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Beyond Einstein T'heories of Gravity

Type I: UV Modifications:

eg. Quantum Gravity, string theory, extra
dimensions, branes, supergravity

At energies well below the scale of new physics A,
gravitational eftfects are well incorporated
in the language of Effective Field Theories

— b c
S = M}%lanck / d4x [ R+ ERQ + ERZ’/ i FRabcng?"Refab + -+ + Luatter
—|—% (RabcdRade)z + ... egCardoso et al 2018

Addition of Higher Dimension, (generally higher derivative operators), no
failure of well-posedness/ghosts etc as all such operators should be treated
perturbatively (rules of EFT)




Type 2: IR Modifications:
Why modity gravity (in the IR)?

Principle Motivation is Cosmological:

Dark Energy and Cosmological Constant

I: Old cosmological constant problem:

Why is the universe not accelerating at a gigantic rate
determined by the vacuum energy?

II: New cosmological constant problem:

Assuming I is solved, what gives rise to the remaining vacuum
energy or dark energy which leads to the acceleration we
observe?



Why modify gravity (in the IR)?

ITI: Because it allows us to put better constraints on Einstein
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Figure 1: A parameter space for quantifying the strength of a gravitational field. The z-axis measures the
potential ¢ = GM/rc® and the y-axis measures the spacetime curvature £ = GM/r3c? of the gravitational
field at a radius r away from a central object of mass M. These two parameters provide two different

quantitative measures of the strength of the gravitational fields. The various curves, points, and legends D. Psaltls ; L]_Vlng ReVleWS

are described in the text.



Guiding Principle

Theorem: General Relativity is the
Unique local and Lorentz invariant
theory describing an interacting single
massless spin two particle that couples [
to matter Weinberg, Deser, Wald, Feynman, .....

: ....GR s leading termv
Locality i effective QFT ...
Massless ? Lorentz Invariant

Single Spin 2



Guiding Principle

Corollary: Any theory which preserves Lorentz invariance
and Locality leads to new degrees of freedom!

Locality (

Massless > Lorentz Invariant

4 | v

Single Spin 2

) &



Theoretical Aspects of Massive Gravity
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Massive Gravity: Hard or Soft?

Hard

A generic local, Lorentz invariant theory at thedinearized level

gives the following interaction between stress energies
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Soft Massive Graviton is a resonance
Hard Massive Graviton is a pole (infinite lifetime)



Soft Massive Gravity: DGP Model

Soft Massive Gravity theories were constructed first!
oGP ol Naturally arise in Braneworld Models: DGP,
Cascading Gravity: Soft Massive Graviton is a

Resonance State localized on Brane

5D gravity, out here

1 d'k > p()Puvas (k)
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Dominates in UV




What does HARD massive gravity

mean?
In SM, Electroweak symmetry

is spontaneously broken by the VEV of the Higgs field
SU(2) x U(1)y — U(1)as
Result, W and Z bosons become massive

Would-be-Goldstone-mode in Higgs field becomes
Stuckelberg field which gives boson mass

Higgs Vev  Higgs Boson Stuckelberg field

\\

v+,0

e.g. for Abelian Higgs
A, — A, +0,X T — T+ X



Symmetry Breaking Pattern
In Massive Gravity - Local Diffeomorphism Group and an
additional global Poincare group is broken down the diagonal

subgroup

Dif f(M) x Poincare — Poincaregiagonal

In Bigravity - Two copies of local Diffteomorphism Group are
broken down to a single copy of Diff group

Dif f(M) x Dif f(M) — Dif f(M)aiagonal



Higgs for Gravity

Despite much blood, sweat and tears an explicit
Higgs mechanism for gravity is not known

However if such a mechanism exists, we DO know how to write
down the low energy effective theory in the spontaneously broken

phase

For Abelian Higgs this corresponds to integrating out the Higgs boson and
working at energy scales lower that the mass of the Higgs boson

