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MOTIVATION




Holography

Asymptotic AdS

Physics in the AdS bulk
described by CFTs on the boundary.

Time-like boundary,
one extra spatial direction emerged.

E.g., type IIB superstring in AdSs x S°
vs A = 4 super Yang-Mills in 4d.

AdS isometry <= conformal symmetry

Boundary correlators



Holography?

Asymptotically Minkowski?

Null infinity: R x §2
the latter is the celestial sphere
No time direction.

Symmetries: SO(3,1)
— 4d, Lorentz symmetry
— 2d, conformal symmetry

Boundary observables are S-matrices.

This 2d symmetry was once a main ingredient -
leading to twistor strings.
Here we'd like to explore other view points.
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Goadl

Ambitious:
Find a holographic dual theory of quantum gravity
in asymptotically flat spacetime.

Conservative:
Find a dual description of the S-matrix

Note: In this talk we will only focus on massless particles.




PRELIMIARIES




Variables in Use

Parametrizing the momentum (massless)
. (po +9 9 = in)

pﬂaad -

pl +ip* p’ —p?

i \@wf(l 5)

(2,Z) parametrize the position on the celestial sphere.

w parametrize the energy.

-1 keeps track of out-going/in-coming particles.

For Minkowski space (z, Z) are conjugate to each other.
But here we assume they are independent.




A New Set of Wave Bases

[Pasterski, Shao, *17]

* The usual scattering amplitudes are Lorentz invariant.
Here we want some objects behaving like conformal correlators.

A set of wave basis (e.g., spin-1) VMAJg(CU“; 2, Z), satisfying:
—e.o.m. (8,004 — 8,,(9“)‘/”%5(:13; .5)=0
— under Lorentz transformation, transforms as a vector in 4d and
a conformal (quasi-)primary in 2d

A az -+ b az + b At = A _ " 3 =
Vuf(Aa:; oz 1 4’ 22 4 J) = (cz + d)AJ“J(cz + al)A ‘]AM Vyf(a:; 2,%)

)
S Bt N S N N B

ordinary wave function

© @)
» Solution: VAfocf dw w? 1 @J(pu/w)eifp-a:—ew
0

» Completeness+normalizability: A € 1+ iR




Celestial Amplitudes

[Pasterski, Shao, Strominger, “17]
To obtain an object transforming nicely under conformal
symmetry, we simply expand the S-matrix on the new basis.

The ordinary scattering amplitudes are fed by plane waves.

For massless particles this is a Mellin transformation

({Aa,za,za} / Hdwaw A ({8 24, B}

The new object is treated as a correlator on 82,
involving operators Oa_ (24, Z,) with conformal dimension A,.

The dimensions are restricted to unitary principal series.




Examples

* Gluon amplitudes, after color decomposition

A= Z tr(7PM) .. -Tp(”))An[p]
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where the momentum conservation




Examples

Assume all are out-going; denote A =1 4 A

3-point (turn into (2,2) signature)

As[17273%] = &( Z)\ sgn(212223231)0(212)0(213)

‘212‘ 1— 7)\3‘223}1 7’>‘1|213|1 1A\2

In terms of (h, k) we have

_ helicity (b, h) (EA, 14 =A)

i
>
+ helicity  (h,h) = (143 ' ;)\)

The constraint 6(> . As) is always present.
This comes from the overall energy integral.




SPECTRUM & OPE




Possibility of a CFT?

Any chance that these 2d correlators arise from a CFT?

To specify a CFT, we need:

— spectrum, species of conformal families w/ dimension;
— collection of all OPE coefficients;

— crossing symmetry;

— unitarity bound (for unitary CFTs), etc.

~

It is natural to think that A, = (O1--:-O,),
where Q is the “"gluon operator”.

Crossing symmetry guaranteed by construction.

What are the OPE coefficients?




OPE Limit & Collinear Limit

To extract the OPE coefficients we probe
the limit 212 = 0, keeping 21,22 fixed.

This is the (holomorphic) collinear limit in the bulk. §

Parametrize the energies
w1 = Twp, wa = (1—2z)wg

The amplitude factorize (e.g., for two + helicity gluons)
4
A, = — 2§ +0(z]5)
(1 — x)woz12 Wo Ha;él,Z,i,j Wg 223 * * * Zn2
_ OO et s s, 4553 [ L LM W) B DU
An—l

In particular, 54(p1 +p2+--)m 54(2?0 4 :e2)




OPE From the Mellin Transformation

* The info in the remaining amplitude is not relevant for the leading
order computation, so

O Al 1 AQ 1
W W
/ dwidws - - - —= < Ap_1 + O(275)
0

2(1 — )woz12

1
dCE CEAl_Z 1 - A2—2 ©. @)
i9 . ( | / dwows ' T2272- - A1 + O(21,)
0

<12

A =-1LA:=1)

= Ox Y+ 02
s (OA,+a,-1""") (212)

* The new operator from the OPE is also a + helicity gluon operator,
whose dimension is A; + Ay — 1.

