Primordial Black Holes and Scalar Induced Gravitational Waves from Inflation with Nonminimal Derivative Coupling 吴普训 (Puxun Wu) 湖南师范大学 (Hunan Normal University)

Collaborators: Chengjie Fu, Hongwei Yu

PRD 100, 063532 (2019); in preparation

弦论、场论与宇宙学相关专题研讨会 宜昌 2019.11.23

Enhanced curvature perturbations in nonminimal derivative coupling inflation

Production of primordial black holes

Scalar induced Gravitational waves

Conclusions

Enhanced curvature perturbations in nonminimal derivative coupling inflation

Production of primordial black holes

Contents-

Scalar induced Gravitational waves

Conclusions

LIGO/Virgo gravitational wave events

Event	m_1/M_{\odot}	m_2/M_{\odot}	\mathcal{M}/M_{\odot}
GW150914	$35.6\substack{+4.7\\-3.1}$	$30.6\substack{+3.0\\-4.4}$	$28.6^{+1.7}_{-1.5}$
GW151012	$23.2^{+14.9}_{-5.5}$	$13.6\substack{+4.1\\-4.8}$	$15.2^{+2.1}_{-1.2}$
GW151226	$13.7\substack{+8.8\\-3.2}$	$7.7^{+2.2}_{-2.5}$	$8.9\substack{+0.3\\-0.3}$
GW170104	$30.8\substack{+7.3\\-5.6}$	$20.0\substack{+4.9\\-4.6}$	$21.4_{-1.8}^{+2.2}$
GW170608	$11.0^{+5.5}_{-1.7}$	$7.6^{+1.4}_{-2.2}$	$7.9\substack{+0.2 \\ -0.2}$
GW170729	$50.2^{+16.2}_{-10.2}$	$34.0\substack{+9.1 \\ -10.1}$	$35.4\substack{+6.5\\-4.8}$
GW170809	$35.0\substack{+8.3\\-5.9}$	$23.8\substack{+5.1\\-5.2}$	$24.9^{+2.1}_{-1.7}$
GW170814	$30.6^{+5.6}_{-3.0}$	$25.2\substack{+2.8\\-4.0}$	$24.1^{+1.4}_{-1.1}$
GW170817	$1.46\substack{+0.12 \\ -0.10}$	$1.27\substack{+0.09\\-0.09}$	$1.186\substack{+0.001\\-0.001}$
GW170818	$35.4_{-4.7}^{+7.5}$	$26.7^{+4.3}_{-5.2}$	$26.5^{+2.1}_{-1.7}$
GW170823	$39.5^{+11.2}_{-6.7}$	$29.0\substack{+6.7\\-7.8}$	$29.2_{-3.6}^{+4.6}$

B. P. Abbott et al., Phys. Rev. X 9, 031040 (2019)

Formation of black hole

Ultrashort-timescale microlensing events in the OGLE data

[1] P. Mróz et al., Nature (London) 548, 183 (2017) [2] H. Niikura et al., Phys. Rev. D 99, 083503 (2019)

 $M_9 \sim 5 - 15 M_{\oplus}$

A. SIZE OF THE PBH

 $r_{\rm BH}$

The Schwarzschild radius of a black hole is given by

$$= \frac{2GM_{\rm BH}}{c^2} \simeq 4.5 {\rm cm} \left(\frac{M_{\rm BH}}{5M_{\oplus}}\right) \ . \tag{15}$$

In Figure 1 we provide an exact scale image of a $5M_{\oplus}$ PBH. The associated DM halo however extends to the stripping radius $r_{t,\odot} \sim 8$ AU, this would imply a DM halo which extends roughly the distance from Earth to Saturn (both in real life and relative to the image).

FIG. 1. Exact scale (1:1) illustration of a $5M_{\oplus}$ PBH. Note that a $10M_{\oplus}$ PBH is roughly the size of a ten pin bowling ball.

