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Conformal symmetry in D ≥ 3

The CFTs are the field theory with conformal symmetry quantum
mechanically. They play important roles in various areas: the physics at
the critical points, AdS/CFT, etc..
Renaissance (2008- ): the conformal bootstrap may allow us to study the
theories in a non-perturbative way.

The conformal group SO(2,D) in D ≥ 3 spacetime is generated by
▶ Translation: Pµ

▶ Lorentzian rotation: Mµν

▶ Scaling transformation (Dilation): D
▶ Special conformal transformation: Kµ
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2D Conformal symmetry
In 2D, the conformal symmetry is actually

x+ → f (x+), x− → g (x−),

and is generated by two copies of Virasoro algebra {Ln, Ln}, n ∈ Z,
among which

{L−1, L0, L1} → SL(2,R), {L−1, L0, L1} → SL(2,R).

The (global) conformal group is actually SO(2, 2) ≃ SL(2,R)× SL(2,R).

In other words, 2D conformal symmetry is much richer

SL(2,R)⊗ SL(2,R) ⇒ Vir ⊗ Vir
Global, finite dim. ⇒ Local, infinite dim.

and more powerful:
Classification of minimal model, · · ·
Holographic CFT and its implications in AdS3/CFT2, including various
problems in BH physics, spacetime reconstruction, · · · .
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Enhanced scaling symmetry

Scaling symmetry ⇒ Conformal symmetry?

In 2D QFT, scaling symmetry could be enhanced to conformal symmetry
J. Polchinski (1989)
Assumption: the theory should be

▶ Poincare invariant
▶ Unitary
▶ discrete and non-negative spectrum

In 4D, the enhancement from scaling to conformal symmetry could still
be true under appropriate assumptions, but not fully proved.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Enhanced scaling symmetry

Scaling symmetry ⇒ Conformal symmetry?

In 2D QFT, scaling symmetry could be enhanced to conformal symmetry
J. Polchinski (1989)
Assumption: the theory should be

▶ Poincare invariant
▶ Unitary
▶ discrete and non-negative spectrum

In 4D, the enhancement from scaling to conformal symmetry could still
be true under appropriate assumptions, but not fully proved.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

In 2D, the left- and right-moving sectors are independent, there are more
possibilities, if the Lorentz symmetry breaking is allowed.
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Example 1: Chiral scaling

D. Hofman and A. Strominger (2011):

chiral scaling in 2D without requiring the Lorentz invariance

x → λx, y → y,

Assumption: the dilation operator
▶ diagonalizable
▶ discrete and non-negative spectrum

Two kinds of minimal theories with enhanced symmetries
▶ CFT: two copies of Virasoro algebra

⇒ AdS3/CFT2

▶ Warped CFT: Virasoro-Kac-Moody algebra
⇒ AdS3/WCFT2 or WAdS3/WCFT2G. Compére, W. Song and A. Strominger (2013), ......
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Example 2: 2D GCFT

2D Galilean conformal invariant theory:
isotropic scaling + Galilean boost

y → y + vx.

The Galilean CFT can be obtained by taking the non-relativistic limit of
the conformal field theory.
It is related to the flat space holography ⇒ BMS/CFT or BMS/GCA Bagchi

et.al.(2010,2012), Barnich et.al.(2001)......



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Anisotropic scaling

Another way to break the Lorentz symmetry is to allow anisotropic
scalings

t → λzt, x⃗ → λ⃗x.
Such scaling is usually called Lifshitz scaling with dynamical exponent z.

It happens in various systems:
Fermions at unitarity
Quantum critical points
Some statistical systems
People has tried to study some of these systems holographicallyD.T. Son (2008),

J.McGreevy et.al. (2008), S. Kachru et.al. (2008), ...
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Setup

Consider 2D QFT with global translational symmetry, anisotropic scalings

x → λcx, y → λdy,

and a Galilean boost symmetry

y → y + vx.

In general
c ̸= d

Assumption: the dilation operator
▶ diagonalizable
▶ discrete and non-negative spectrum

Our consideration is general enough to include the WCFT and GCFT as
special cases. In the following we just set c = 1.
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Problems

Q1: Are there enhanced symmetries in this kind of field theories?

