Strings and the Cosmos

Yeuk-Kwan Edna Cheung Perimeter Institute for Theoretical Physics

University of Science and Technology, China May 27th, 2005

String Theory as a Grand Unifying Theory

- 60's: theory of strong interactions
- 70's: graviton, as well as gauge bosons in spectrum --> grand unification
- 80's: consistent as quantum theories, 5 supersymmetric string theories
- 90's: D-branes, dualities --> M-theory, AdS/CFT
- present: QCD, cosmology, particle physics

Gravity--Gauge Theory Unification:

- o unification is built in
- massless excitations of strings:

 $G_{\mu
u}, B_{\mu
u}, \phi, A_{\mu}; \Psi$

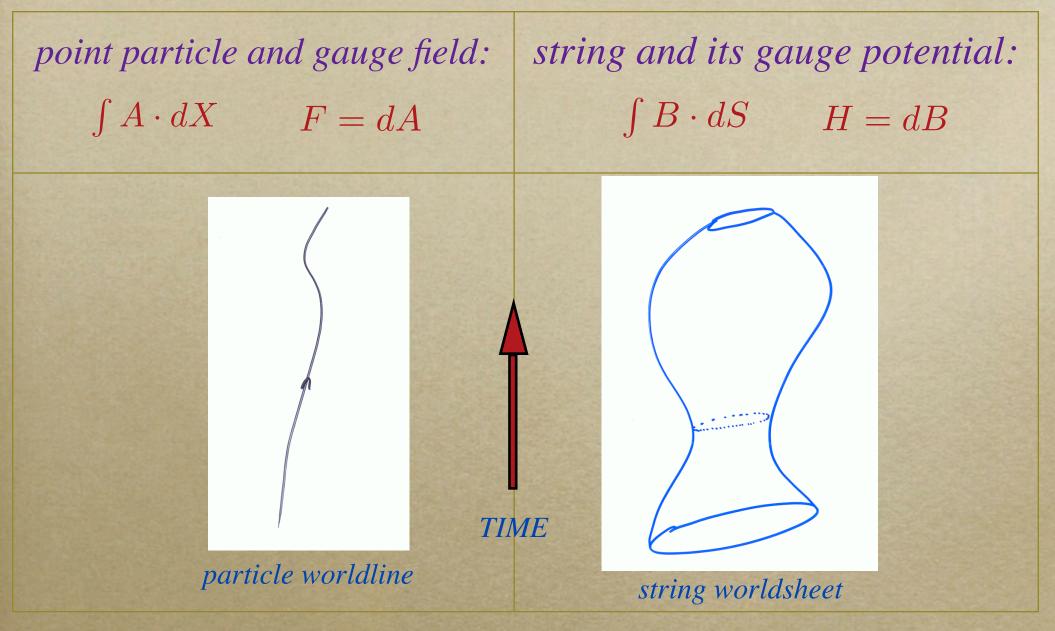
- no UV divergences physical amplitudes are finite.
- the only consistent quantum theory capable of describing graviton scattering at high energy

Standard Model for Cosmology

Successes: inflationary models solve causality and flatness problems

- ° Remaining problems:
 - initial conditions: a gravity theory valid beyond Planck scale
 - dark matter
 - cosmological constant/dark energy: extra dimensions, extra degrees of freedom
 - who is the inflaton? -- many light scalars in the low energy spectrum

Inflation--highly successful phenomenology needing a fundamental theory

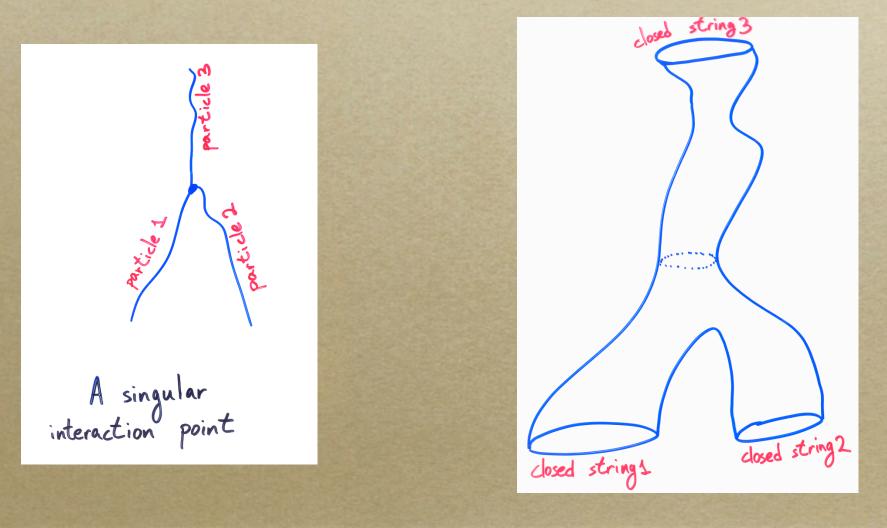

- CMB fluctuations confirm an inflationary universe at the early time.
- But it is hard to understand how it follows from any known microscopic physics.