J. Scholtz1 and J. Unwin, 1909.11090

Primordial Black Holes as all dark matter

[1] A. Barnacka et al., Phys. Rev. D 86, 043001 (2012); A. Katz et al., JCAP 12 (2018) 005 [2] H. Niikura et al., Nat. Astron. 3, 524 (2019)

Primordial Black Holes as all dark matter

[1] A. Barnacka et al., Phys. Rev. D 86, 043001 (2012); A. Katz et al., JCAP 12 (2018) 005 [2] H. Niikura et al., Nat. Astron. 3, 524 (2019)

Seed for PBHs: Primordial curvature perturbations

Y. Akrami et al., 1807.06211; D. J. Fixsen et al., Astrophys. J. 473, 576 (1996); K. Inomata et al., PRD 94, 043527 (2016); 99, 043511 (2019)

Motivation How to amplify the amplitude of power spectrum: Flatten potential

Simple single-field inflation model
$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} R - \frac{1}{2} (\nabla \phi)^2 - V(\phi) \right]$$

Slow-roll approximation

Near-inflection point

 $3H^2 \simeq \kappa^2 V(\phi) \qquad 3H\dot{\phi} \simeq -V_{\phi}$ $V_{,\phi} \simeq 0 \;, \; V_{,\phi\phi} \simeq 0$ **Power spectrum** $\mathcal{P}_{\mathcal{R}} = \frac{1}{8\pi^2} \left(\frac{H}{M_{\rm pl}}\right)^2 \frac{1}{\epsilon} \qquad \left(\epsilon \equiv -\frac{\dot{H}}{H^2}\right)$ Ultra-slow-roll inflation $\epsilon \simeq \epsilon_V \quad \left(\epsilon_V \equiv \frac{M_{\rm pl}^2}{2} \left(\frac{V_{,\phi}}{V}\right)^2\right)$ φ

C. Germani and T. Prokopec, Phys. Dark Universe 18, 6 (2017); Di and Gong, JCAP 07 (2018) 007.

How to amplify the amplitude of power spectrum: Increase friction

PBH from Sound Speed Resonance during Inflation

 $u_k'' + (c_s^2 k^2 - z''/z)u_k = 0 \qquad c_s^2 = 1 - 2\xi [1 - \cos(2k_*\tau)]$

Cai, et al., PRL(2018)

Enhanced curvature perturbations in nonminimal derivative coupling inflation

Production of primordial black holes

Contents

05

Scalar induced Gravitational waves

Conclusions

Basic equations

The action
$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} R - \frac{1}{2} \left(g^{\mu\nu} - \kappa^2 \xi G^{\mu\nu} \right) \nabla_\mu \phi \nabla_\nu \phi - V(\phi) \right]$$

 $\xi \equiv \theta(\phi)$
 $ds^2 = -dt^2 + a(t)^2 d\mathbf{x}^2$

Hamiltonian constraint equation (HC)

$$3H^2 = \kappa^2 \left[\frac{1}{2} \left(1 + 9\kappa^2 \theta(\phi) H^2 \right) \dot{\phi}^2 + V(\phi) \right]$$

Equation of motion for inflaton (EoM)

$$\left(1 + 3\kappa^{2}\theta(\phi)H^{2}\right)\ddot{\phi} + \left[1 + \kappa^{2}\theta(\phi)\left(2\dot{H} + 3H^{2}\right)\right]3H\dot{\phi} + \frac{3}{2}\kappa^{2}\theta_{,\phi}H^{2}\dot{\phi}^{2} + V_{,\phi} = 0$$

Slow-roll inflation

Slow-roll parameters
$$\epsilon \equiv -\frac{\dot{H}}{H^2}$$
 $\delta_{\phi} \equiv \frac{\ddot{\phi}}{H\dot{\phi}}$ $\delta_X \equiv \frac{\kappa^2 \dot{\phi}^2}{2H^2}$ $\delta_D \equiv \frac{\kappa^4 \theta \dot{\phi}^2}{4}$
Slow-roll conditions $\{\epsilon, |\delta_{\phi}|, \delta_X, \delta_D\} \ll 1$
Operational condition $|\kappa^2 \theta_{,\phi} H \dot{\phi}| \ll \mathcal{A} \equiv 1 + 3\kappa^2 \theta(\phi) H^2$ for simplicity
Approximate HC and EoM $3H^2 \simeq \kappa^2 V(\phi)$ $3H\mathcal{A}\dot{\phi} + V_{,\phi} \simeq 0$
 $\epsilon \simeq \frac{\epsilon_V}{\mathcal{A}}$ If $\mathcal{A} \simeq 1, \ \epsilon \simeq \epsilon_V$
If $\mathcal{A} \gg 1, \ \epsilon \ll \epsilon_V$

