Kinematic space of a subregion

Xing Huang

Northwest University

Nov 22nd @ Yichang

Introduction	Integral geometry	Purification and reflected entropy	Kinematic space of a subregion	Summary
•				

Outline

- Review of integral geometry
- Kinematic space of a subregion
- Purification and reflected entropy

- $CFT_d \leftrightarrow string theory in AdS_{d+1}$
- RT formula

$$S_{\rm EE}(A) = {{\rm Area}(\gamma_A)\over 4G}, \quad \partial\gamma_A = \partial A$$

Kinematic space of a subregion

Integral geometry	Purification and reflected entropy	Kinematic space of a subregion	Summary
000			

Czech etal. 1505.05515

$$\sigma(\gamma) = \frac{1}{4} \int_{\gamma \cap \Gamma \neq \emptyset} \mathcal{N}(\gamma \cap \Gamma) \, \epsilon_{\mathcal{K}}$$

The length $\sigma(\gamma)$ of a curve γ can be expressed in terms of an integral over the geodesics Γ that have nonvanishing intersection number $N(\gamma \cap \Gamma)$ with γ

The measure $\epsilon_{\mathcal{K}}$ is given by the second derivative of the entanglement entropy

$$\epsilon_{\mathcal{K}}(u,v) = \tfrac{\partial^2 S(u,v)}{\partial u \partial v} \mathrm{d} u \wedge \mathrm{d} v$$

Hence we can obtain the geometry from the entanglement structure of the field theory on the boundary

Huang

Kinematic space of a subregion

Integral geometry ○●○	Purification and reflected entropy 000	Kinematic space of a subregion	

Kinematic space

Hyperbolic space:

$$\mathrm{d}s^2 = \frac{1}{z^2} \left(\mathrm{d}z^2 + \mathrm{d}x^2 \right)$$

de Sitter:

$$\mathrm{d}\boldsymbol{s}^2 = \frac{1}{\alpha^2} \left(-\mathrm{d}\alpha^2 + \mathrm{d}x^2 \right)$$

Huang

Kinematic space of a subregion

Kinematic space of a subregion

Jaffferis etal 1512.06431

Subregion-subregion duality: $S_{bdy}(\rho|\sigma) \leftrightarrow S_{bulk}(\rho|\sigma)$

- The kinematic space shall be constructed using the information obtained within the subregion
- Some geodesics cross the RT-surface and have no clear entropic interpretation

A novel construction of the kinematic space is needed for the subregion

Integral geometry	Purification and reflected entropy	Kinematic space of a subregion	Summary
	000		

Surface/state correspondence

Miyaji&Takayanagi 1503.03542 Surface in bulk $\Sigma \leftrightarrow$ State $|\Psi(\Sigma)\rangle$ in the CFT

- $|\Psi(\Sigma)\rangle$ can be defined using PI on the (optimized) surface $M(\Sigma)$ with $\partial M(\Sigma) = \Sigma$ Takayanagi 1808.09072
- The kinematic space can be established for every surface
 Σ using the geodesics ending on it

Kinematic space of a subregion

Entanglement of Purification

Takayanagi&Umemoto 1708.09393

 ρ_A can be purified by A' so that

 $\mathrm{Tr}_{A'}|\psi_{AA'}\rangle\langle\psi_{AA'}|=\rho_A$

Entanglement of purification is defined as the minimization of the entanglement entropy between two "complemented" subsystems ($A = A_1 \cup A_2$)

$$E_P(A_1:A_2) = \min S(\rho_{A_1A_1'})$$

The conjectured dual of E_P is the entanglement wedge cross section $E_W(A_1:A_2)$

Kinematic space of a subregion

Purification and RT surface

- The optimized purification A'₁A'₂ is given by the RT surface, which is obtained by RG flow of A₁A₂ to the IR according to SS duality
- ► The optimized $\psi_{A_1A_2A'_1A'_2}$ should have no extra entanglement within the DoFs in $A'_1A'_2$

 $S(\rho_{A_1A_1'})$ corresponds to a geodesic ending on the RT surface and the kinematic space can be constructed Espíndola etal 1804.05855

No concrete description for the subsystem $A'_1A'_2$

Integral geometry 000	Purification and reflected entropy 000	Kinematic space of a subregion	

Reflected entropy

Dutta&Faulkner 1905.00577

A different interpretation of $E_W(A_1:A_2)$

$$S_R(A_1:A_2) = S(A_1A'_1)_{|\sqrt{\rho_{A_1A_2}}} = 2E_W(A_1:A_2)$$

 $\rho_{{\rm A_1A_2}}$ can be turned into a pure state by switching bras to kets

 $|\sqrt{\rho_{A_1A_2}}\rangle \in \mathrm{End}\mathcal{H}_{A_1}\otimes \mathrm{End}\mathcal{H}_{A_2} = (\mathcal{H}_{A_1}\otimes \mathcal{H}_{A_1}^*)\otimes (\mathcal{H}_{A_2}\otimes \mathcal{H}_{A_2}^*)$