String theory--a beautiful fundamental theory that provides a consistent description of gravity at high energy--looking for experimental confirmation

The discovery of D-branes and progress in moduli-fixing -> models.
 String theory dramatically modifies our notion of spacetime and may improve the understanding of the early universe where quantum/high energy effects are crucial, where extra dimensions, if any, will come into play.

Outline

- String theory as a GUT
- basic notions of string theory
- flux stabilization: a touch of reality
- T-duality: a lesson from string
- strings in fluxes: going beyond weak gravity
- conclusion

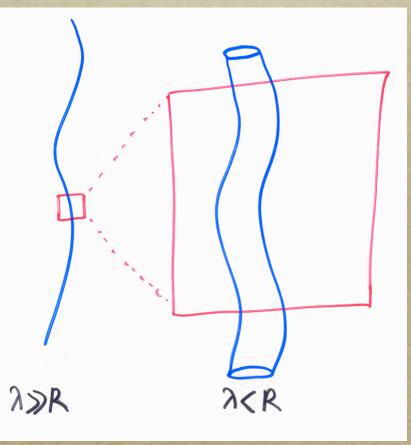


If strings are indeed fundamental objects, then $B_{\mu\nu}$ will play a role as fundamental as A_{μ} .

• string sigma-model action:

•
$$S = \int G_{\mu\nu} \partial_a X^{\mu} \partial_b X^{\nu} h^{ab} + B_{\mu\nu} \partial_a X^{\mu} \partial_b X^{\nu} \epsilon^{ab}$$

• interactions: joining and splitting of strings

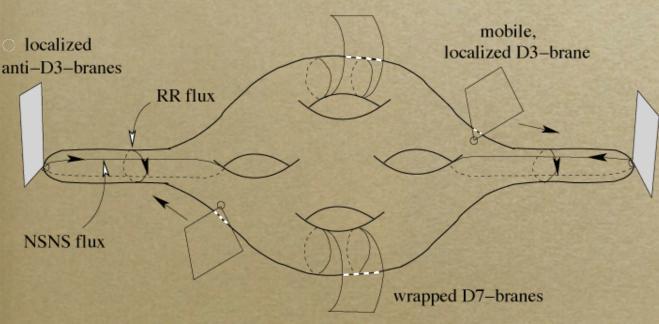

Notions of Particle Physics:

- classically: small strings as particles
- quantization:
 - quanta of excitations correspond to particles
 - closed strings: $G_{\mu\nu}, B_{\mu\nu}, \phi$
 - \circ open strings: A_{μ}
- consistency requires that D=10 and existence of massless excitations

Models based on Compactification

superstrings are consistent only in D=106 dimensions are compact and too small to be observed.

the radius, R, is a free parameter
→ a massless scalar
BAD NEWS:
4-D physics depends crucially on the value of this parameter!
→ the moduli problem


Solving the moduli problem by fluxes

Giddings, Kachru, Polchinski, 2001 (Randall--Sundrum Models 1999)

more complicated compactification manifolds --> a zoo of scalar fields.
parameterize shapes and volume of the internal manifolds

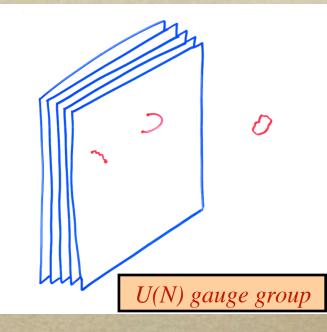
• problematic: not observed in Nature - low energy (4-D) physics crucially depends on the values of such scalars.

• GKP: turning on fluxes can fix some of the moduli.

Kachru, Kallosh, Linde, Maldacena, McAllister and Trivedi, 2003 Burgess, Martineau, Quevedo, Rajesh, Zhang; Antoniadis, Bachas, Fabre,Partouche, Taylor; D'Auria, Ferrara, Gargiulo, Trigiante,Vaula; Blumenhagen, Lust, Taylor; Becker, Becker, Haack and Louis; Berg, Haack, Kors; Cascales, Saad, Uranga; Curio, Krause, Lust; Blumenhagen, Cvetic, Marchesano, Shiu;

a concrete example later....

one more player: the D-brane


Polchinski, 94

o hyper-surfaces where the open strings can end.