There are two approaches to study this problem, leading to the same
conclusion.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Problems

Q1: Are there enhanced symmetries in this kind of field theories?

There are two approaches to study this problem, leading to the same
conclusion.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Approache 1

J.Polchinski(1989), D.Hofman & A. Strominger(2011):

Use the Noether current to define the conserved charges.
Due to the ambiguity in defining the Noether currents, there are
modifications from local operators on the currents without destroying the
canonical commutative relations.
The existence of such local operators implies the enhanced symmetries.
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Approach 2

If the field theory could be defined on a geometry in a covariant way,
then the symmetries of the field theory are implied by the diffeomorphism
of the underlying geometry.
For 2D CFT, it can be defined on a 2D Riemann-surface, then the
infinite dimensional conformal symmetry comes from the
(anti-)holomorphic mapping

z → f (z), z̄ → g (z̄)

For the theories without the global Lorentz symmetry, we cannot define
them in any (psuedo-)Riemannian geometry. Instead, we need to define
them on Newton-Cartan geometry with scaling symmetry. C. Duval et.al. ,D.T. Son,

Bagachi et.al., D. Hofman, K. Jensen,...
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Newton-Cartan geometry: flat case
It is similar to flat Euclidean geometry with the following symmetries

H : x → x′ = x + δx,

H̄ : y → y′ = y + δy,
B : y → y′ = y + vx.

There is a degenerate metric

gab =

(
1 0

0 0

)

which is flat and invariant under boost transformation

g = BgB−1.

Besides, there is an antisymmetric tensor hab to lower the index. It is
invertible with habhbc = δa

c , and its inverse helps us to raise the index

ḡab = hachbdgcd.
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Riemann geometry: curved case

The curved geometry is defined by ‘gluing flat geometry’, in the sense
that the tangent space is flat with the map determined by the zweibein.
One may define the covariant derivative

D = ∂ + ω + Γ

where ω is the spin connection to connect the points in the tangent
space, while Γ is the affine connection to connect the points in the base
manifold.
In the Riemannian case, the affine connection is determined uniquely by
requiring

▶ the metric to be compatible
▶ torsion free,

with zweibein postulate.
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Newton-Cartan geometry: curved case

In the Newton-Cartan geometry, the torsion-free condition cannot
determine the spin connection uniquely.
To resolve this problem, one may give up the torsion-free condition.
Instead one defines a scaling structure and requires it to be covariant
constant. This implies that the scaling weight of the vector is invariant
under parallel transport.

Consequently one get a vanishing Riemann curvature, but non-vanishing
affine connection and torsion.
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Allowed transformations
Now consider a general coordinate transformation

x → f (x, y), y → g (x, y),

followed by anisotropic scaling

x → λx, y → λdy,

and boost transformation
y → y + vx.

Imposing the condition that the coordinate transformation can be
absorbed into the (local) scaling and boost transformation, it turns out
that the allowed local transformations in the Newton-Carton geometry
with scaling structure are

x → f (x), y → f ′(x)dy,

and
x → x, y → y + g(x).
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Enhanced symmetries

From the infinitesimal transformations

x → x + ϵ(x), y → (1 + dϵ′(x))y,

x → x, y → y + ξ(x),
we read the generators

ln = −xn+1∂x − d(n + 1)xny∂y,

mn = xn+d∂y,

which satisfy the algebra

[ln, lm] = (n − m)ln+m,

[ln,mm] = (dn − m)mn+m,

[mn,mm] = 0.

This algebra is called the spin-d Galilean algebra.M. Henkel (2002)
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If a field theory is defined covariantly on the Newton-Carton geometry
with anisotropic scaling and boost symmetry, then the corresponding
conservation currents and charges are exactly the ones read from Noether
current method (Approach 1).
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Central extensions

The central extension is constrained by the Jacobi identity. There are
various kinds of extensions, which we list here in order.

▶ T-extension is always allowable:

[ln, lm] = (n − m)ln+m ⇒

[Ln, Lm] = (n − m)Ln+m +
cT
12

n(n2 − 1)δn+m,0.

