Primordial Black Hole Dark Matter

Based on Phys.Rev.Lett. 120(2018)191102 done with S. Wang, Y.F. Wang and T. Li arXiv:1910.07397 done with Y.F. Wang, T. Li and S. Liao ApJ 864(2018)61 and arXiv:1904.02396 done with Z.C. Chen ApJ 871(2019)97 done with Z.C. Chen and F. Huang Phys.Rev.D 100(2019)081301(R) & arXiv:1910.09099 & 1910.12239 done with Z.C. Chen and C. Yuan

> LISA Taiji TianQin

PPTA IPTA FAST SKA

> Qing-Guo Huang Institute of theoretical physics, C

LIGO Virgo KAGRA

The nature of **Dark Matter**

Planck 18 (CMB only): $\Omega_c h^2 = 0.1200 \pm 0.0012 (100\sigma)$ Planck 18+BAO: $\Omega_c h^2 = 0.11933 \pm 0.00091 (131\sigma)$

Merger rate distribution [Chen & QGH, ApJ (2018); Chen, Huang & QGH, ApJ (2019); Chen & QGH, arXiv:1904.02396]

Averaged sensitive spacetime volume of LIGO

$$\Lambda_{ij} = \int_0^1 R_{ij} \frac{d\langle VT \rangle}{dz} dz$$

LIGO 01

0.7

0.6

0.5

0.2

0.1

0.0

0

= 0.65 (best fit value)

2

1

 $\log_{10}[R/(Gpc^{-3}yr^{-1})]$

 $\widehat{\overset{(a)}{\exists}}_{\overset{(a)}{a}} 0.4$

$$P(m) = \frac{\alpha - 1}{M_{\min}} \left(\frac{m}{M_{\min}}\right)^{-\alpha} \text{ for } M_{\min} = 5M_{\odot}$$

$$P(m) = \frac{1}{\sqrt{2\pi\sigma m}} \exp\left(-\frac{\log^2(m/m_c)}{2\sigma^2}\right)$$

$$P(m) = \frac{1}{\sqrt{2\pi\sigma m}} \exp\left$$

PBHs in the center of galaxies [Y.F. Wang, QGH, T. Li and S. Liao, arXiv:1910.07397]

Matter distribution in the center of galaxies

$$\rho_{sp} = \rho_R \left(1 - \frac{4R_s}{r}\right)^3 \left(\frac{R_{sp}}{r}\right)^{\gamma_{sp}}$$
$$\gamma_{sp} = (9 - 2\gamma)/(4 - \gamma)$$

SGWB from PBHs surrounding Sgr A* and in the extragalactic massive BHs

 $(m_{PBH} = 1M_{\odot}, f_{PBH} = 10^{-8})$

Enhancement due to GW dissipation

The projected constraints on PBH abundance in DM

Scalar induced GWs (SIGW) [Yuan, Chen & QGH, Phys.Rev.D (Rapid Communication) (2019) &

arXiv:1910.09099; Chen, Yuan & QGH, arXiv:1910.12239]

$$ds^{2} = a^{2} \left\{ -(1+2\phi)d\eta^{2} + \left[(1-2\phi)\delta_{ij} + \frac{h_{ij}}{2} \right] dx^{i}dx^{j} \right\}$$
$$h_{ij}'' + 2\mathcal{H}h_{ij}' - \nabla^{2}h_{ij} = -4\mathcal{T}_{ij}^{\ell m}S_{\ell m}$$
$$S_{ij}^{(2)} = 4\phi\partial_{i}\partial_{j}\phi + 2\partial_{i}\phi\partial_{j}\phi - \frac{1}{\mathcal{H}^{2}}\partial_{i}(\mathcal{H}\phi + \phi')\partial_{j}(\mathcal{H}\phi + \phi')$$

$$S = S^{(2)}(\phi^2) + S^{(3)}(\phi^3) + S^{(4)}(\phi^4)$$

$$\Omega_{GW} = \frac{1}{\rho_c} \frac{d\rho_{GW}}{d\ln f} \sim \langle S^{(2)} S^{(2)} \rangle + \langle S^{(3)} S^{(3)} \rangle + \langle S^{(2)} S^{(4)} \rangle$$