Kinematic space of a subregion

Integral geometry	Purification and reflected entropy	Kinematic space of a subregion	
000	000	0000000	

kinematic space of reflected geodesics

XH, work in progress

For a single interval A = [u, v], $A_1 = [u, y]$, $A'_1 = [u, x]$ corresponds to a reflected geodesics (X_A picked to make $\ell + \ell'$ minimized)

$$S(A_1,A_1')|_{\sqrt{\rho_A}} = \ell(y,X_A(\xi)) + \ell'(X_A(\xi),x),$$

which gives the kinematic space of the subregion A

Kinematic space of a subregion

Length of a reflected geodesic

The length of the reflected geodesic reads

$$\ell(x, y) = 2\log\left(-\frac{x(-2y + u + v) + y(u + v) - 2uv}{u - v}\right)$$

For convenience, we turn it into a form (after a subtraction of $2\log(x-y)$)

$$2\log\frac{z+1}{z-1}$$

that depends only on the cross-ratio

$$z = \frac{(x-u)(y-v)}{(y-u)(x-v)}$$

Kinematic space of a subregion

Integral geometry	Purification and reflected entropy	Kinematic space of a subregion	
		000000	

Holographic computation of $\langle O(x)\Delta_A^{is}O(y)\rangle$

Faulkner etal 1806.10560 Modular operator Δ_A

$$S_A a |\Psi\rangle = a^{\dagger} |\Psi\rangle, \quad S_A = J_A \Delta_A^{1/2}$$

 $\langle O(x)\Delta_A^{is}O(y)\rangle$ can be computed holographically using two geodesics that meet somewhere the RT surface γ_A

$$\langle O(x)\Delta^{is}O(y)\rangle \simeq \exp\left(-m[\ell(x,X_A(\xi))+\ell'(X_A(\xi),y)]\right)$$

The tangent vectors are related by a boost at the bulk point $X_A(\xi)$

$$n'_i = n_i, \quad (n'_+, n'_-) = (e^{-2\pi s}n_+, e^{+2\pi s}n_-)$$

In the case of $s = -\frac{i}{2}$, this reflected boundary condition implies $\delta \ell + \delta \ell' = 0$.

Integral geometry 000	Purification and reflected entropy 000	Kinematic space of a subregion	

Field theory computation

 $\langle O(x)\Delta^{\frac{1}{2}}O(y)\rangle = \lim_{n\to 1} \mathrm{Tr}_A[\rho_A^{n/2}O(x)\rho_A^{n/2}O(y)]$

The rhs is precisely what we want (O'(x) is acting on the space $\mathcal{H}^*_{A_1} \otimes \mathcal{H}^*_{A_2})$

 $\langle \sqrt{\rho_{A_1A_2}} | O'(x) O(y) | \sqrt{\rho_{A_1A_2}} \rangle$

which can be obtained by n = 2m then $m \rightarrow 1/2$

$$\lim_{m \to 1} \operatorname{Tr}_{A}[\rho_{A}^{m}O(x)\rho_{A}^{m}O(y)] = \lim_{m \to 1} \langle O(e^{2m\pi i}x)O(y) \rangle$$

A phase shift $x \rightarrow e^{2\pi i}x$ takes the point to the next sheet. m = 1/2 then gives

$$\log(z-1)^2 \to \log(z+1)^2$$

Kinematic space of a subregion

Further developments

- 1. Kinematic space of the entanglement wedge, *i.e.*, *x*, *y* not on the same time slice as *A*. $rO(x)\Delta_A^{is}O(y)$ is not restricted
- 2. Higher dimensions

Kinematic space of a subregion

Further developments

3. Multi-interval case

4. Construction of bulk operators within the entanglement wedge. In global AdS, the HKLL formula can be obtained from the inverse Radon transform. Every OPE block corresponds to a bulk field smearred over the geodesic

OPE block Czech etal. 1604.03110

$$\mathcal{O}_i(x_1)\mathcal{O}_j(x_2) \equiv |x_1 - x_2|^{-\Delta_i - \Delta_j} \sum_{\mathcal{O}} C_{ij\mathcal{O}} B_{\mathcal{O}}^{ij}(x_1, x_2),$$

Integral geometry 000	Purification and reflected entropy 000	Kinematic space of a subregion	Summary •

Summary

- The kinematic space of a subregion can be computed using the reflected geodesic. The measure is again given by the second derivative of the length of the geodesic
- The length can be obtained from the correlator ⟨O(x)∆_A^{1/2}O(y)⟩, which is the generalized version reflected entropy. The point is that it can be computed entirely using information encoded in the subregion