Approximate solutions

Under the slow-roll approximation, the power spectrum of the curvature perturbation has the form

$$\mathcal{P}_{\mathcal{R}} = \frac{H^2}{8\pi^2 Q_s c_s^3} \simeq \frac{V^3}{12\pi^2 M_{\rm pl}^6 V_{,\phi}^2} \left(1 + \theta(\phi) \frac{V}{M_{\rm pl}^4}\right)$$

The scalar spectral index and the tensor-to-scalar ratio:

$$n_s \simeq 1 - \frac{1}{\mathcal{A}} \left[2\epsilon_V \left(4 - \frac{1}{\mathcal{A}} \right) - 2\eta_V \right] \qquad \left(\eta_V \equiv \frac{M_{\rm pl}^2}{V} \frac{d^2 V}{d\phi^2} \right)$$

$$r \simeq \frac{16\epsilon_V}{\mathcal{A}}$$

How to achieve a large-amplitude curvature perturbations?

Consider the following special functional form

$$\theta(\phi) = \frac{\omega}{\sqrt{\kappa^2 \left(\frac{\phi - \phi_c}{\sigma}\right)^2 + 1}}$$

θ(φ)

 ϕ_c

Consider a simple potential

$$V(\phi) = \lambda M_{\rm pl}^{4-p} |\phi|^p \ (p = 2/5)$$

Enhanced Power spectrum

$$\mathcal{P}_{\mathcal{R}} \simeq \frac{\lambda}{12\pi^2 p^2} \left| \frac{\phi}{M_{\rm pl}} \right|^{2+p} \left(1 + \frac{\omega\lambda}{\sqrt{\kappa^2 \left(\frac{\phi-\phi_c}{\sigma}\right)^2 + 1}} \left| \frac{\phi}{M_{\rm pl}} \right|^p \right)$$

Inflationary dynamics

Concrete case $\phi_c = 4.63 M_{\rm pl}$, $\sigma = 2.6 \times 10^9$, $\omega \lambda = 1.33 \times 10^7$

Exact results: Mukhanov-Sasaki equation

$$u_k'' + \left(c_s^2 k^2 - \frac{z''}{z}\right)u_k = 0$$

where variable u is related to the curvature perturbation \mathcal{R}

$$u \equiv z\mathcal{R} \quad (z \equiv \sqrt{2Q_s a})$$

$$Q_s = \frac{w_1(4w_1w_3 + 9w_2^2)}{3w_2^2} \qquad c_s^2 = \frac{3(2w_1^2w_2H - w_2^2w_4 + 4w_1\dot{w}_1w_2 - 2w_1^2\dot{w}_2)}{w_1(4w_1w_3 + 9w_2^2)}$$

 $w_1 = M_{\rm pl}^2 (1 - 2\delta_D) \quad w_2 = 2H M_{\rm pl}^2 (1 - 6\delta_D) \quad w_3 = -3H^2 M_{\rm pl}^2 (3 - \delta_X - 36\delta_D) \quad w_4 = M_{\rm pl}^2 (1 + 2\delta_D)$

Power spectrum of the curvature perturbations $\mathcal{P}_{\mathcal{R}} \equiv \frac{k^3}{2\pi^2} \left| \frac{u_k}{z} \right|^2$

