model
outside the regime of validity of an effective field theory
description. Moreover, it is expected that the gravity-
induced higher-dimensional operators are not suppressed.

These issues have been recently re-examined in the
context of extra dimensions (called extra-natural infla-
tion in Ref. 13). Consider a five-dimensional Abelian
gauge field model with the fifth dimension compactified
on a circle of radius R, we identify the inflaton field θ with
the gauge-invariant Wilson loop of the extra component
A5 propagating in the bulk,

θ = g5

∮
dx5A5 , (4)

where g5 is the five-dimensional gauge coupling constant.
At energies below 1/R, θ is a four-dimensional field with
an effective Lagrangian

L =
1

2g2
4(2πR)2

(∂θ)2 − V (θ) , (5)

with g2
4 = g2

5/2πR the four-dimensional effective gauge
coupling constant. The non-local potential V (θ) is gen-
erated in the presence of particles charged under the
Abelian symmetry [16].

For bulk fields with bare masses Ma and charges qa the
potential takes the form [17]

V (θ) =
1

128π6R4
Tr

[
V (rF

a , θ) − V (rB
a , θ)

]
, (6)

where the trace is over the number of degrees of freedom,
and the superscripts F and B stand for fermions and
bosons respectively. Here

V (ra, θ) = x2
a Li3(rae−xa) + 3xa Li4(rae−xa)

+ 3 Li5(rae−xa) + h.c. , (7)

with

ra = eiqaθ , xa = 2πRMa , (8)

and the poly-logarithm function Lik(z) are

Lik(z) =
∞∑

n=1

zn

nk
. (9)

For massless particles (xa = 0) considered in Ref. 13 the
potential is

V (θ) = − 3

64π6R4

∑

I

(−)FI

∞∑

n=1

cos(nqθ)

n5
, (10)

where FI = 0 and 1 stand for massless bosonic and
fermionic fields, respectively.

Neglecting the higher power terms in Eq. (10), one
obtains the same form of the potential as that of the
natural inflation model. The effective decay constant of
the spontaneously broken Abelian symmetry is

feff =
1

2πg4R
, (11)

which can be naturally greater than MP for a suffi-
ciently small coupling constant g4 [13]. Moreover, due
to the extra dimension nature, gravity-induced higher-
dimensional operators are generally exponentially sup-
pressed. This solves the forementioned problems of the
four-dimensional natural inflation model1. The extra-
natural model predicts a red-tilted scalar spectrum with
negligible spectral runnings, same as that of the natural
inflation.

The model we propose in this paper includes one
massless and one massive fields2 coupled to A5, i.e.,
M1 = 0, M2

>∼ 1/R, the corresponding potential for
θ is

V (θ) = − 3

64π6R4

∞∑

n=1

1

n3

[

(−)F1
cos(nq1θ)

n2

+ (−)F2e−nx2

(
x2

2

3
+

x2

n
+

1

n2

)
cos(nq2θ)

]

.(12)

Neglecting the higher power terms in the sum, and defin-
ing a canonical field φ = feffθ, the effective Lagrangian
of our model becomes3

L =
1

2
(∂φ)2 −V0

[
1− cos

(
q1φ

feff

)
−σ cos

(
q2φ

feff

)]
, (13)

where

σ = (−)F2+1e−x2

(
x2

2

3
+ x2 + 1

)
, V0 =

3

64π6R4
. (14)

Note that in our calculations we have added a σ-
dependent term to the potential, Eq. (13), to make it
vanish at the minimum. For σ = 0, this potential coin-
cides with that of the natural inflation model.

The slow-roll parameters of Eq. (1) are

ϵ =
µ2

2

(sin θ̃ + σκ sin κθ̃)2

[1 − cos θ̃ − σ cosκθ̃]2
, (15)

1 If natural inflation model includes a large Z in the kinetic
term[18], redefining the field gives rise to an effective decay con-
stant feff =

√

Zf , which ( as well as the inflaton field itself )
can also be larger than Mp, however a question remained is how
to get a large Z naturally[19].

2 Massive particles have also been considered in Ref. 20, in the
context of extra-dimensional quintessence models.

3 For a specific presentation, we set F1 = 1. The F1 = 0 case is
equivalent since it only corresponds to a co-ordinate shift in the
potential.

Consider two fields coupling to A5 M1 = 0, M2 > R�1
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The model we propose in this paper includes one
massless and one massive fields2 coupled to A5, i.e.,
M1 = 0, M2

>∼ 1/R, the corresponding potential for
θ is

V (θ) = − 3

64π6R4

∞∑

n=1

1

n3

[

(−)F1
cos(nq1θ)

n2

+ (−)F2e−nx2

(
x2

2

3
+

x2

n
+

1

n2

)
cos(nq2θ)

]

.(12)

Neglecting the higher power terms in the sum, and defin-
ing a canonical field φ = feffθ, the effective Lagrangian
of our model becomes3

L =
1

2
(∂φ)2 −V0

[
1− cos

(
q1φ

feff

)
−σ cos

(
q2φ

feff

)]
, (13)

where

σ = (−)F2+1e−x2

(
x2

2

3
+ x2 + 1

)
, V0 =

3

64π6R4
. (14)

Note that in our calculations we have added a σ-
dependent term to the potential, Eq. (13), to make it
vanish at the minimum. For σ = 0, this potential coin-
cides with that of the natural inflation model.