Higgs I&)Ason. Stuckelberg field
E < m, d=(v+pe™T

* Stuckelberg formulation of massive vector bosons



Stuckelberg Formulation
for Massive Gravity

Arkani-Hamed et al 2002
de Rham, Gabadadze 2009

Diffeomorphism invariance is spontaneously broken but
maintained by introducing Stueckelberg fields

Vev of spin 2 Higgs field

: = (0 Stuckelb
defines a ‘reference metric’ fuv = (Opv) uckelberg

reference metric fields

Dynamical Metric \

g V(:E)
’ Fo = fa5(6)0,670,6"

helicity-1 mode of graviton
¢a — ¢ 1 \Aa 1 O A3 — mQMp
mM p A3 e

helicity-o mode of graviton



Stuckelberg Formulation for Bigravity

Fasiello, AJT 1308.1647

Dif f(M) x Dif f(M) — Dif f(M)diagonal

Bigravity breaks the same amount of symmetry as
massive gravity, need to introduce same number of

Stuckelberg fields

Dynamical metric 1 Dynamical metric 11
A B
g,ul/(a?) F,uV — fAB(¢)a,u¢ 8V¢
A A, L oa
O =z A o




Fasiello, AJT 1308.1647

But there are two ways to introduce Stuckelberg fields!

Dynamical metric 1 Dynamical metric 11
A B
g,uy(a?) FMV — fAB(¢)8M¢ 8V¢
it = oM x) = 2 + a.
OR

Dynamical metric 1 Dynamical metric 11

éAB(jj) — guV(Z)aAzuﬁBZV fAB(f)

(Galileon




Discovering how to
square root
F,ul/ — fAB(¢)8M¢A8V¢B

1
A? 9%
mMp _l_AB8

¢CL:£E(J,_|_

Helicity zero mode enters reference metric squared

Fo, =1, - AB@ 0,7 A6a Oqmd™ 0, m

To extract dominant helicity zero interactions we need
to take a square root

i ] 1
_\/g—lF_ » R Ny 13 0,0,

Branch uniquely chosen to give rise to 1 when Minkowski




de Rham, Gabadadze, AJT 2010

Hard A3 Massive Gravity

Dif f(M) x Poincare — Poincaregiagonal

1 2
L=V M?% R|g] Zﬁnu + L
K=1- \/ g 1f Characteristic

Det|1 + AK]| = Z AU, ( / Polynomials

Unique low energy EFT where the strong coupling scale is
A3 ( 2 MP) 1/3

5 propagating degrees of freedom
5 polarizations of gravitational waves!!!!



Hassan, Rosen 2011

Hard Massless plus A3 Massive Gravity

. d
L= (M%NRM + M}/=FR[f] —m? BnUn(K)> + Lo
n=0
d decoupling M — o
Det[1+ AK] = A\"U,(K) limit /
n=0
K=1-+g1f '

4

. . £:%\/jg <M123R[g]_m226nun) + Ly
Bigravity= n—0

massless graviton (2 d.o.f.)

+ massive graviton (5 d.o.f) +decoupled massless graviton f,,



T'he original (post Einstein) mod1ﬁed

Compact
Dimension

dxr) = dlr + k2rR)
k=0,12,..)
p=Fk/R

theory of grawvity:
Raluza-Klewn theory

* § Dimensional Gravity compactified
on a circle

* 5D massless graviton = 4D massless
graviton + 4D massless photon + 4D
massless scalar + IN 4D massive
gravitons

¥ Consistent UV modification at KK
scale m= 1/R



Kaluza-Klein = theory ot

massive gravitons

ds® = dy* + Ny + hpw(x,y)|dzH dx”

y € [0, L]
o, g) = 3 T (@)
n——oo
Kaluza-Klein tower of massive graviton states N 2_7Tn
with wavefunctions h,,, ,(x) N

Finite number of weakly coupled gravitons N ~ M, j.na L
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Gravitational 1 ™z
Deconstruction *.. ..