This gives the Virasoro algebra.
▶ B-extension is only allowable for d = 1:

[ln,mm] = (dn − m)mn+m ⇒

[Ln,Mm] = (n − m)Mn+m +
cB
12

n(n2 − 1)δn+m,0.

This gives the GCA algebra.
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Central extensions: II

[mn,mm] = 0.

▶ M-extension is only allowable for d = 0, the infinite dimensional
spin-0 Galilean algebra

[Mn,Mm] = cMnδn+m,0.

This is actually the algebra for the warped CFT, with cM being the
Kac-Moody level.

▶ Infinite M-extensions, in which there are infinite cM charges

[Mn,Mm] = (n − m)(cM)n+m, [Mn, (cM)m] = −m(cM)n+m.

The familiar case is the algebra for the Schrödinger symmetry, in
which d = 1/2. Here we show that for arbitrary spin d, there could
be similar algebraic structure.
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We have shown that there are enhanced symmetries in the anisotropic
GCFT.
Q2: Properties?

Quantization, state-operator correspondence, correlation functions,
modular properties, · · ·
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We have shown that there are enhanced symmetries in the anisotropic
GCFT.
Q2: Properties?

Quantization, state-operator correspondence, correlation functions,
modular properties, · · ·
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Reference plane

Let us focus on the case that d is an integer, in which case the Cartan
subalgebra is generated by (L0,M0).
It is better to study the theories on a cylinder

(ϕ, t) ∼ (ϕ+ 2π, t),

which are related to x, y by

x = t + ϕ, y = t − ϕ.

Consider the following complex transformation which maps the canonical
cylinder to the reference plane

z = eix = etE−iϕ, ỹ = (iz)dy,

where tE = −it is the Wick-rotated time.
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Radial quantization

The Hilbert space are defined on the equal imaginary time slices.
The ‘in state’ and ‘out state’ are defined by inserting the operators at
tE = ∓∞.

On the reference plane, these states are defined at the origin and the
radial infinity, which leads to the radial quantization.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Radial quantization

The Hilbert space are defined on the equal imaginary time slices.
The ‘in state’ and ‘out state’ are defined by inserting the operators at
tE = ∓∞.
On the reference plane, these states are defined at the origin and the
radial infinity, which leads to the radial quantization.
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Primary operators

The subgroup keeping the origin invariant is

L0, Ln>0, M−d+1, M−d+2, · · · .

The local operators can be labelled by the eigenvalues (hO, ξO) of the
generators L0,M0 of the Cartan subalgebra

[L0,O(0, 0)] = hOO(0, 0), [M0,O(0, 0)] = ξOO(0, 0).

Requiring hO to be bounded below, one arrives at the highest weight
representations

[Ln,O(0, 0)] = 0, [Mn,O(0, 0)] = 0, for n > 0.

This defines the primary operator. One can get the tower of descendant
operators by acting L−n, M−n with n > 0 on O.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

State-operator correspondence

The operators inserting at the origin give the states,

O(0, 0)|0⟩ → |hO, ξO⟩.

This gives a bijection between the states in the Hilbert space at infinitely
past and the operators insertion at the origin on the reference plane.
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Primary state

L0|h, ξ⟩ = h|h, ξ⟩, M0|h, ξ⟩ = ξ|h, ξ⟩,
Ln|h, ξ⟩ = 0, Mn|h, ξ⟩ = 0, n > 0.

By acting the generators Ln, Mn with n < 0, one gets the descendant
states, which are labelled by two vectors I⃗, J⃗,

|⃗I, J⃗, h, ξ⟩ = LI1
−1 · · ·MJ1

−1 · · · |h, ξ⟩.

A state is either a primary state or a descendant state, and the Hilbert
space is spanned by the modules

H = ⊕
∑

Vh,ξ,

where Vh,ξ is the module consisting of a primary state and the tower of
all its descendants.
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Two-point functions
The correlation functions are invariant under the global transformations

⟨0|GO(x1, y1)O(x2, y2)|0⟩ = 0

where
G ∈ {L−1, L0, L1, M−d, · · · , Md}.

Moving G from the left to the right gives the constraints on the two-point
functions. For example, the translation symmetries require that the
correlation functions must depend only on x = x1 − x2 and y = y1 − y2.

