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AdS/CFT correspondence

e [ his is proposed by Maldacena in 1997. A canonical example:
Type IIB superstrings on AdSs x S°
= N =4 SU(N) super-Yang-Mills on 4d

e [ he identification of parameters
R* = 47T93Nl§, Args = 912/]\/[:

where R is the AdS (or 55) radius, N is the rank of gauge group or
Ramond flux, ls is the string length.

e Some limits:
1. Suppress string loop corrections gs ~ g}Q/M < 1.
2. Suppress o' corrections (supergravity valid) %N g%MN > 1.
So AdSy X S° supergravity is described by strongly coupled gauge theory
N ~ 00,92, ~ 0, g&,/N (effective t'"Hooft coupling) large.



pp-wave limit

e A Penrose limit of the AdSs x S° geometry.
ds? = —4dxTdr™ — p2(72 + 72) (dz )2 + di? + dif?,
where zT, 2~ are light cone coordinates, u is proportional to flux. Mo-

mentum in the 8 transverse directions is discretized by flux. String

vacuum state |0,pT), where pT is the light cone momentum.
Yang-Mills side:

Consider large charge operator Tr (ZJ) with J ~ VN ~ 400, where 7
IS one of the 3 complex scalars.

Berenstein, Maldacena and Nastase (BMN), [arXiv:hep-th/0202021].
Excited string states are described by BMN operators.

e [ he identification of parameters
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e It is useful to define 2 dimensionless parameters

)\/:g%MN g:J—2
J2 N’

It turns out
)\ is the effective gauge coupling constant.
g is the effective string coupling constant.

e [wo interesting situations

1. ¢ = 0, )\ finite. Free string theory = Interacting gauge theory.

String spectrum described by planar conformal dimension of BMN
operators.

2. M =0, g finite. Free gauge theory = Interacting string theory.
This is a background with infinite negative curvature, infinite flux.
Strings are infinitely long and tensionless.

String spectrum completely degenerate.

String loop amplitudes described by non-planar (higher genus) con-
tributions.

In this talk we focus on the second situation.



Factorization Principle

e [ he effective field theory approach breaks down on the string the-
ory side. Usually we can not say much about the underlying physics.
However, it seems somehow luckily the stringy physics also becomes
extremely simplified.

e \We proposed that the string amplitudes can be computed simply by
cubic diagrams, and there is a so called “factorization” principle relating
the string diagram calculations and field theory calculations, in the spirit
of AdS/CFT correspondence.

Huang, hep-th/0206248, arXiv:1009.5447.

e If our claim is valid, we can straightforwardly compute higher string
loop amplitudes which are notoriously difficult.



e [ he general form of the factorization rule is
Si — Zmiij’
J

where S; and F} denote string and field theory diagram contributions,
and m;; are non-negative integers denoting the multiplicity of expanding
the “short process’ of field theory diagrams into “long process’ of
string diagrams.

e A nice example
1, J=1

J—Ji\, /J1/]—J
<O£m mOin n>torus:§( Z <O£m mOO Op 1><OolOo 1O£n,n>
Ji=1
it J—Jin/ a1 AJ—J1nJ
+ X X (0Lym05 0707, 0701, ).
J1=1k=—o0

Factor of 2: there are 2 ways to expand the short process

(1234) — (12)(34) — (2143),
(1234) — (23)(41) — (3214).



The 2 — 2 scattering process: There was a puzzle that the factoriza-
tion seems to break down for S-channel in our previous paper Huang,
arXiv:1009.5447.

In the recent paper Huang arXiv:1909.06995, we resolve this puzzle, by
including some missing diagrams in our previous paper.

We consider again several examples:
(071074072073),

(0107, ,05205%),

(0%, 1,070, ,073).

(J1 > Jo > J3 > Ja, with J=J1 + Jga = Jo+ J3).

For illustration we consider the second example.



e Some field theory diagrams for (5*1151‘;1%032033). These previous
diagrams have vanishing contributions F1(4) = O,FQ(4> = 0. The new
diagram F3(4) IS non-vanishing.
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e On the string side, there is no T and U channel contribution. We check
the S-channel factorization
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A Probability Interpretation

e Analogous to quantum mechanics, we would like to interpret the two
single-string correlator (O, O7, ), of genus h as the physical h-loop
probability amplitude of preparing the initial as O{m and observing
the final state 07, .

,m

e \We find the sum of the probability amplitude over final states is actually
quite simple and independent of the initial state mode

s =] J . (4h — 1)1 h
Z <O—m,m0—n,n>h — (2h + 1)(4h)!9

nN=——0o0
The result can be better derived using the integral formula or factor-
ization formula. We skip the details here.

e We can prove (07, 0O/
theory perspectives.

n = 0, both from field theory and string

n,n>



e Putting together the results, we can write the total probability pmn > 0
including all string loop contributions

©.@)

g ~J J
= O< O~ :
Pmn > Siﬂh(g/z) hz::o< m,m n,n>h

This is properly normalized by the vacuum correlator

_ 2sinh(g/2) s (4h — 1) h
6’0’ = = g?".
< >a|| genera g hgo (2h + 1)(4h)!
For any initial mode m, we have
oo
Z Pm,n — 1
n=——oo

e Some discussions about multi-strings (as virtual states).