Arkani-Hamed, Cohen, Georgi 2001
Arkani-Hamed, Schwartz 2004

d82 _ dy2 4 [77,uv 4 h,uy ($, y)]dz“dw” de Rham, Matas, AJT 2013

Now replace the continuous extra dimension by a lattice

— L L N
Yk = Mg Oyl (2, Y1) = 7 (M (2, Yiot1) = Py (T, Y)
k=0...N

Gives a theory of N massive and one massless graviton

This picture of the discrete Fourier transform of the KK picture



Gravitational Deconstruction

de Rham, Matas, AJT 2013

All of this may be performed at the non-linear level, easiest in
Einstein-Cartan (vielbein formalism)

D GR
) S:Mg/dy/E/\E/\E/\Rg,

4D multigravity - Ghost free 1 massless + N massive gravitons

Hinterbichler and Rosen 2012

S:Mfz/e/\e/\R4+MZZm?6i/\€i/\(€¢+1—67;)/\(67;+1—67:)

By weighting the discretization we may generate all
allowed ghost free mass terms



Universal Decoupling Limit: Galileon

At energies m < B < Mpranck Ag = (m2MP1aHCk)1/3

All Lorentz invariant Hard and Soft and Multi-graviton theories
look like Galileon theories (plus massless spin 2 plus Maxwell)

0,0,
H R -
T — T+ v,r" +c K, = A3
1 1
S = /d4ZE {_Zhﬂygﬁyﬁhaﬁ — Zv'uygaﬁvaﬁ =+ SGallleon =+ Smattercouplmg
4
SGalileon — Z T Cp, Mn(K) Det —+ )\K Z X"’Z/l

Novel feature, matter has “disformal’ couplings

1
Smatter coupling = d4a:M—P(7TT + 0,70, T 4 ...)



Explicitly Decoupling limit for Bigravity

1 1 de Rham, Gabadadze 2009
g“V:n“V+M Py = T + M Fasiello, AJT 201
P ’ 3
massless hehc1ty 2

massless helicity o
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A3 M, A3

3 v v 3 A v
—hM () XM A “ 4+ AP0 (nd + T Y
4 A

1 n

Xmw — 6 8“"'6”'"(77 i H)nn3—n
2 (3 —n)!n!

8a(9b7r n=
3 1 B’n ~1) 4—
ymw — 6,ugl/(n_l_l—[)(n )77 n



Generalized Galileons and Generalized

Massive Gravity
de Rham, Keltner, AJ'T, 2014

The massive gravity action can be generalized to a covariant
theory whose decoupling limit corresponds to the generalized
Galileons

d
S =M} [ dtoy=g | @(6°0n) R~ 3" B¢ 6 Un(K)

inclusion of potentials for Stuckelberg fields, in the decoupling
limit corresponds to

d Kb =0r0,m
— 1
1;1]3. these models .allow L Z A (X)Uy, (K) X — = (5’%)2
or flat FRW solutions!!! n=0 9



Massive Gravity as an EF T

Ghost free massive gravity, bigravity and multigravity
are Effective Field Theories (EFT), which breaks down

at the scale A5 = (m2 MPlanck)l/ 3

(Generic one-loop Graviton diagram needs

counter-terms at the scale (principally due to % |
helicity zero mode interactions) é‘ﬁ

-

A3 — (mZMPlanck) 1/3

Counter-terms which are not needed in GR!

Vainshtein radius LARGER than Schwarzschild radius



Massive Gravity/Galileons etc as an EF 1

One-loop Graviton diagram needs counter-terms at the scale

K=1- \/g_lf A3 — (rrnzj\4Plaunck)1/3

%

In decoupling limit: Mpranck — 00, m — 0 é‘/c |

0, 0,7 -
K, — +t£=
b A?é

EFT corrections then take the form
(even away from the decoupling limit) de Rham, Melville, AJT 2017

-M2R ASM g€ 4_”K”’- A v qu Bravpo \'
9 T ZO‘” g ™ Zﬁpﬂﬂ“ A pv A2

Infinite number of derivative suppressed operators

HOW DO WE GO BEYOND THIS?

ALy =




(auge Invariance and Mass

Schwinger taught us that you can have a
mass without violating gauge invariance!