 Take the color factor into consideration, we have
| i B(A; —1,A,-1)

<12

+ as
OA1+A2—1_|—"'

Obel O—l— & _
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CONSTRAINTS FROM SYMMETRIES




The Idea

* The kind of CFTs we are looking for are not arbitrary.
They come with extra ingredients.

Poincare symmetry also contains bulk translations, which is not
part of the celestial conformal group

P / dww? A= / dww™
0

indicating that POaA = Oa41.

Soft theorems are tied to residual symmetries at infinity.
— Gauge theories: large gauge transformations.
— Gravity: BMS symmetry.




Ansatz

For the pure gluon theory we assume

= = i =
Ox%(21,21)O%, (22, Z2) ~ ~—C(A1,82)04,+4;-1(22, 22)
12

The need of 212 is due to the need of the (p1+1p2)2 propagator.

The three gluon vertex has the form AAOA. The leading behavior

comes from this. Counting energy weights determines the
dimension of the new operator.

Bose statistics requires C'(A1,A2) = C(Az,A)

We are then left with the coefficient C'(A1,A2) to solve.




Translation

o LHS
POLOY = 0. .00 + O 0.,

i,

<12

(C(A1 +1,A9) + C(A1, A2 + 1)) OXS, o

2

POAH-AQ R OA1+A2

* When the symmetry is not broken, the two sides have to equal

C(Al + ]-7 AQ) + C(Aly AQ + 1) e C(/\17 /\2)




Soft Theorems

» Soft theorems governs the universal factorizing structure of
scattering amplitudes when a massless external particle has
vanishing momentum.

e For gluons there are the leading and the subleading theorems.

* The leading conformally soft theorem indicates
[Lysov, Pasterski, Strominger, “14]

ifabc

L ghdles | L iadsl | o
Jim O3 (21,21)03,(22, 22) ~ (

lim (Al o 1)0(/\1, /\2) =1
A1—>1




Soft Theorems

* Subleading soft theorem implies that the celestial amplitude
is invariant under the action of

hOT(2,.5) = -(A=-1F1+80)f* . O _,elz, %)

» No need to worry about the 20 part, since it leads to descendants
that are to be compared with terms we omit in the ansatz.

* Applying on both sides of the ansatz we have
(A1 = 2)C(A1 = 1,89) 4. f P + (A2 = 2)C (A1, A9 = 1) f° 4.,
= (A1 4+ A2 = 3)C(A1, Ag) f3° € 4o
* A further application of Jacobi identity gives

(A = DCLA: = 1, 8:) = (A + B3 = DOCLAL A3)




Determining the Coefficient

e Collect the constraints derived so far

ansatz C(A1,As) = C(Az,Aq)
translation C(A; +1,42)+C(A1,A2+1) =C(Aq,As)

leading soft lim (A; — 1)C(A1,As) =1
Al——)l

subleading soft (A; —2)C(A; —1,A2) = (A1 + Ay —3)C (A1, As)

* These together determines that

Dl A=A =1.8a=1)

» Similar analysis also shows that
ife’

OXC;(Zla 21)052 (Z27 22) T
<12

B(Al —1, A + 1)OZT+A2—1(Z27 52)




Case Of Einstein Gravity

The ansatz (two + helicity gravitons)

Analysis works similarly as the gluon case.

Subleading soft symmetry corresponds to 2d conformal
transformations. They do not generate new constraints.

* Subsubleading soft theorem implies invariance under the action
K

0G5 (2,2) = ; (AF2)(AF2-1) +4(AF2)20 + 37°9*)Gx_,(2,2)

* The constraints determines that
K
E:l:(/\la /\2) i _§B(A1 - ]-7 AQ F2+ ]-)




More Examples

* We also studied gluons minimally coupled to gravitons

= +a o K i S50 nia =
QL(ZLZl)OAZ (22, 22) i —§B(A1 —1,A2F 1+ 1)50A1—|—A2(z2722)

- rab

i L il
—B(A1 = 1,85+ 1)O0x 1 a,-1(22, 22)

OR%(21,21)O0x, (22, 22) ~
<12

K z = .
+ 5ab§B(/\17 /\2 + 2)Z—ng1—|—A2 (227 ZQ)

* We checked all these results against the computation from the
collinear limits. The above is consistent with the hE? coupling.




Conclusion

Scattering amplitudes receives a representation on the celestial
sphere, which looks like conformal correlators.

To see whether this can be promoted to a correspondence
between theories in the Minkowski bulk and CFTs on the celestial
sphere we should understand the resulting spectrum and
interactions.

On the one hand, we worked out the leading OPE between
primary operators using Mellin transformation of the collinear
limit of scattering amplitudes.

On the other hand, we determined the same coefficients using
constrains from symmetries and soft theorems.




Outlook

Other operators in the OPE.
In particular, what plays the role of stress tensor?
Analog of double-trace, triple-trace operators, etc?

Analog of Sugawara construction in the gluon case. Connection
with the double copy construction of gravity amplitudes.

A proper understanding of the conformal dimensions.
What is the unitary principal series doing?

Role of the case with massive particles.
Especially string theory amplitudes.




Thank You Very Much!