The power spectrum: approximate and exact solution

The power spectrum

Enhanced curvature perturbations in nonminimal derivative coupling inflation

Production of primordial black holes

Contents-

05

Scalar induced Gravitational waves

Conclusions

Basic formulas for PBH formation during radiation-dominated era

Under the assumption that the probability distribution function of perturbations is Gaussian, the production rate of PBHs with mass M based on the Press-Schechter theory is^[1]

$$\beta(M) = \int_{\delta_c} \frac{d\delta}{\sqrt{2\pi\sigma^2(M)}} e^{-\frac{\delta^2}{2\sigma^2(M)}} = \frac{1}{2} \operatorname{erfc}\left(\frac{\delta_c}{\sqrt{2\sigma^2(M)}}\right)$$

where δ_c ($\simeq 0.4$ ^[2]) is the threshold of the density perturbations for the PBH formation

The mass M of formed PBHs is related to the horizon mass at the horizon entry of the perturbations with the comoving wave number k

$$M(k) = \gamma \frac{4\pi}{\kappa^2 H} \bigg|_{k=aH} \simeq M_{\odot} \left(\frac{\gamma}{0.2}\right) \left(\frac{g_*}{10.75}\right)^{-\frac{1}{6}} \left(\frac{k}{1.9 \times 10^6 \text{ Mpc}^{-1}}\right)^{-2} \qquad (g_* \simeq 106.75)$$

where γ ($\simeq 0.2$)^[3] is the ratio of the PBH mass to the horizon mass and indicates the efficiency of collapse

[1] S. Young et al., JCAP 07 (2014) 045 [2] T. Harada et al., PRD 88, 084051 (2013); [3] B. J. Carr, APJ 201, 1 (1975)

Basic formulas for PBH formation during radiation-dominated era

 $\sigma^2(M)$ represents the variance of density contrast for the PBH mass $M^{[1]}$

$$\sigma^2(M(k)) = \int d\ln q \ W^2(qk^{-1}) \frac{16}{81} (qk^{-1})^4 \mathcal{P}_{\mathcal{R}}(q)$$

where W is the window function, which is taken to be the Gaussian function $W(x) = e^{-x^2/2}$

The abundance of PBHs with mass M over logarithmic mass interval is estimated as

$$f(M) \equiv \frac{1}{\Omega_{\rm DM}} \frac{d\Omega_{\rm PBH}}{d\ln M} \simeq \frac{\beta(M)}{1.84 \times 10^{-8}} \left(\frac{\gamma}{0.2}\right)^{\frac{3}{2}} \left(\frac{10.75}{g_*}\right)^{\frac{1}{4}} \left(\frac{0.12}{\Omega_{\rm DM}h^2}\right) \left(\frac{M}{M_{\odot}}\right)^{-\frac{1}{2}}$$

Total abundance of PBH
$$\frac{\Omega_{\rm PBH}}{\Omega_{\rm DM}} = \int \frac{dM}{M} f(M) \qquad \left(\Omega_{\rm DM}h^2 \simeq 0.12^{[2]}\right)$$

Abundance of PBHs is exponentially sensitive to small variations of the power spectrum

[1] S. Young et al., JCAP 07 (2014) 045 [2] N. Aghanim et al., 1807.06209

Three parameters sets for three interesting motivations of PBHs

> stellar-mass (~ $\mathcal{O}(10)M_{\odot}$) PBHs: LIGO/Virgo GW events

> earth-mass (~ $\mathcal{O}(10^{-5})M_{\odot}$) PBHs: OGLE microlensing events

> asteroid-mass (~ $\mathcal{O}(10^{-12})M_{\odot})$ PBHs: most of dark matter

TABLE I: The successful parameter sets for producing the PBHs with mass around $\mathcal{O}(10)M_{\odot}$ (*Case 1*), $\mathcal{O}(10^{-5})M_{\odot}$ (*Case 2*) and $\mathcal{O}(10^{-12})M_{\odot}$ (*Case 3*).