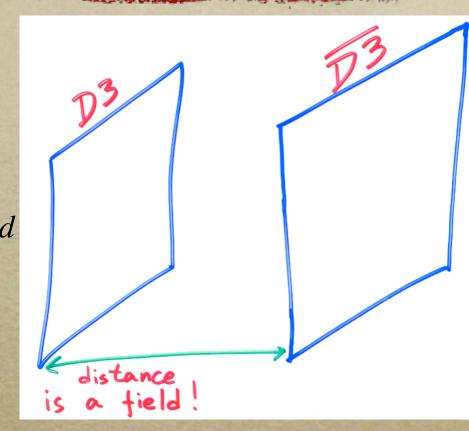
0

o - normal to the surface: Dirichlet boundary conditions
 o - along: Neumann b.c.; string ends move at the speed of light.

 D-branes: interpreted as a large massive object in spacetime analogue of a monopole, in higher dimensions.

D-branes: trap open strings, Standard Model-like matter. Bulk: Gravity (closed string) lives in the bulk.

Trapping: similar to the trapping of zero modes on defects (vortices, domain walls) in solids.


Generic Predictions of String Cosmology

not visible in power spectrum of density fluctuation and CMB anisotropy measurements.

- short/large distance modification of gravity
- perhaps no initial conditions needed
- matter & gravity can "see" different dimensions of spacetime
- cosmic string production ~ 10% in CMB anisotropy: observable in LIGO, (next) WMAP
- small blackhole signals in accelerators
- extra dimensions: missing energy as gravitons escape;
 may manifest as dark energy in the uncompactified directions
- many more perturbations modes -- tensor, scalar --> higher dimension signatures

a few models...

Brane-Inflation: Dvali & Tye 1998 brane motion can provide inflation. * a pair of D-brane and anti--D-brane moving in the extra dimensions * the separation is described by a scalar field * anti--D-brane breaks supersymmetry and gives rise to a weak attractive potential. ** brane tension has the correct equation of* state:

BUT:

Many other moduli needed to be fixed (eliminated) in this model before it can give rise to inflation.

• Large Extra Dimensions:

Arkani-Hamad, Dvali, Dimopoulos 98 Antoniadis, ADD 98 Randall, Sundrum 99 Dvali, Gabadadze, Porrati 2000

Gravity and SM matter can sense different spacetime dimensions.

open strings are confined to the worldvolume of the D-branes.
gravity freely propagates in all directions.

A proposal to solve the hierarchy problem --why gravity is so much weaker than other forces:

- the fundamental mass scale, m, can be as low as the weak scale - the observed Planck scale, M, is related to m by (in the case of one extra dimension)

 $G_N = rac{1}{M^2} = rac{g}{m^2}, \quad g = rac{1}{m R_e}$ R_e = radius of the extra dimension.

experimental update: $R_e \leq 10^{-6}$ metre

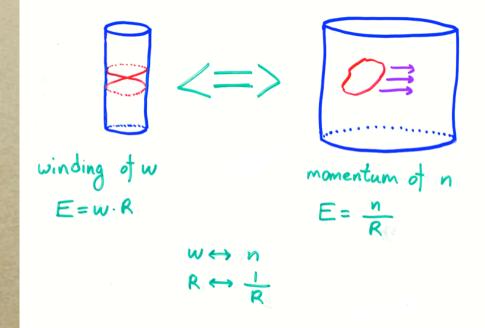
Severe constraints on phenomenologies. Unique signatures in colliders, cosmological observations as well as desktop gravity experiments.

Outline

- String theory as a GUT
- basic notions of string theory
- flux stabilization: a touch of reality
- T-duality: a lesson from string
- strings in fluxes: going beyond weak gravity
- conclusion

Duality: first encounter of stringy geometry

Consider a closed string winding around a circle.


momentum = nwinding = ω

The effective mass of this particle:

$$M^2 = \left(\frac{n}{R} - \omega R\right)^2 + \left(\frac{n}{R} + \omega R\right)^2$$
$$= \frac{n^2}{R^2} + \omega^2 R^2$$

This formula is invariant under

$$\omega \leftrightarrow n \quad R \leftrightarrow \frac{1}{R}$$

R=1 is special!