The slow-roll parameters of Eq. (1) are

ϵ =
µ2

2

(sin θ̃ + σκ sin κθ̃)2

[1 − cos θ̃ − σ cosκθ̃]2
, (15)

1 If natural inflation model includes a large Z in the kinetic
term[18], redefining the field gives rise to an effective decay con-
stant feff =

√

Zf , which ( as well as the inflaton field itself )
can also be larger than Mp, however a question remained is how
to get a large Z naturally[19].

2 Massive particles have also been considered in Ref. 20, in the
context of extra-dimensional quintessence models.

3 For a specific presentation, we set F1 = 1. The F1 = 0 case is
equivalent since it only corresponds to a co-ordinate shift in the
potential.



3

η =
µ2(cos θ̃ + σκ2 cosκθ̃)

1 − cos θ̃ − σ cosκθ̃
, (16)

ξ = −µ4(sin θ̃ + σκ sinκθ̃)(sin θ̃ + σκ3 sin κθ̃)

[1 − cos θ̃ − σ cosκθ̃]2
, (17)

where we have defined θ̃ ≡ q1θ and

µ ≡ q1MP /feff , κ ≡ q2/q1 . (18)

To see analytically the effects of σ term, we consider
the following choice of parameters: κ ≫ 1, σ ≪ 1, |σ|κ ≪
1 and |σ|κ2 ∼ O(1). When cosmological scales begin to
cross out the horizon in the inflationary epoch, θ̃ ∼ π,
the slow-roll parameters are approximately

ϵ ∼ µ2(π − θ̃)2 , (19)

η ∼ µ2(−1 + σκ2 cosκθ̃) , (20)

ξ ∼ −µ4σκ3(π − θ̃) sin κθ̃ . (21)

Hence ϵ ≪ |η|. The spectral index is determined by the
η parameter, ns − 1 ≃ 2η, and the tensor fluctuation is
negligible.

From the above equations, one generically would have
|ξ| ∼ η2 ∼ 10−4, corresponding to a negligible spectral
variation. However, the large σκ3 term in Eq. (21) can
enhance ξ substantially (to the size as large as η), and
lead to a scale varying spectrum. Furthermore, for ap-
propriate choices of σ and κ, the scalar power spectrum
can run from blue to red as the co-moving scale k in-
creases. Such a tilted spectrum is favored by the current
data of WMAP [2].

FIG. 1: Spectral indices ns and their runnings dns/d ln k for
σ = −3.8 × 10−4, µ = 1/2, κ = 100 (solid lines), and for
σ = 0.012, µ = 1/3, κ = 15 (dashed lines). k0 = 0.002 Mpc−1

is the pivot scale of WMAP.

We show this behavior of power spectrum running in
Fig. 1, for the following choices of parameters: (a) σ =

−3.8 × 10−4, µ = 1/2 and κ = 100 (solid lines), and (b)
σ = 0.012, µ = 1/3, κ = 15 (dashed lines). To ensure
the accuracy of our results, we have retained the higher
power terms (up to n = 6 for the massless particle) in the
numerical calculations. We have also set the number of e-
folding N (k∗) = 50 at a reference co-moving scale k∗; the
WMAP analyses used pivot scales k0 = 0.002 and 0.05
Mpc−1 [2, 3]. (This scale arbitrariness is the inherent
theoretical uncertainty in our analysis; it can be resolved
if the detail reheating history is known [21].) Normalizing
the spectral index to the WMAP central value ns = 1.1
at k0 = 0.002 Mpc−1 [3], we find dns/d lnk ≈ −0.041 and
≈ −0.021 for case (a) and (b) respectively; they are in
good agreements with the current WMAP fits [2, 3]. Such
a running feature of the spectral index does not exist in
the usual natural or extra-natural inflation models.
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FIG. 2: Regions in the κ-σ plane which give variations of the
spectral index in the range −0.084 < dns/d ln k < −0.027,
for µ = 1/3. The spectral indices have been normalized to
ns = 1.13 at the pivot scale k0.

In Fig. 2 we delineate the parameter space that gives
the required amount of spectral runnings (−0.084 <
dns/d ln k < −0.027)[3] in our model. We have nor-
malized the spectral index ns = 1.13 at the same pivot
scale k0. We show allowed regions in the κ-σ plane, for
µ = 1/3. The correlation between κ and σ can be un-
derstood because one needs a certain amount of cancel-
lations between the two terms in Eq. (20) (to achieve a
spectral running from blue to red).

In our models the size of the fifth dimension is deter-
mined to be of the order R ∼ 10/MP from the COBE nor-

malization, P1/2

R
∼ 10−5. For our choices of parameters,

µ ∼ 0.1, this implies the four- and five-dimensional gauge
coupling constants g4

<∼ 10−3/q1, g2
5

<∼ 10−4/q2
1MP .