#	$\phi_c/M_{\rm pl}$	$\omega\lambda$	σ
Case 1	4.63	1.33×10^7	2.6×10^{-9}
Case 2	3.9	1.53×10^7	3×10^{-9}
Case 3	3.3	1.978×10^7	3.4×10^{-9}

Observational constraints

Scalar spectral index and the tensor-to-scalar ratio

$$n_s \simeq 1 - \frac{1}{\mathcal{A}} \left[2\epsilon_V \left(4 - \frac{1}{\mathcal{A}} \right) - 2\eta_V \right] \qquad r \simeq \frac{16\epsilon_V}{\mathcal{A}} \qquad \left(\eta_V \equiv \frac{M_{\rm pl}^2}{V} \frac{d^2V}{d\phi^2} \right)$$

#	N_*	λ	n_s	r
Case 1	60	7.09×10^{-10}	0.9666	0.0431
Case 2	60	8.23×10^{-10}	0.9618	0.0497
Case 3	65	8.52×10^{-10}	0.9607	0.0512

Planck 2018 results ^[1] $(k_* = 0.05 \text{Mpc}^{-1})$ $\ln (10^{10} \mathcal{P}_{\mathcal{R}}) = 3.044 \pm 0.014$ (68% C.L.) $n_s = 0.9649 \pm 0.0042$ (68% C.L.) r < 0.07 (95% C.L.)

[1] Y. Akrami et al., 1807.06211

Power spectra of curvature perturbations and mass spectra of PBHs

Enhanced curvature perturbations in nonminimal derivative coupling inflation

Production of primordial black holes

Scalar induced Gravitational waves

Scalar induced gravitational waves (SIGWs)

K. Inomata and T. Nakama, Phys. Rev. D 99, 043511 (2019)

Formalism of SIGWs

In the conformal Newtonian gauge, the perturbed FRW metric can be written as

$$ds^{2} = a(\eta)^{2} \left\{ -(1+2\Psi)d\eta^{2} + \left[(1-2\Psi)\delta_{ij} + \frac{h_{ij}}{2} \right] dx^{i} dx^{j} \right\}$$

where $\eta \equiv \int a^{-1}dt$ is the conformal time, Ψ is the first-order scalar perturbation, and h_{ij} is the second-order transverse-traceless tensor perturbation

The equation of motion for second-order h_{ij} is given by

$$h_{ij}'' + 2\mathcal{H}h_{ij}' - \nabla^2 h_{ij} = -4\mathcal{T}_{ij}^{lm}S_{lm}$$

where \mathcal{T}_{ij}^{lm} is the transverse-traceless projection operator and the source term has the form ^[1]

$$S_{ij}^{(2)} = 4\Psi \partial_i \partial_j \Psi + 2\partial_i \Psi \partial_j \Psi - \frac{1}{\mathcal{H}^2} \partial_i (\mathcal{H}\Psi + \Psi') \partial_j (\mathcal{H}\Psi + \Psi')$$

[1] K. N. Ananda et al., Phys. Rev. D 75, 123518 (2007)

Formalism of SIGWs

During the radiation dominated epoch $(aH = \eta^{-1})$

$$\Psi_k'' + \frac{4}{\eta}\Psi_k' + \frac{k^2}{3}\Psi_k = 0$$

This equation of motion has an attenuation solution given by ^[1]

$$\Psi_k(\eta) = \psi_k \frac{9}{(k\eta)^2} \left(\frac{\sin(k\eta/\sqrt{3})}{k\eta/\sqrt{3}} - \cos(k\eta/\sqrt{3}) \right)$$

where $\psi_k (\Psi_k = \psi_k \text{ when } k\eta \ll 1)$ is the primordial perturbation characterized by the power spectrum,

$$\langle \psi_{\mathbf{k}} \psi_{\tilde{\mathbf{k}}} \rangle = \frac{2\pi^2}{k^3} \left(\frac{4}{9} \mathcal{P}_{\mathcal{R}}(k) \right) \delta(\mathbf{k} + \tilde{\mathbf{k}})$$

[1] D. Baumann et al., Phys. Rev. D 76, 084019 (2007)