▶ The d = 0 case is special, since the representation is special.

⟨O1(x, y)O2(0, 0)⟩ = dOδh1,h2δξ1,−ξ2

1

x2h1
eξy.

▶ The d = 1 case, there are no descendant operators involved when
doing the local transformations on the primary operators.

⟨O1(x, y)O2(0, 0)⟩ = dOδh1,h2δξ1,ξ2
1

x2h1
e2ξy/x.
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Two-point function: d ≥ 2
For d ≥ 2, the correlation functions become much more involved. The
correlation functions of the descendant operators with the primary
operators are not vanishing in such cases. Namely one has to consider
the following correlation functions

f(n, d) = ⟨(MnO1)(x, y)O2(0, 0)⟩.

Solving the constraints from the invariance of the two-point functions
under the global transformations, one gets

f(−d + 1, d) = −1

2
xf(−d, d),

f(n, d) = (d − 1)!(d − n)!
2(2d − 1)!(−n)! (−1)n+dxn+df(−d, d), for n ∈ [−d + 2, 0].

In the end, one finds

⟨O1(x, y)O2(0, 0)⟩ = dOδh1,h2δξ1,(−1)d+1ξ2

1

x2h1
e2Cd

2d−1(−1)d+1ξy/xd
,

where Cn
m is the binomial coefficient.
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Modular transformation
The theories can be defined on a torus

(ϕ, t) ∼ (ϕ+ α, t + β).

Consider the symmetry transformation of the theory
ϕ → f(ϕ), t → f′(ϕ)dt,

and
t → t + g(ϕ).

After doing the transformation, the spatial circle and thermal circle
exchange with each other. This requires that

f(ϕ) = λϕ, g(ϕ) = kϕ.
with

λ =
2π

α
, k = −(

2π

α
)d β

α
.

The new torus is
(ϕ, t) ∼ (ϕ+ α′, t + β′)

where
α′ =

4π2

α
, β′ = −(

2π

α
)d+1β.
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Modular invariant theories

For d ̸= 0, the partition function is invariant under the modular
transformation

Z(α′, β′) = Z(α, β).
This leads to the Cardy-like formula

S(∆, ξ) = 2π∆(
Hv
ξ
)

1
d+1 + 2πMv(

ξ

Hv
)

1
d+1 ,

for
ξ >> Hv, ∆ >> Mv,

where Mv and Hv are the translation charges of the vacuum.
For d = 1, it matches with the result in GCA theoriesBagchi et.al. 2012,2013
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Modular covariant theories: d = 0

In the case d = 0, there exists a nonvanishing M-extension,

[Mn,Mm] = cMnδn+m,0.

the torus partition function is covariant under the modular transformation

Z(α, β) = e
β2cM
2α Z(α′, β′)

There is an anomaly due to the M central charges.
For

ξ >> Hv, ∆ >> Mv,

the microcanonical ensemble entropy is

S(∆, ξ) = −2π
Hvξ

cM
− 2π

cM

√
(H2

v + 2cMMv)(−2cM∆+ ξ2),

which has been obtained in the warped CFTDetournay et.al. 2012.
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Conclusion

Under the assumption that the dilation operator is diagonalizable, and
has a discrete, non-negative spectrum, we showed in two different ways
that the field theories with global translation, Galilean boost and
anisotropic scaling could have enhanced symmetries.

In particular, we define covariantly the field theories in a Newton-Cartan
geometry with anisotropic scaling.
This paves the way to study the properties of the theories, including the
quantization, state-operator correspondence, two-point functions and
modular properties.
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Conclusion

Under the assumption that the dilation operator is diagonalizable, and
has a discrete, non-negative spectrum, we showed in two different ways
that the field theories with global translation, Galilean boost and
anisotropic scaling could have enhanced symmetries.
In particular, we define covariantly the field theories in a Newton-Cartan
geometry with anisotropic scaling.
This paves the way to study the properties of the theories, including the
quantization, state-operator correspondence, two-point functions and
modular properties.
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Other questions

An explicit example?

Other properties of the theory?

Scaling anomaly?

Bootstrapping?

Holographic duals?
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Thank you for your
patience!
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