Kinematic space of a subregion

Xing Huang

Northwest University

Nov 22nd @ Yichang

Outline

- ▶ Review of integral geometry
- \triangleright Kinematic space of a subregion
- Purification and reflected entropy

- ▶ CFT_d \leftrightarrow string theory in AdS_{d+1}
- ▸ RT formula

$$
S_{\mathrm{EE}}(A)=\frac{\mathrm{Area}(\gamma_A)}{4G},\quad \partial \gamma_A=\partial A
$$

Huang Northwest University Control of the Control of the

Czech etal. 1505.05515

$$
\sigma(\gamma) = \frac{1}{4} \int_{\gamma \cap \Gamma \neq \emptyset} N(\gamma \cap \Gamma) \epsilon_{\mathcal{K}}
$$

The length $\sigma(\gamma)$ of a curve γ can be expressed in terms of an integral over the geodesics Γ that have nonvanishing intersection number $N(\gamma \cap \Gamma)$ with γ

The measure ϵ_K is given by the second derivative of the entanglement entropy

$$
\epsilon_{\mathcal{K}}\bigl(\,u,\,v\,\bigr)=\frac{\partial^2 S(u,v)}{\partial u \partial v} \mathrm{d} u \wedge \mathrm{d} v
$$

Hence we can obtain the geometry from the entanglement structure of the field theory on the boundary

Kinematic space

Hyperbolic space:

$$
\mathrm{d}s^2 = \frac{1}{z^2} \left(\mathrm{d}z^2 + \mathrm{d}x^2 \right)
$$

de Sitter:

$$
\mathrm{d}s^2 = \frac{1}{\alpha^2} \left(-\mathrm{d}\alpha^2 + \mathrm{d}x^2 \right)
$$

Kinematic space of a subregion

Jaffferis etal 1512.06431

Subregion-subregion duality: $S_{\text{bdy}}(\rho|\sigma) \leftrightarrow S_{\text{bulk}}(\rho|\sigma)$

- **►** The kinematic space shall be constructed using the information obtained within the subregion
- ▸ Some geodesics cross the RT-surface and have no clear entropic interpretation

A novel construction of the kinematic space is needed for the subregion

Surface/state correspondence

Miyaji&Takayanagi 1503.03542 Surface in bulk $\Sigma \leftrightarrow$ State $|\Psi(\Sigma)\rangle$ in the CFT

- \blacktriangleright $|\Psi(\Sigma)\rangle$ can be defined using PI on the (optimized) surface $M(\Sigma)$ with $\partial M(\Sigma) = \Sigma$ Takayanagi 1808.09072
- ▸ The kinematic space can be established for every surface Σ using the geodesics ending on it

Entanglement of Purification

Takayanagi&Umemoto 1708.09393

 ρ_A can be purified by A' so that

 $\text{Tr}_{A'}|\psi_{AA'}\rangle\langle\psi_{AA'}| = \rho_A$

Entanglement of purification is defined as the minimization of the entanglement entropy between two "complemented" subsystems $(A = A_1 \cup A_2)$

$$
E_P(A_1:A_2)=\min S(\rho_{A_1A_1'})
$$

The conjectured dual of E_P is the entanglement wedge cross section $E_W(A_1 : A_2)$

Purification and RT surface

- \blacktriangleright The optimized purification $A'_1A'_2$ is given by the RT surface, which is obtained by RG flow of $\overline{A_1A_2}$ to the IR according to SS duality
- \blacktriangleright The optimized $\psi_{A_1A_2A'_1A'_2}$ should have no extra entanglement within the DoFs in $A'_1A'_2$

 $\mathcal{S}(\rho_{A_1A_1'})$ corresponds to a geodesic ending on the RT surface and the kinematic space can be constructed Espíndola etal 1804.05855

No concrete description for the subsystem $A'_1A'_2$ 2

Reflected entropy

Dutta&Faulkner 1905.00577

A different interpretation of $E_W(A_1 : A_2)$

$$
S_R(A_1:A_2) = S(A_1A'_1)_{\big|\sqrt{\rho_{A_1A_2}}\big>} = 2E_W(A_1:A_2)
$$

 $\rho_{\boldsymbol{A}_1 \boldsymbol{A}_2}$ can be turned into a pure state by switching bras to kets