String gas cosmology:

Brandenberger and Vafa 1988

new symmetry: T-duality new degree of freedom: winding modes

- an attempt to explain why only three out of the ten dimensions become large
- strings wind a 9-D spatial torus at R=1 at the beginning of the universe
- winding numbers are topological charges:
 equal and opposite charged strings can pair annihilate
- emergence of three big spatial dimensions:
 winding and anti-winding modes can annihilate effectively only in 3D-space.

a take with flux stabilization

Brandenberger, YKEC, Watson 2004 Brandenberger, YKEC, Langfelder, in prep.

$$\begin{pmatrix} T^2 \\ \theta \end{pmatrix} = R_1 = R_2 = 1$$

$$\begin{pmatrix} \theta \\ \theta \end{pmatrix} = inclination angle$$

The size the torus is fixed by T-duality symmetry in SGM but the shape, θ is not.
 singularity occurs when the torus collapses.

• introduce
$$B_{mn} = \begin{pmatrix} 0 & b(t) \\ -b(t) & 0 \end{pmatrix}$$

• $\theta = \frac{\pi}{2}$ is indeed a solution to the Einstein equations. Stable under small perturbations, and the fluxes also equilibrate.

o introduce Ramond-Ramond flux stabilizes the dilaton, *φ* --> 4-D coupling constant is also fixed!

string loop expansion in gs

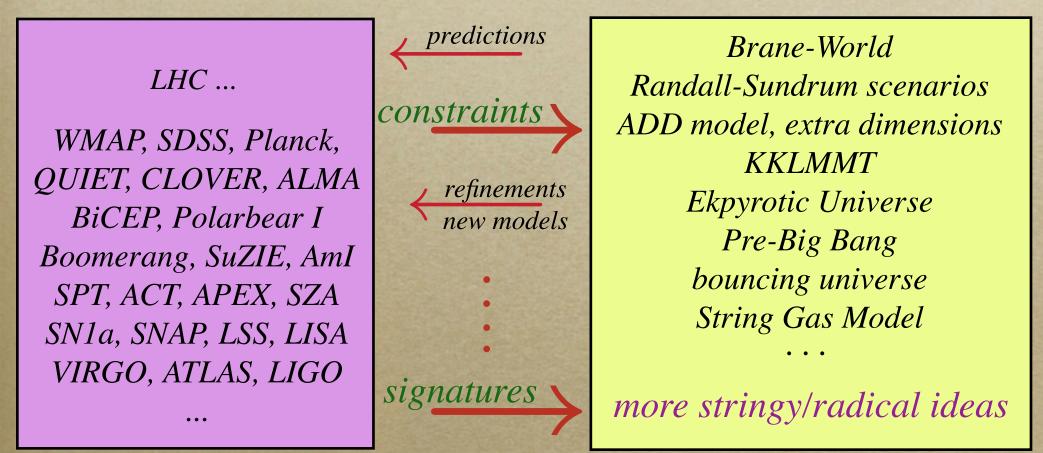
stringy geometry

Supergravity Nappi-Witten (point particle) Model

 $\alpha' = l_s^2$ expansion

Sigma model:

 $S = \int G_{\mu\nu} \,\partial_a X^{\mu} \partial_b X^{\nu} h^{ab} + B_{\mu\nu} \,\partial_a X^{\mu} \partial_b X^{\nu} \epsilon^{ab}$


Solving String Theory in Flux Background -- going beyond weak gravity YKEC, Freidel, Savvidy 2003

- an energy and the second and the sec and the story was to man secure to state • A hard problem--the only thoroughly and explicitly solved string model is in Minkowski space: $G_{\mu\nu} = \eta_{\mu\nu}, \quad B_{\mu\nu} = 0$
- the metric: $ds^2 = dx^+ dx^- + da_1^2 + da_2^2 + H(a_1 da_2 a_2 da_1)dx^+$
- B-field: $B = H \epsilon_{ij} a^i da^j dx^+$ with constant field strength, H
- Complete solution:
 - classical equations of motion; quantization; the spectrum;
 - explicit construction of the string vertex operators;
 - compute the scattering amplitudes of gravitons, photons, etc....
- New effects: quantum long string states.
- observe a duality in the scattering amplitudes:

 $\{ \begin{array}{c} H \to \infty \\ curvature \to \infty \end{array} \} \longleftrightarrow \{ \begin{array}{c} H \to 0 \\ curvature \to 0 \end{array} \}$

Concluding...

Time is ripe to stand up to the challenge of experiments and observations.

Only then will String theory be accepted as a theory of nature.