CELESTIAL OPE OF SCATTERING AMPLITUDES

袁 野

浙江大学 浙江近代物理中心

弦论、场论与宇宙学相关专题研讨会 湖北宜昌,2019.11

arXiv:1910.07424, w/ A.Raclariu, M.Pate, A.Strominger

MOTIVATION

Holography

- Asymptotic AdS
- Physics in the AdS bulk described by CFTs on the boundary.
- Time-like boundary,
 one extra spatial direction emerged.
- E.g., type IIB superstring in $AdS_5 \times S^5$ vs $\mathcal{N}=4$ super Yang-Mills in 4d.
- AdS isometry conformal symmetry
- Boundary correlators

Holography?

- Asymptotically Minkowski?
- Null infinity: $\mathbb{R} \times \mathbb{S}^2$ the latter is the *celestial sphere* No time direction.
- Symmetries: SO(3,1)
 - 4d, Lorentz symmetry
 - 2d, conformal symmetry
- Boundary observables are S-matrices.
- This 2d symmetry was once a main ingredient leading to twistor strings.
 Here we'd like to explore other view points.

Goal

Ambitious:

Find a holographic dual theory of quantum gravity in asymptotically flat spacetime.

Conservative:

Find a dual description of the S-matrix

Note: In this talk we will only focus on massless particles.

PRELIMIARIES

Variables in Use

Parametrizing the momentum (massless)

$$p_{\mu}\sigma^{\mu}_{\alpha\dot{\alpha}} = \begin{pmatrix} p^0 + p^3 & p^1 - ip^2 \\ p1 + ip^2 & p^0 - p^3 \end{pmatrix}$$
$$= \sqrt{2}\omega\xi\begin{pmatrix} 1 & \bar{z} \\ z & z\bar{z} \end{pmatrix}$$

- (z, \bar{z}) parametrize the position on the celestial sphere.
- ω parametrize the energy.
- $\xi = \pm 1$ keeps track of out-going/in-coming particles.
- For Minkowski space (z, \bar{z}) are conjugate to each other. But here we assume they are independent.

A New Set of Wave Bases

[Pasterski, Shao, `17]

- The usual scattering amplitudes are Lorentz invariant.
 Here we want some objects behaving like conformal correlators.
- A set of wave basis (e.g., spin-1) $V_{\mu J}^{\Delta \xi}(x^{\mu}; z, \bar{z})$, satisfying:

 $-\text{e.o.m.}\quad (\partial_\rho\partial^\rho\delta^\mu_\nu-\partial_\nu\partial^\mu)V^{\Delta\xi}_{\mu J}(x;z,\bar z)=0$

— under Lorentz transformation, transforms as a vector in 4d and a conformal (quasi-)primary in 2d

$$V_{\mu J}^{\Delta \xi}(\Lambda x; \frac{az+b}{cz+d}, \frac{\bar{a}\bar{z}+\bar{b}}{\bar{c}\bar{z}+\bar{d}}) = (cz+d)^{\Delta + J}(\bar{c}\bar{z}+\bar{d})^{\Delta - J}\Lambda_{\mu}{}^{\nu}V_{\nu J}^{\Delta \xi}(x; z, \bar{z})$$

• Solution: $V_{\mu J}^{\Delta \xi} \propto \int_0^\infty \mathrm{d}\omega \, \omega^{\Delta - 1} \, \underbrace{\partial_J(p_\mu/\omega) e^{i\xi p \cdot x - \epsilon \omega}}_{\mathrm{ordinary \ wave \ function}}$

• Completeness+normalizability: $\Delta \in 1+i\mathbb{R}$

Celestial Amplitudes

[Pasterski, Shao, Strominger, `17]

- To obtain an object transforming nicely under conformal symmetry, we simply expand the S-matrix on the new basis.
- The ordinary scattering amplitudes are fed by plane waves.
- For massless particles this is a Mellin transformation

$$\tilde{\mathcal{A}}_n(\{\Delta_a, z_a, \bar{z}_a\}) = \int_0^\infty \prod_{a=1}^n d\omega_a \omega_a^{\Delta_a - 1} \mathcal{A}_n(\{\xi_a \omega_a, z_a, \bar{z}_a\})$$

- The new object is treated as a correlator on S^2 , involving operators $\mathcal{O}_{\Delta_a}(z_a,\bar{z}_a)$ with conformal dimension Δ_a .
- The dimensions are restricted to unitary principal series.