1 1

Example: Proca theory L = 1 Y — §m2AZ
Introduce Stueckelberg fields
L= i R %M(AM — 0,0)*
Integrate out Stueckelberg fields
L= i WP — imQFWiFW

Such a nonlocal mass term can be obtained from loop eftects

from integrating out a light field S cbwinger Model D)



(Gauge Invariance and Mass

We can do the same for massive gravity - integrating out
Stueckelberg fields generates non-local mass terms which are
nevertheless manifestly gauge invariant

Ghost-free massive gravity can be written in the
manifestly gauge invariant form

1 1 1
L — 5\/ —gR — §m2R’W—2(R“V — g’UJVR) -+ ...

These non-local terms could be viewed as arising
from integrating out quantum effects from light fields



UV complete Massive Gravity

Porrati, 2001
A local, causal, unitary theory UV completion of a theory of a

UV completion: 4d gravity coupled to a CFT in AdS

L=+v—g(R+2|A|)+ LcrT RIS

, Boundary

CFT = e.g. conformally coupled scalar field &

Integrating out the CFT with mixed boundary conditions at the
boundary of AdS generates a non-local contribution to the action

Non-local term precisely generates a mass for the graviton!

Higgs Mechanism for Gravity or Schwinger mechanism for Mass!



Raising the Cutofl- the Third Way?

1 d'k Puvas (k) > p(1) Puvap (k)
AS ~ TH (k T oo —tr b / d praf T8 (k
/(2#)4 () Z Pole 2 1 m?2 ” 0 K k% 4+ p (%)

2
MPlanck




No vDVZ discontinuity on AdS

Its an old result, that on AdS you can take the massless limit of
massive gravity and recover GR plus a decoupled sector

= NO vDVZ discontinuity!
KEKD = 6 = 9" fap($) 009" 08"

1 _ 1
L = §MglaickR B 2‘2\4]:€)z1a121(:k([(2 K2)
dd—3) 4o (d—2)+1dof
L2
On AdS fabp(®) = —5 74 we can take
d

Mpianck — 00 A = (mZMgl_a?le)l/d fixed

Ao > Ag Only Problem: We don’t live in AdS!!!!




Warped Massive Gravity

(Gabadadze 2017
Solution: Do AdS Massive gravity in § dimensions, with our
universe localized on a 3+1 brane

Einstein Hilbert + mass term

on the brane 1 87
2 2 2(1.2 2
5D Massive Gravity on AdS
in the Bulk
L2
/ fa,b(¢) — 5 Tab
5

1 1
[’blﬂk — §M53R5 o §m2M]§lanck(Kil/ o Kz)




Soft and Hard (nonlocal) massive gravity

Cutoff is raise to Gabadadze 2017

1
22 r2\1/4 3 2\1/5
A2:(m M4)/ NZN(M5m)/ >>A3
This is achieved because of a continuum/resonance of
soft gravitons whose masses are smaller than usual hard mass

graviton

Ay

Result: Low energy effective theory is more non-local
(although full theory is completely local)



Observational Aspects of Massive (Gravity



Constraints on the Graviton Mass
de Rham, Deskins, AJT, Zhou, Reviews of Modern Physics -

o B
e -

Yukawa
mg (eV) g (km)
10—2° 1012 Solar System tests Fyukawa
1032 1041 Weak lensing Foouomy 4
10—2Y 10%Y Bound clusters

Dispersion Relation
mg (eV) Ay (km)
10—22 101 aLIGO bound
10—2Y 10? Pulsar timing
1030 1020 B-mode’s in CMB

Fifth Force
mg (eV) g (km)
10~ 24 1042 Lunar Laser Ranging
10—27 10%7 Binary pulsar
1032 1042 Structure formation




Vainshtein effect is strongly scale and density dependent
T Yukawa region

7“>m_1

Strong coupling

Weak coupling region
region
Vainshtein radius __—
Schwarzschild PP
region 4000 M pc

r<rg



mg (eV) Ay <kr§>ifth e F lfth FOFC@ BOUDdSI

1032 1042 Lunar Laser Ranging
10—27 10'"  Binary pulsar

1032 1022 Structure formation Lunar Laser ranging

Traditionally Strongest Constraint on Mass of GGraviton

For DGP, (cubic Galileon)