These parameter choices could be accommodated in
models of fundamental theories. For example, string
theory predicts a host of exotic particles with fractional

Parameters

µ = q1Mp/fe↵ ⇠ O(0.1� 1),  = q2/q1 � 1, � ⌧ 1

Extranatural inflation modulated by rapid oscillations 
Slow-rolling is slightly broken
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FIG. 13.— Indirect constraints on r from CMB temperature spectrum mea-
surements relax in the context of various model extensions. Shown here is
one example, following Planck Collaboration XVI (2013) Figure 23, where
tensors and running of the scalar spectral index are added to the base ⇤CDM
model. The contours show the resulting 68% and 95% confidence regions
for r and the scalar spectral index ns when also allowing running. The red
contours are for the “Planck+WP+highL” data combination, which for this
model extension gives a 95% bound r < 0.26 (Planck Collaboration XVI
2013). The blue contours add the BICEP2 constraint on r shown in the center
panel of Figure 10. See the text for further details.

To fully exploit this unprecedented sensitivity we have ex-
panded our analysis pipeline in several ways. We have added
an additional filtering of the timestream using a template tem-
perature map (from Planck) to render the results insensitive to
temperature to polarization leakage caused by leading order
beam systematics. In addition we have implemented a map
purification step that eliminates ambiguous modes prior to B-
mode estimation. These deprojection and purification steps
are both straightforward extensions of the kinds of linear fil-
tering operations that are now common in CMB data analysis.

The power spectrum results are perfectly consistent with
lensed-⇤CDM with one striking exception: the detection of a
large excess in the BB spectrum in exactly the ` range where
an inflationary gravitational wave signal is expected to peak.
This excess represents a 5.2� excursion from the base lensed-
⇤CDM model. We have conducted a wide selection of jack-
knife tests which indicate that the B-mode signal is common
on the sky in all data subsets. These tests offer very strong
empirical evidence against a systematic origin for the signal.

In addition we have conducted extensive simulations using
high fidelity per channel beam maps. These confirm our un-
derstanding of the beam effects, and that after deprojection
of the two leading order modes, the residual is far below the
level of the signal which we observe.

Having demonstrated that the signal is real and “on the
sky” we proceeded to investigate if it may be due to fore-
ground contamination. Polarized synchrotron emission from
our galaxy is easily ruled out using low frequency polarized
maps from WMAP. For polarized dust emission public maps
are not yet available. We therefore investigate a range of mod-
els including new ones which use all of the information which
is currently available from Planck. These models all predict
auto spectrum power well below our observed level. In addi-
tion none of them show any significant cross correlation with
our maps.

Taking cross spectra against 100 GHz maps from BICEP1
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FIG. 14.— BICEP2 BB auto spectra and 95% upper limits from several
previous experiments (Leitch et al. 2005; Montroy et al. 2006; Sievers et al.
2007; Bischoff et al. 2008; Brown et al. 2009; QUIET Collaboration et al.
2011, 2012; Bennett et al. 2013; Barkats et al. 2014). The curves show the
theory expectations for r = 0.2 and lensed-⇤CDM.

we find significant correlation and set a constraint on the spec-
tral index of the signal consistent with CMB, and disfavoring
synchrotron and dust by 2.3� and 2.2� respectively. The fact
that the BICEP1 and Keck Array maps cross correlate is pow-
erful further evidence against systematics.

The simplest and most economical remaining interpretation
of the B-mode signal which we have detected is that it is due
to tensor modes — the IGW template is an excellent fit to
the observed excess. We therefore proceed to set a constraint
on the tensor-to-scalar ratio and find r = 0.20+0.07

-0.05 with r = 0
ruled out at a significance of 7.0�. Multiple lines of evidence
have been presented that foregrounds are a subdominant con-
tribution: i) direct projection of the best available foreground
models, ii) lack of strong cross correlation of those models
against the observed sky pattern (Figure 6), iii) the frequency
spectral index of the signal as constrained using BICEP1 data
at 100 GHz (Figure 8), and iv) the spatial and power spectral
form of the signal (Figures 3 and 10).

Subtracting the various dust models and re-deriving the r
constraint still results in high significance of detection. For
the model which is perhaps the most likely to be close to re-
ality (DDM2 cross) the maximum likelihood value shifts to
r = 0.16+0.06

-0.05 with r = 0 disfavored at 5.9�. These high val-
ues of r are in apparent tension with previous indirect limits
based on temperature measurements and we have discussed
some possible resolutions including modifications of the ini-
tial scalar perturbation spectrum such as running. However
we emphasize that we do not claim to know what the resolu-
tion is.

Figure 14 shows the BICEP2 results compared to previous
upper limits. The long search for tensor B-modes is appar-
ently over, and a new era of B-mode cosmology has begun.
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Fitting to BICEP2 and Planck is ongoing



Conclusions
• If the results of BICEP2 are not true, alternatives to 

inflation are still alive and there are various 
mechanisms to generate nearly scale-invariant 
density perturbations 

• If BICEP2 is confirmed, single field inflationary 
universe is the most natural scenario for the very 
early universe. The question left is its validity within 
the effective field theory.  