Examples

· Gluon amplitudes, after color decomposition

$$\mathcal{A}_n = \sum_{\rho \in S_n} \operatorname{tr}(T^{\rho(1)} \cdots T^{\rho(n)}) A_n[\rho]$$

MHV sector

$$A_{n}[1^{+}\dots i^{-}\dots j^{-}\dots n^{+}] = \frac{\langle ij\rangle^{4}}{\langle 12\rangle\langle 23\rangle\cdots\langle n1\rangle}\delta^{4}$$

$$= \frac{\omega_{i}\omega_{j}}{\prod_{a\neq i,j}\omega_{a}} \frac{z_{ij}^{4}}{z_{12}z_{23}\cdots z_{n1}}\delta^{4}$$

where the momentum conservation

$$\delta^{4} \equiv \delta^{4}(\sum_{a} p_{a})$$

$$\equiv \delta(\sum_{a} \xi_{a} \omega_{a}) \delta(\sum_{a} \xi_{a} z_{a}) \delta(\sum_{a} \xi_{a} \bar{z}_{a}) \delta(\sum_{a} \xi_{a} z_{a} \bar{z}_{a})$$

Examples

- Assume all are out-going; denote $\Delta = 1 + i\lambda$
- 3-point (turn into (2,2) signature)

$$\tilde{A}_3[1^-2^-3^+] = \delta(\sum_a \lambda_a) \frac{\operatorname{sgn}(z_{12}z_{23}z_{31})\delta(\bar{z}_{12})\delta(\bar{z}_{13})}{|z_{12}|^{-1-i\lambda_3}|z_{23}|^{1-i\lambda_1}|z_{13}|^{1-i\lambda_2}}$$

In terms of (h, \bar{h}) we have

- helicity
$$(h, \bar{h}) = (\frac{i}{2}\lambda, 1 + \frac{i}{2}\lambda)$$

+ helicity
$$(h, \bar{h}) = (1 + \frac{\imath}{2}\lambda, \frac{\imath}{2}\lambda)$$

• The constraint $\delta(\sum_a \lambda_a)$ is always present. This comes from the overall energy integral.

SPECTRUM & OPE

Possibility of a CFT?

- Any chance that these 2d correlators arise from a CFT?
- To specify a CFT, we need:
 - spectrum, species of conformal families w/ dimension;
 - collection of all OPE coefficients;
 - crossing symmetry;
 - unitarity bound (for unitary CFTs), etc.
- It is natural to think that $\tilde{\mathcal{A}}_n = \langle \mathcal{O}_1 \cdots \mathcal{O}_n \rangle$, where \mathcal{O} is the "gluon operator".
- Crossing symmetry guaranteed by construction.
- What are the OPE coefficients?

OPE Limit & Collinear Limit

• To extract the OPE coefficients we probe the limit $z_{12} o 0$, keeping \bar{z}_1, \bar{z}_2 fixed.

- This is the (holomorphic) collinear limit in the bulk.
- Parametrize the energies

$$\omega_1 = x\omega_0, \quad \omega_2 = (1-x)\omega_0$$

The amplitude factorize (e.g., for two + helicity gluons)

$$A_n = \frac{1}{x(1-x)\omega_0 z_{12}} \underbrace{\frac{\omega_i \omega_j}{\omega_0 \prod_{a \neq 1, 2, i, j} \omega_a} \frac{z_{ij}^4}{z_{23} \cdots z_{n2}} \delta^4 + O(z_{12}^0)}_{}$$

$$A_{n-1}$$

• In particular, $\delta^4(p_1+p_2+\cdots) \approx \delta^4(p_0+\cdots)$

OPE From the Mellin Transformation

 The info in the remaining amplitude is not relevant for the leading order computation, so

$$\tilde{A}_{n} = \int_{0}^{\infty} d\omega_{1} d\omega_{2} \cdot \dots \cdot \frac{\omega_{1}^{\Delta_{1}-1} \omega_{2}^{\Delta_{2}-1}}{x(1-x)\omega_{0}z_{12}} A_{n-1} + O(z_{12}^{0})$$

$$= \frac{\int_{0}^{1} dx \, x^{\Delta_{1}-2} (1-x)^{\Delta_{2}-2}}{z_{12}} \int_{0}^{\infty} d\omega_{0} \omega_{0}^{\Delta_{1}+\Delta_{2}-2} \cdot \dots \cdot A_{n-1} + O(z_{12}^{0})$$

$$= \frac{B(\Delta_{1}-1, \Delta_{2}-1)}{z_{12}} \langle \mathcal{O}_{\Delta_{1}+\Delta_{2}-1}^{+} \cdot \dots \rangle + O(z_{12}^{0})$$

- The new operator from the OPE is also a + helicity gluon operator, whose dimension is $\Delta_1 + \Delta_2 1$.
- Take the color factor into consideration, we have

$$\mathcal{O}_{\Delta_1}^{+\,a_1}\mathcal{O}_{\Delta_2}^{+\,a_2} \sim \frac{f_{a_3}^{a_1a_2} \,\mathrm{B}(\Delta_1-1,\Delta_2-1)}{z_{12}} \mathcal{O}_{\Delta_1+\Delta_2-1}^{+\,a_3} + \cdots$$

CONSTRAINTS FROM SYMMETRIES

The Idea

- The kind of CFTs we are looking for are not arbitrary.
 They come with extra ingredients.
- Poincare symmetry also contains bulk <u>translations</u>, which is not part of the celestial conformal group

$$P \int_0^\infty d\omega \omega^{\Delta - 1} \cdots \mathcal{A} = \int_0^\infty d\omega \omega^{\Delta} \cdots \mathcal{A}$$

indicating that $P\mathcal{O}_{\Delta} = \mathcal{O}_{\Delta+1}$.