1/2
my < 06 (TS’@> my < 1077%eV

For hard mass graviton, (~ quartic Galileon)

1/2
my < ¢34 (T&@) my, < 10730V

a3



Binary Pulsars

de Rham, AJT, Wesley 2012

de Rham, Matas, AJT 2013

Dar, de Rham, Deskins, Giblin, AJT 2018

Extra polarizations of graviton = extra modes of gravitational wave

Binary pulsars lose energy faster than in GR so the orbit slows down more

rapidly

directions of gravity waves

A B ¢ D E
Pulsar 1913+16 | B2127+11 | B1534+12 | J0737-3039 | J1738+0333
Taylor-Hulse double pulsar
M, /M, 1.386 1.358 1.345 1.338 1.46
M,/ M, 1.442 1.354 1.333 1.249 0.181
Tp/days 0.323 0.335 0.420 0.102 0.355
e 0.617 0.681 0.274 0.088 3.4 %1077
TE ] Monopete | 98X 1072 [14x100% [ 11x 1072 51x 102 | 8.1 x 10~
%l'ﬁ Dipole 10—30 10—32 10—33 10—32 10—31
Bl Gnaarmeis | 9lx 107 [ 10x10°2 | 61 x10°% | 43x10" | 1.1x10°%
Elor 11x1072 [1.7x10°2 | 85x 10" | 56x 10-13 10~
o 51x10°5 [1.3x10"1B | 20x10"5 | 1.7x 10~™ 1015
Ref. [29, 30] 31] 32, 33] [34] [35]

Table 1. The predicted contribution to the orbital period derivative Tp from 7 alone in
the monopole, dipole and quadrupole channels (taking m = 1.54 x 10~33¢V) for four known
DNS pulsars (A to D) and one pulsar-white dwarf binary (E) with the GR result. The
experimental uncertainty o is given using [36].




Perturbation T'heory

Cubic Galileon Action

Sz/d% (-Z(fh)? (1 : Sig( m) : QJ\ZPIWT)

Orbiting Point Source

TH = — ZMd?’ Zi(t)) | 04 6°

|74

Spherically Symmetric Background

A -\/ 32137 1 M
0, = — [1/9rt + —— — 3r7 P =
T (VT T TS ' T (16MP1>




Scalar Gravitational Waves:
Power Radiated

P =

TN T 2 1 3 —int /T,
N2 ZZ Tp‘Mlmn‘ Mimn = T_P/O dt/d xUn (1) Yim (0, ¢)e 0T (x,t)

Pl n=0 1m

Dominated by Quadrupole Radiation:
_ 2
_ 97/2 5A1  (Qp7)? Mg

Pquadrupole 3/2 2 Q2P
PGal(iileon |
relative to GR result: chlﬁ —— = Q(QPT*)_B/Q(QPf)_l
quadrupole

For realistic binary pulsars suppressed by 109-107

Static Suppression o (Qpr,)~%/?



Movie



https://www.dropbox.com/s/c7d36qxako9e3i6/3Ddf2.mov?dl=0




Dispersion Relation

LA ) B Direct Detection of GW

10—20 10? Pulsar timing
Ly 1020 B-mode’s in CMB

Constraints modifications of the
dispersion relation

2 1,2 2
E* =k +m g Generic for the helicity-2 modes of any Lorentz
invariant model of massive gravity

GW signal would be more squeezed than in GR |
- e WOl
Speed increases with frequency ,Ug / c~1— 5 ( C / Ag f)
v 200Mpc At
— 2 =5%x 10717 ) (=
C D 1s

200Mpc\ /2
<4 x107% v( At / )
Mg S A X eV A G0, — D

D ~ 400Mpc, f ~ 100Hz, p~23 = m, < 10 **eV  Abbottetal., 2016




Do we know all the constraints on graviton mass from

al.1GO??