Formulation in Quantum Mechanics

e \We denote the orthonormal BMN states of free string theory by |n).
Let us assume the transition amplitude between BMN states can be
described by a unitary operator eiﬁ(g), where H(g) is a Hermitian op-
erator corresponding to the time integral of Hamiltonian in a usual
quantum mechanics system. Here H(0) = 0 for free string theory and
the operator H(g) models string interactions at finite coupling g.

e Our proposal
The matrix element pm.n does not correspond to the usual transition

amplitude (m|et(9)|n).
Instead, we have the same normalization relation

S pmn= Y [(mle@ny2 =1,

n——oo nN——0od

This strongly suggests pm.n = |(m|et2@|n)|2.



Unitarity

e Taking pm n as the transition amplitude (m|eiﬁ(g)|n> would be inconsis-
tent with unitarity.
Allow BMN operator O
T he unitarity condition

m Normalized by a function fimn(g)

Z fm(g)*fm’(g)|fn(9)|2pm,np:1/,n = 5m,m"

n——oo

Consider two cases
1. m=m' and ¢ = 0. We deduce |f»(0)] = 1 for any mode m.

2. m #= m' and both non-zero. Expand for small g

> @) Fr (D D) PPmnpiey

= 2fm(0)* f,y(0)(OL 1, 1O s i) torus + O(g).

This is clearly non-zero, violating unitarity.



The correct proposal

(m|e Dy = ¥mnl9) p—
For g = 0 this is the identity matrix dm. n, SO the phase angle 6, m(0) =
0. For m # n, the phase angle 6, ,(0) is not determined.
The unitarity condition is

S5 om0,

\/pm,npm/7n — 5m,m/.

n——oo

For m = m/ this is already satisfied, while the cases of m % m’ may
provide some constrains for the phase angles.

Again we consider the non-trivial case of m #%= m’ and both non-zero.
Expanding for small g

S5 im0,

\/pma’npm’,n

n——oo

— [eiem,m/(o)_i_e—i@ / (O)]\/ —mm —m m>torus+o(92)-
An interesting relation 6, ,,./(0) + 0,/ ,,(0) = 7.




Entanglement Entropy

e Entanglement entropy appears in quantum information theory as a
measure of information for entangled states. It is also popular in con-
densed matter physics as a new type of order parameters to understand
quantum phases of matters and critical phenomena.

e Ryu and Takayanagi proposed to compute entanglement entropy in
conformal field theory holographically in terms of minimal surfaces in
AdS space.

Ryu and Takayanagi, Phys. Rev. Lett. 96, 181602 (2006)

e Since we have a probability distribution for a BMN string, we can define
an entanglement entropy

Sm(g) = — i Pm.,n 109 (pm,n)-

nN——odo



e Some discussions.
The quantum evolution is unitary.
The entanglement appears between an observer and the BMN strings.
The BMN basis is the preferred basis of entanglement.
Tracing out the observer, we get a mixed state of BMN strings.
This is like a decoherence process.

e Some special cases
1. Free string theory ¢ = 0, we have S,,(0) = 0.
2. The zero mode decouples, so we have Sg(g) = 0.

e For a quantum system with Hilbert space of finite dimension D, the
maximal entanglement entropy log(D) is achieved by a mixed state

with uniformly distributed probability over an orthogonal basis. We
shall prove an upper bound for the entanglement entropy.



e A bound for the correlator.
For genus h, the field theory calculations of the two-point amplitude
(Ofm,mOfn,nm consist of (A'thq_ll)” cyclically inequivalent diagrams of
dividing the long string into 4h segments.

<O£m mOin n>h
(4h— 1)1 4hg?
<
— 2h+1 772(m—n)2
16h2 2h
22h(2h 4+ 1)12(m — n)2’

The strength of BMN string interactions are bounded by an inverse
square law.

/ dxq - da:4h5(z x; — 1)

e Summing over all genera, we have an estimate of the probability matrix
element as

f(g)

T = 2(m —n)?’

where f(g) = Smh(g/Q) [9 smh(%) — cosh($)] ~ g°.



e First notice for 0 < p < 1, the function —plog(p) achieved maximum at
p=-e"1, and it is monotonic in p € (O,e_l). We can choose an integer

ve- f(g) 2)

7T
and evaluate the sum in 3 parts for n < m —ng, m —ng < n < m —+ nq,
and n > m + ng.

ng > max(

Y

e [ he two parts that extends to oo are symmetric with the same contri-
butions, and in the middle part the entropy is maximal with a uniformly
distributed probability ensemble. We find

Sm(g) <2 Z f(g)log( mon?

n=ng 7 f(g)

) +log(2ng — 1).

e [T he sum is convergent, we choose an integer ng for optimal bound.



Strong coupling limit

e String perturbation series is actually convergent. (Some discussions)
We can extrapolate to strong coupling g — oo.

e The optimal bound ng ~ g2t¢, we have

Sm(g) < (2+¢€)log(g), g~ .

Interpretation as ‘“effective dimension” of the Hilbert space.

e [ he logarithmic bound is universal, e.g. for BMN operator with 3
stringy modes o/ with closed string level matching condition
m1,Mm2,m3)

™M1 —|—m2 —|—m3 — 0, we have

S(mymams)(9) < (6+¢€)log(g), g~ .



Some numerical analysis

e As an illustration example we plot the entanglement entropy Sy, (g) for
for two case m = 1,100 and 0 < g < 10. We use the data up to genus
3 and also truncate the sum at |n| < 10000. The numerical accuracy
is sufficient for our purpose.

Sm(9)
70
L — upper bound

6

5




e Some salient features.
1. Sm(g) appears to be a monotonically increasing function of g.

2. Sm(g) seems to depends very weakly on the string mode m.

e Some further questions

1. Can our bound be further improved? Is there a finite bound at
strong coupling limit?

2. Connections to (entanglement) entropy in other contexts? Geomet-
ric interpretations?
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