- Soft theorems are tied to residual symmetries at infinity.
 - Gauge theories: large gauge transformations.
 - Gravity: BMS symmetry.

Ansatz

For the pure gluon theory we assume

$$\mathcal{O}_{\Delta_1}^{+a}(z_1,\bar{z}_1)\mathcal{O}_{\Delta_2}^{+b}(z_2,\bar{z}_2) \sim \frac{if_c^{ab}}{z_{12}}C(\Delta_1,\Delta_2)\mathcal{O}_{\Delta_1+\Delta_2-1}(z_2,\bar{z}_2)$$

- The need of z_{12} is due to the need of the $\frac{1}{(p_1+p_2)^2}$ propagator.
- The three gluon vertex has the form $AA\partial A$. The leading behavior comes from this. Counting energy weights determines the dimension of the new operator.
- Bose statistics requires $C(\Delta_1, \Delta_2) = C(\Delta_2, \Delta_1)$
- We are then left with the coefficient $C(\Delta_1, \Delta_2)$ to solve.

Translation

LHS

$$P\mathcal{O}_{\Delta_{1}}^{+a}\mathcal{O}_{\Delta_{2}}^{+b} = \mathcal{O}_{\Delta_{1}+1}^{+a}\mathcal{O}_{\Delta_{2}}^{+b} + \mathcal{O}_{\Delta_{1}}^{+a}\mathcal{O}_{\Delta_{2}+1}^{+b}$$

$$= \frac{if^{ab}}{z_{12}} \left(C(\Delta_{1}+1, \Delta_{2}) + C(\Delta_{1}, \Delta_{2}+1) \right) \mathcal{O}_{\Delta_{1}+\Delta_{2}}^{+c}$$

• RHS

$$P\mathcal{O}_{\Delta_1 + \Delta_2 - 1}^{+c} = \mathcal{O}_{\Delta_1 + \Delta_2}^{+c}$$

· When the symmetry is not broken, the two sides have to equal

$$C(\Delta_1 + 1, \Delta_2) + C(\Delta_1, \Delta_2 + 1) = C(\Delta_1, \Delta_2)$$

Soft Theorems

- Soft theorems governs the universal factorizing structure of scattering amplitudes when a massless external particle has vanishing momentum.
- For gluons there are the leading and the subleading theorems.
- The leading conformally soft theorem indicates

[Lysov, Pasterski, Strominger, `14]

$$\lim_{\Delta_1 \to 1} \mathcal{O}_{\Delta_1}^{+a}(z_1, \bar{z}_1) \mathcal{O}_{\Delta_2}^{+b}(z_2, \bar{z}_2) \sim \frac{i f^{ab}{}_{c}}{(\Delta_1 - 1) z_{12}} \mathcal{O}_{\Delta_2}^{+c}(z_2, \bar{z}_2)$$

i.e.,

$$\lim_{\Delta_1 \to 1} (\Delta_1 - 1)C(\Delta_1, \Delta_2) = 1$$

Soft Theorems

 Subleading soft theorem implies that the celestial amplitude is invariant under the action of

$$\bar{\delta}_b \mathcal{O}_{\Delta}^{\pm a}(z,\bar{z}) = -(\Delta - 1 \mp 1 + \bar{z}\bar{\partial})if^a{}_{bc} \mathcal{O}_{\Delta-1}^{\pm}c(z,\bar{z})$$

- No need to worry about the $\bar{z}\bar{\partial}$ part, since it leads to descendants that are to be compared with terms we omit in the ansatz.
- Applying on both sides of the ansatz we have

$$(\Delta_1 - 2)C(\Delta_1 - 1, \Delta_2)f^a{}_{dc}f^{cb}{}_e + (\Delta_2 - 2)C(\Delta_1, \Delta_2 - 1)f^b{}_{dc}f^{ac}{}_e$$
$$= (\Delta_1 + \Delta_2 - 3)C(\Delta_1, \Delta_2)f^{ab}{}_cf^{c}{}_{de}$$

A further application of Jacobi identity gives

$$(\Delta_1 - 2)C(\Delta_1 - 1, \Delta_2) = (\Delta_1 + \Delta_2 - 3)C(\Delta_1, \Delta_2)$$