regime and, bound, for the first time several high-order post-Newtonian coefficients. We constrain the graviton

No! Many other
ﬁ‘ . d Compton wavelength in a hypothetical theory of gravity in which the graviton is massive and place a 90%-
e eCtS tO COHSI GI' confidence lower bound of 10" km. Within our statistical uncertainties, we find no evidence for violations of

LIGO & VIRGO, PRL116, 221101 (2016)

* Graviton Mass depends on environment, for instance Meraviton < 10 22 eV
it depends on distance to black holes GW150914

* Graviton Mass likely to vary non-adiabatically
during merger creating additional non-adiabatic inspira ' Merger Qérlil’n
effects in the waveform

* Additional scalar (and vector) gravitational Q O c .

radiation. Scalar radiation may dominate effects on

tensors. P 7
* Black hole/NS solution modified, in particular 5 °°K A \ [\ i
quasi-normal modes may be different =M\ / ""-.', f\fw’
* Vainshtein suppression may not be active in & | Vv |
merger region - needs proper numerical simulation - [[ Fmerearertiy | |
* PN expansion almost certainly doesn’t work in 030 035 0.40 045
Vainshtein region Time (s)

AJT Conjecture: Likely real constraints on LI MG are stronger!



What about Black hole solution, 1s horizon modified?

Many attempts to construct Black Hole solutions of massive (bi) gravity have
focused on special symmetric solutions many in non-standard branches.

Babichev, Brito, Volkov; Comelli, Pilo... many more

There should be a solution with
Yukawa asymptotics!
= Schwarschild as m — 0

Nonsingular Black Holes in Massive Gravity:

L ; . . "
Tlme—Depen dent Solutions Black Hole Mechanics for Massive Gravitons

Rachel A. Rosen!

! Department of Physics, Columbia University,
Rachel A. Rosen New York, NY 10027, USA

It has been argued that black hole solutions become unavoidably time-dependent when the gravi-
ton has a mass. In this work we show that, if the apparent horizon of the black hole is a null surface
coordinate-invariant singularities at the horizon. In this work we investigate the possi- with respect to a fiducial Minkowski reference metric, then the location of the horizon is necessarily

bility of black hole solutions which can accommodate both a nonsingular horizon and time-independent, despite the dynamical metric possessing no time-like Killing vector. This result is

. . . . . non-perturbative and model-independent. We derive a second law of black hole mechanics for these
Yukawa asymptotics. In particular, by adopting a time-dependent ansatz, we derive black holes and determine their surface gravity. An additional assumption establishes a zeroth and

perturbative analytic solutions which possess nonsingular horizons. These black hole a first law of black hole mechanics. We apply these results to the specific model of dRGT ghost-free
solutions are indistinguishable from Schwarzschild black holes in the massless limit. At massive gravity and show that consistent solutions exist which obey the required assumptions. We
finite mass, they depend explicitly on time. However, we demonstrate that the loca- determine the time-dependent scalar curvature at the horizon of these black holes.

Y * Y
tion of the apparent horizon is not necessarily time-dependent, indicating that these
black holes are not necessarily accreting or evaporating (classically). In deriving these



Cosmological Solutions

D’Amico et al. 2011

Perfect Homogeneous and Isotropic solutions (FRW) are
forbidden in the simplest form of Massive Gravity

Possible to find inhomogeneous models that are locally
indistinguishable from FRW over scales set by the graviton

mass
COMPTON WAVELENGTH of GRAVITON -=
COHERENCE LENGTH

_1 In each bubble the

— Vainshtein mechanism
ensures the cosmology
is close to Einstein GR




Cosmological Solutions

e Previously described Generalized Massive gravity does
admit FRW solutions

® Bi-gravity and multi-gravity do admit FRW solutions

o Quasi-dilaton and other extensions where mass term
depends on a field admit FRW solutions

e In general allowing the mass to depend on other
fields (be they scalars or additional metrics) is the
solution to this problem!