 $\big|\sqrt{\rho_{A_1A_2}}\big>\in\mathrm{End}\mathcal{H}_{A_1}\otimes\mathrm{End}\mathcal{H}_{A_2}=\big(\mathcal{H}_{A_1}\otimes\mathcal{H}_{A_1}^*$ $A_{A_1}^*$) ⊗ (\mathcal{H}_{A_2} ⊗ $\mathcal{H}_{A_1}^*$ A_2)

kinematic space of reflected geodesics

XH, work in progress

For a single interval $A = [u, v]$, $A_1 = [u, y]$, A_1' $\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} u, x \end{bmatrix}$ corresponds to a reflected geodesics $(X_A$ picked to make $\ell + \ell'$ minimized)

$$
S(A_1,A'_1)|_{\sqrt{\rho_A}} = \ell(y,X_A(\xi)) + \ell'(X_A(\xi),x),
$$

which gives the kinematic space of the subregion A

Length of a reflected geodesic

The length of the reflected geodesic reads

$$
\ell(x,y) = 2\log\left(-\frac{x(-2y+u+v)+y(u+v)-2uv}{u-v}\right)
$$

For convenience, we turn it into a form (after a subtraction of $2\log(x - y)$

$$
2\log\frac{z+1}{z-1}
$$

that depends only on the cross-ratio

$$
z = \frac{(x - u)(y - v)}{(y - u)(x - v)}
$$

Holographic computation of $\langle O(x)\Delta_A^{is}O(y)\rangle$

Faulkner etal 1806.10560

Modular operator Δ_A

$$
S_A a|\Psi\rangle = a^{\dagger}|\Psi\rangle, \quad S_A = J_A \Delta_A^{-1/2}
$$

 $\langle O(x)\Delta_A^{is}O(y)\rangle$ can be computed holographically using two geodesics that meet somewhere the RT surface γ_A

$$
\langle O(x)\Delta^{is}O(y)\rangle \simeq \exp\big({-m[\ell(x,X_A(\xi))+\ell'(X_A(\xi),y)]}\big)
$$

The tangent vectors are related by a boost at the bulk point $X_4(\xi)$

$$
n'_i = n_i
$$
, (n'_+, n'_-) = $(e^{-2\pi s}n_+, e^{2\pi s}n_-)$

In the case of $s = -\frac{1}{2}$ $\frac{1}{2}$, this reflected boundary condition implies $\delta \ell + \delta \ell' = 0$.

Field theory computation

 $\langle O(x)\Delta^{\frac{1}{2}}O(y)\rangle = \lim_{n\to 1} \text{Tr}_{A}[\rho_{A}^{n/2}O(x)\rho_{A}^{n/2}O(y)]$

The rhs is precisely what we want $(O'(x))$ is acting on the space $\mathcal{H}_{A_1}^* \otimes \mathcal{H}_{A_2}^*$)

 $\langle \sqrt{\rho_{A_1A_2}} |O'(x)O(y)| \sqrt{\rho_{A_1A_2}} \rangle$,

which can be obtained by $n = 2m$ then $m \rightarrow 1/2$

$$
\lim_{m\to 1} \text{Tr}_A[\rho_A^m O(x)\rho_A^m O(y)] = \lim_{m\to 1} \langle O(e^{2m\pi i}x) O(y) \rangle
$$

A phase shift $x \to e^{2\pi i}x$ takes the point to the next sheet. $m = 1/2$ then gives

$$
\log(z-1)^2 \to \log(z+1)^2
$$

Further developments

- 1. Kinematic space of the entanglement wedge, *i.e.*, x, y not on the same time slice as A. $rO(x)\Delta_A^{is}O(y)$ is not restricted
- 2. Higher dimensions

Further developments

3. Multi-interval case

4. Construction of bulk operators within the entanglement wedge. In global AdS, the HKLL formula can be obtained from the inverse Radon transform. Every OPE block corresponds to a bulk field smearred over the geodesic

OPE block Czech etal. 1604.03110

$$
\mathcal{O}_i(x_1)\mathcal{O}_j(x_2) \equiv |x_1-x_2|^{-\Delta_i-\Delta_j}\sum_{\mathcal{O}}C_{ij\mathcal{O}}B_{\mathcal{O}}^{ij}(x_1,x_2),
$$

Summary

- ▸ The kinematic space of a subregion can be computed using the reflected geodesic. The measure is again given by the second derivative of the length of the geodesic
- ▸ The length can be obtained from the correlator $\langle O(x)\Delta_A^{1/2}O(y)\rangle$, which is the generalized version reflected entropy. The point is that it can be computed entirely using information encoded in the subregion