Determining the Coefficient

Collect the constraints derived so far

ansatz
$$C(\Delta_1, \Delta_2) = C(\Delta_2, \Delta_1)$$

translation $C(\Delta_1 + 1, \Delta_2) + C(\Delta_1, \Delta_2 + 1) = C(\Delta_1, \Delta_2)$
leading soft $\lim_{\Delta_1 \to 1} (\Delta_1 - 1)C(\Delta_1, \Delta_2) = 1$
subleading soft $(\Delta_1 - 2)C(\Delta_1 - 1, \Delta_2) = (\Delta_1 + \Delta_2 - 3)C(\Delta_1, \Delta_2)$

These together determines that

$$C(\Delta_1, \Delta_2) = B(\Delta_1 - 1, \Delta_2 - 1)$$

Similar analysis also shows that

$$\mathcal{O}_{\Delta_1}^{+a}(z_1,\bar{z}_1)\mathcal{O}_{\Delta_2}^{-b}(z_2,\bar{z}_2) \sim \frac{if_c^{ab}}{z_{12}}B(\Delta_1-1,\Delta_2+1)\mathcal{O}_{\Delta_1+\Delta_2-1}^{-c}(z_2,\bar{z}_2)$$

Case Of Einstein Gravity

The ansatz (two + helicity gravitons)

$$\mathcal{G}_{\Delta_1}^+(z_1,\bar{z}_1)\mathcal{G}_{\Delta_2}^\pm(z_2,\bar{z}_2) \sim \frac{\bar{z}_{12}}{z_{12}} E_\pm(\Delta_1,\Delta_2)\mathcal{G}_{\Delta_1+\Delta_2}^\pm(z_2,\bar{z}_2)$$

Analysis works similarly as the gluon case.

- Subleading soft symmetry corresponds to 2d conformal transformations. They do not generate new constraints.
- Subsubleading soft theorem implies invariance under the action

$$\bar{\delta}\mathcal{G}_{\Delta}^{\pm}(z,\bar{z}) = -\frac{\kappa}{4} \left((\Delta \mp 2)(\Delta \mp 2 - 1) + 4(\Delta \mp 2)\bar{z}\bar{\partial} + 3\bar{z}^2\bar{\partial}^2 \right) \mathcal{G}_{\Delta-1}^{\pm}(z,\bar{z})$$

The constraints determines that

$$E_{\pm}(\Delta_1, \Delta_2) = -\frac{\kappa}{2} B(\Delta_1 - 1, \Delta_2 \mp 2 + 1)$$

More Examples

We also studied gluons minimally coupled to gravitons

$$\mathcal{G}_{\Delta_1}^+(z_1,\bar{z}_1)\mathcal{O}_{\Delta_2}^{\pm a}(z_2,\bar{z}_2) \sim -\frac{\kappa}{2} \mathrm{B}(\Delta_1 - 1, \Delta_2 \mp 1 + 1) \frac{\bar{z}_{12}}{z_{12}} \mathcal{O}_{\Delta_1 + \Delta_2}^{\pm a}(z_2,\bar{z}_2)$$

$$\mathcal{O}_{\Delta_1}^{+a}(z_1,\bar{z}_1)\mathcal{O}_{\Delta_2}^{-b}(z_2,\bar{z}_2) \sim \frac{if_c^{ab}}{z_{12}} \mathrm{B}(\Delta_1 - 1, \Delta_2 + 1)\mathcal{O}_{\Delta_1 + \Delta_2 - 1}^{-c}(z_2,\bar{z}_2)$$

$$+\delta^{ab}\frac{\kappa}{2}B(\Delta_1,\Delta_2+2)\frac{\bar{z}_{12}}{z_{12}}\mathcal{G}^{-}_{\Delta_1+\Delta_2}(z_2,\bar{z}_2)$$

• We checked all these results against the computation from the collinear limits. The above is consistent with the hF^2 coupling.

Conclusion

- Scattering amplitudes receives a representation on the celestial sphere, which looks like conformal correlators.
- To see whether this can be promoted to a correspondence between theories in the Minkowski bulk and CFTs on the celestial sphere we should understand the resulting spectrum and interactions.
- On the one hand, we worked out the leading OPE between primary operators using Mellin transformation of the collinear limit of scattering amplitudes.
- On the other hand, we determined the same coefficients using constrains from symmetries and soft theorems.

Outlook

- Other operators in the OPE.
 In particular, what plays the role of stress tensor?
 Analog of double-trace, triple-trace operators, etc?
- Analog of Sugawara construction in the gluon case. Connection with the double copy construction of gravity amplitudes.
- A proper understanding of the conformal dimensions.
 What is the unitary principal series doing?
- Role of the case with massive particles.
 Especially string theory amplitudes.

Thank You Very Much!