Growth of Structur% )

These theories have a modified growth e
of structure which is highly nonlinear

p=p+op

In early universe when  p > A°Mp

Vainshtein mechanism at work, fifth force is screened - GR
recovered e.g. inflation is essentially unchanged

In late universe when p << A°Mp

Vainshtein mechanism switches off and linearized fluctuations
know about fifth force
As structure grows o | |
Vainshtein mechanism turns on in high density (potentlal)
regions and not in low density



Exastential Crisis of MG:

Does a UV completion exist?

Can I describe theories of massive
gravity/multi-gravity at energy scales higher than Az ?

Is there a UV completion?

Is there a Lorentz Invariant Higgs mechanism for gravity?

If not, what do we give up? Lorentz invariance? Locality?



Are all EF'1s allowed?

aka Swampland!

With typical assumption that:
UV completion is Local, Causal, Poincare Invariant and Unitary

[O(:L‘), OA(?J)] =0 if(z—y?’>0

Answer: NO! Certain low energy eftective theories do not
admit well defined UV completions

Recent Recognition: POSitiVity Bounds!

A totic (Sub)Luminality):
Symp OT1C u umina 1ty dé(E)

0
iE

Positive Wigner-Eisenbud time delay T ~




Don’t Panic - 'Think Positive!

: Claudia de Rham
Scott Melville Shuang-Yong Zhou

Positivity Bounds!

Recently featured in CQG+ ...
https://cqgplus.com/2018/05/30/low-energy-think-positive/




A N S

1960’s S-matrix assumptions

Unitarity STS =1 |A(K)| < aePl®!
Locality: Scattering Amplitude Polynomially (Exponentially) Bounded
Causality: ~ Analytic Function of Mandelstam variables (modulo poles+cuts)
Poincare Invariance
Crossing Symmetry:  Follows from above assumptions
Mass Gap:  Existence of Mandelstam Triangle and Validity of Froissart Bound
s-channel u-channel
_ _ 2
A+B—-C+D A+D—->C+B Sstittu=dm
2
Ap p O AR RO s=(p1+p2)
2
= (p1 — p3)
2
= (p1 — pa)

BR oo 5 M Iz S u



Forward Scattering Limit Dispersion relation
Complex s plane

t =10 Im(s) Physical scattering

% region is § > Am?

Re(s)

Crossing: /

u=4m? — s

As Au < ps(p) / * pu(p)
s(8,0) = b ? ?
A0 = Lt bt [ [
Positivity/Unitarity

No. of subtractions =2

p(6) = Ll A(s,0)) = IR 7(s) < 3 (log(s/s0))?



Forward Limit Positivity Bounds

Recipe: Subtract pole, differentiate to remove subtraction
constants

As Ay

m2—s m?2—u

Al (s,t) = As(s, t)

L d* AL(2m?,0) = /00 ps() | /oo pu (1) >0
M'dsM ™ ’ 4m?2 (ﬂ’ T 2m2)M+1 | 4m?2 (M o 2m2)M+1
RH Cut LH Cut M > 2
Assume Weak Coupling Adams et. al. 2006

1 dM 00 tree o0 tree
ps (1) / Pub)

/tree 2 .
M! dsMAS (2m”,0) _/A2 (p—2m2)M+1 * [ 5 (pu — 2m2)M+1

Directly translates into constraints on Wilsonian action



Extension away from forward scattering hmait

de Rham, Melville, AJ'T, Zhou 1702.06134

S >
A(s ) = 167,/ > 20+ 1) Py(eos D)a(s

=0

Unitarity

Ima;(s) >0, s>4m? Tm ay(s) = |ag(s)[® + - --

d" ing  — p
@ TmA(s, 1) -0 using  —— ()
dt™ t=0

ImA(s,t) >0, 0<t<4m®, s> 4m?

M > 2

am? (6 — 2m2 + ¢/2)MH1 T 7

- 1 [° ImA,(u,t 1 [ ImA,(u,t
/ mAs(p, 1) / m Ay, (i, ) < 0

/ 2 2 t —
M1 asi A (2met) = o iz (o — 2m? + £/2)M T



What about general spins,
e.g. spin 2 = massive gravity?