Formalism of SIGWs

S

In the radiation-dominated era, the density parameter spectrum of GWs Ω_{GW} at η_c , which represents the time when Ω_{GW} stops growing, can be evaluated as ^[1]

$$\begin{split} \Omega_{\rm GW}(\eta_c,k) &= \frac{1}{12} \int_0^\infty dv \int_{|1-v|}^{|1+v|} du \left(\frac{4v^2 - (1+v^2 - u^2)^2}{4uv} \right)^2 \mathcal{P}_{\mathcal{R}}(ku) \mathcal{P}_{\mathcal{R}}(kv) \\ &\left(\frac{3}{4u^3v^3} \right)^2 (u^2 + v^2 - 3)^2 \\ &\left\{ \left[-4uv + (u^2 + v^2 - 3) \ln \left| \frac{3 - (u+v)^2}{3 - (u-v)^2} \right| \right]^2 + \pi^2 (u^2 + v^2 - 3)^2 \Theta(v + u - \sqrt{3}) \right\} \end{split}$$

The current energy parameter and frequency of GWs are given, respectively, by

$$\Omega_{\rm GW,0} = 0.83 \left(\frac{g_c}{10.75}\right)^{-1/3} \Omega_{\rm r,0} \Omega_{\rm GW}(\eta_c, k) \qquad f = 1.546 \times 10^{-15} \frac{k}{1 \,\mathrm{Mpc}^{-1}} \mathrm{Hz}$$
$$\left(\Omega_{r,0} h^2 \simeq 4.2 \times 10^{-5} , \ g_c \simeq 106.75\right)$$

[1] K. Kohri and T. Terada, Phys. Rev. D 97, 123532 (2018)

Approximate spectra index of power spectrum

Through analytical calculations, we find that

$$\mathcal{P}_{\mathcal{R}} \propto \begin{cases} k^{n_s^{(1)}} , \ (k < k_p) \\ k^{n_s^{(2)}} , \ (k > k_p) \end{cases}$$

where

$$n_s^{(1)} \simeq 3\left(1 - \sqrt{1 - \frac{4}{15}(\kappa\phi_c)^{-7/5}(\sigma\omega\lambda)^{-1}}\right)$$

$$m_s^{(2)} \simeq 3 \left(1 - \sqrt{1 + \frac{4}{15} (\kappa \phi_c)^{-7/5} (\sigma \omega \lambda)^{-1}} \right)$$

Approximate power-law power spectrum

Density spectrum and scaling of SIGWs

Scaling of SIGWs

[1] Guo, et al., 1907.05213

In the ultraviolet regions $(k > k_p)$, if $\mathcal{P}_{\mathcal{R}} \propto k^{n_s}$ with $n_s > -4$, the density spectrum of SIGWs is approximated by a power-law function of $k^{[1]}$

$$\Omega_{\rm GW}(k) \propto k^{n_{\rm GW}} \qquad \qquad n_{\rm GW} \simeq 2n_s$$

In the infrared regions $(k < k_p)$, the density spectrum of SIGWs has a log-dependent slope^[2]

$$\Omega_{\rm GW}(k) \propto \left(\frac{k}{k_p}\right)^3 \ln^2\left(\frac{4k_p^2}{3k^2}\right) \qquad \qquad n_{\rm GW} \simeq 3 - \frac{4}{\ln\frac{4k_p^2}{3k^2}}$$

[2] Huang, et al., 1910.09099

Density parameter spectrum of SIGWs

1/112

Enhanced curvature perturbations in nonminimal derivative coupling inflation

Production of primordial black holes

Contents-

Scalar induced Gravitational waves

Conclusions

Conclusions

- The enhancement of the curvature perturbations can be realized in the nonminimal derivative coupling model with a coupling parameter related to the inflaton field.
- The obtained power spectrum of curvature perturbations has an enough large peak on the small scales and on the large scales satisfies the current observational constraints.
- The power spectrum in the vicinity of the peak can be well approximated by a powerlaw function of comoving wave number.
- Through fine-tuning two parameters, we can easily obtain a sharp mass spectrum of primordial black holes around specific mass such as \$\mathcal{O}(10)M\$, \$\mathcal{O}(10^{-5})M_{\overlines}\$, and \$\mathcal{O}(10^{-12})M_{\overlines}\$, which can explain the LIGO events, the ultrashort-timescale microlensing events in OGLE data, and the most of DM, respectively.
- The GW signal produced by scalar metric perturbations will be detected by SKA and LISA. Log-dependent slope of SIGWs in the infrared regions is confirmed, while in the ultraviolet regions a power-law scaling is obtained.