$$S_{ij}^{(3)} = \frac{1}{\mathcal{H}} \left(12\mathcal{H}\phi - \phi' \right) \partial_i \phi \partial_j \phi - \frac{1}{\mathcal{H}^3} \left(4\mathcal{H}\phi - \phi' \right) \partial_i \phi' \partial_j \phi' + \frac{1}{3\mathcal{H}^4} \left(2\partial^2 \phi - 9\mathcal{H}\phi' \right) \partial_i \left(\mathcal{H}\phi + \phi' \right) \partial_j \left(\mathcal{H}\phi + \phi' \right),$$

$$\begin{split} S_{ij}^{(4)} =& 16\phi^{3}\partial_{i}\partial_{j}\phi + \frac{1}{3\mathcal{H}^{3}}\Big[2\phi'\partial^{2}\phi - 9\mathcal{H}\phi'^{2} - 8\mathcal{H}\phi\partial^{2}\phi \\&+ 18\mathcal{H}^{2}\phi\phi' + 96\mathcal{H}^{3}\phi^{2}\Big]\partial_{i}\phi\partial_{j}\phi \\&+ \frac{2}{3\mathcal{H}^{5}}\Big[-\phi'\partial^{2}\phi + 3\mathcal{H}\phi'^{2} + 4\mathcal{H}\phi\partial^{2}\phi \\&+ 3\mathcal{H}^{2}\phi\phi' - 12\mathcal{H}^{3}\phi^{2}\Big]\partial_{i}\phi'\partial_{j}\phi' \\&+ \frac{1}{36\mathcal{H}^{6}}\Big[-16(\partial^{2}\phi)^{2} - 3\partial_{k}\phi'\partial^{k}\phi' + 120\mathcal{H}\phi'\partial^{2}\phi \\&- 6\mathcal{H}\partial_{k}\phi\partial^{k}\phi' + 144\mathcal{H}^{2}\phi\partial^{2}\phi - 180\mathcal{H}^{2}\phi'^{2} \\&+ 33\mathcal{H}^{2}\partial_{k}\phi\partial^{k}\phi - 504\mathcal{H}^{3}\phi\phi' - 144\mathcal{H}^{4}\phi^{2}\Big] \\&\times \partial_{i}\left(\mathcal{H}\phi + \phi'\right)\partial_{j}\left(\mathcal{H}\phi + \phi'\right). \end{split}$$

Current constraints from NanoGRAV

$$P_{\phi}(k) = Af_*\delta(f - f_*)$$
$$\frac{m_{\text{pbh}}}{M_{\odot}} \simeq 2.3 \times 10^{18} \left(\frac{H_0}{f_*}\right)^2$$

$$f_{\rm pbh} \simeq 1.9 \times 10^7 \left(\zeta_c^2 / A - 1 \right) e^{-\frac{\zeta_c^2}{2A}} \left(\frac{m_{\rm pbh}}{M_{\odot}} \right)^{-1/2}$$

$$\Omega_{\rm GW}(f) = \frac{1}{\rho_c} \frac{d \log \rho_{\rm GW}}{d \log f} = \frac{\pi^2}{3H_0^2} f^3 S_h(f) \propto f^{n_{\rm GW}}$$
 slope

GW spectral energy density

spectral density

 $n_{\rm GW} = 2/3$

Compact Binary Coalescences

$$n_{\rm GW} = n_t + \alpha_t \ln(f/f_{\rm CMB})/2$$

Primordial Gravitational Waves

 $n_{\rm GW} = 0$

Scale-invariant Energy

Power spectrum of scalar curvature perturbation is enhanced at small scales.

Dimensionless width parameter

 $\Delta = \frac{k_+ - k_-}{k_*}$

For a narrow power spectrum

 $\Delta \ll 1$

$$\Omega_{\rm GW}(f) = \frac{1}{\rho_c} \frac{d \log \rho_{\rm GW}}{d \log f} = \frac{\pi^2}{3H_0^2} f^3 S_h(f) \propto f^{n_{\rm GW}}$$
 slope

GW spectral energy density

spectral density

 $n_{\rm GW} = 2/3$

Compact Binary Coalescences

$$n_{\rm GW} = n_t + \alpha_t \ln(f/f_{\rm CMB})/2$$

Primordial Gravitational Waves

 $n_{\rm GW} = 0$

Scale-invariant Energy

$$n_{\rm GW} = 3 - 2/\ln(f_c/f)$$

Scalar induced GWs inevitably accompanying the formation of PBHs

The postulation of

Primordial Black Hole Dark Matter

is testable for the next generation GW detectors.

Primordial Black Hole

Quantum Fluctuations

Inflation

Thank You!