In forward limit, dispersion relation holds for helicity amplitudes

Ay a0, (8,0) has dispersion relation with 2 subtractions

Allowed

-04 -02 0.0

€3

0.2

0.4

.. Jp
Helicity: o P, S, A) = Alp, S, \)

i Also applies to INDEFINITE helicity

This has been used to place
constraints on the mass parameters
In massive gravity

Cheung & Remmen (2016)

in the forward scattering limit



Analyticity for Spins

IHAl(S)

In addition to usual scalar
poles and branch cuts
we have ........

1. Kinematic (unphysical) poles at s = 4m°

2. +/stu branch cuts
3. For Boson-Fermion scattering +/—su branch cuts

Origin: non-analyticities of polarization vectors/spinors



Iransversitas, lransversitatum, et omnia lransversitas
Kotanski, 1965

Helicity ransversity

~ ~
-

E: S1,, 52, S1% ) Sox
1727374 u>\171uAQTzuT?,)\SuMMH)‘l)‘?)‘?))“l
A1A2A3)4

Change of Basis uy, = (S, Ne '27ze "2 lvel 2 72| G, 1)

1?2 (s,t,u) = et 2 TIXTY (u,t,s)

T1T2T3T4 —T1—T4—T3—T2

Crossing is Simple!!



Dispersion Relation with Positivity along

BO'TH cuts

de Rham, Melville, AJ'T, Zhou 1706.02712
Punch line: The specific combinations:

7:-—1:-27-37-4 (37 9) — (\/ _Su)g‘S‘Sl—FSQ (7'71727374 (37 6) + 7;1727374 (57 _0))

Im(s .o
) have the same analyticity structure

Re(s) Implies Dispersion Relation

m? 3m? 4m?

1 dVs -,
f7'17'2(87t) — NS' dSNS,];17'27-17-2(8’t)

1 (*® Abs, T 1 1 [ Abs, T+ Am? —t— .t
f7-17-2 (v,t) = —J d 52 T172T172 ('u ) 4 _J d,u U 7'17'27'17'2< M )
T Jumz  (p—2m2 +t/2 —v)Nstl 7 ), o (1 — 2m2 + t/2 + v)Ns+1



ds

Application to Massive Gravity
Unitary (Gauge Massive Gravity

Einstein-Hilbert Mass Term

M m?

L5 7 (R 9] =~ V(g,h)>

Parameterize generic mass term (without dRGT tuning) as

V(g,h) 2[h*] = [A]* + (e = 2)[W*] + (2 + g)[hz] ]

©(dy + 3 — 3¢)[hY] + (ds — Z _ e)[h2]?

+ ...

where [n] = #hu, [12] = 0#huan®Phs,,

04 02 00 02 04 ds = —d1/2+3/32+ Ad, ¢y =—3c1/2+1/4+ Ac

3



Application to Massive Gravity

Forward Limit

0” 352
2M];2)1m6wfa5|t=0 :T|OKSBS|2 (AC (—6 + 901 — 4AC) — 6Ad)

176

+ ?Ckikgﬁ;(avl 5\/1 — Ckv2ﬁv2) Ac (3 — 3¢y + 4AC)

Positivity for general helicity implies: Ac =10

Beyond forward % oo (0,1) o LAd+o<—) > 0

10 10
A5 A5

Ad =0
These are precisely the tunings that raise the cutoft from

Ay = (m4MPlaan)1/5 — Ag = (rrn2]\4Plamck)1/3



Summary

We now know how to write down theories of multiple
interacting massive spin 2 states and have examples of both
hard and soft massive gravity theories

(Galileons arise UNIVERSALLY in the decoupling limit
Phenomenology Dominated by Vainshtein Mechanism

Simulations of Binary Pulsars confirm that additional scalar radiatior
is suppressed

Biggest outstanding question is UV completion. Known
examples appear to work on Anti-de Sitter spacetime

Positivity Bounds provide the most strongest constraints so far on the
UV completion of the EFT - ongoing work with Prof. Zhou -

WATCH THIS SPACE!




