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Introduction

Bondi and collaborators established an elegant framework to
study Einstein gravity in asymptotic flat spacetime, first focus on
the axisymmetric case. [Bondi, van der Burg, Metzner, 1962]

Later the assumption of axisymmetric is relaxed. [Sachs, 1962]
In this framework, the gravitational radiation is characterized by
the news functions and the mass of the system always decreases
whenever news functions exist.
This demonstrates that gravitational waves exist in the full Einstein
theory rather as an artifact of linearization.
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Introduction

A surprising result of BMS is that they found the asymptotic
symmetry group is an infinite-dimensional one, instead of just 4d
Poincare symmetry.

In the last several years, Strominger proposed triangle relation
among asymptotic symmetry, soft theorems for graviton
amplitudes and gravitational memory effects.
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Introduction

The asymptotic expansion of the metric functions are typically of
integer powers in terms of the inverse of the radial coordinate.

For extending Bondi’s framework to include a matter coupled
system with the same power series expansion, the matter fields
are necessarily massless.
The Einstein-Maxwell theory in Bondi gauge was studied in [van
der Burg, 1969][Bieri, Chen, Yau, 2011].
However, the effect of other types of matter fields is less stressed
in literatures.
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Introduction

On the other hand, when spacetime dimensions are higher than
four, application of the Bondi gauge is restricted.

In particular, it was observed in [Tanabe, etal, 2009][Tanabe, etal,
2011] that the news functions associated with gravitational
radiation must appear in the half-integer powers of the radial
expansion in five dimensions.
In this work, we study asymptotic structure of 4d
Einstein-Maxwell-Dilaton theory.
Its uplift gives the asymptotic structure of 5d pure gravity where
the topological of infinity is S2 × S1 instead of S3.
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4d Einstein-Maxwell-Dilaton(EMD) Theory

4d EMD theory includes gravity, Maxwell field and massless
scalar. The Lagrangain is

L =
√
−g
[
R− 1

4
eaϕF 2 − 1

2
(∂ϕ)2

]
, F = dA. (1)

When a is one of 0, 1√
3
, 1,
√
3, the EMD theory can all be

embedded in the N = 2 STU supergravity , which is pure N = 2
supergravity with three vector multiplets [Duff, Liu, Rahmfeld,
hep-th/9508094].
The a = 0 case can be reduced to Einstein-Maxwell theory which
is the bosonic sector of N = 2 supergravity.
The a =

√
3 case can be Kaluza-Klein theory obtained from the

circle reduction from pure gravity in five dimensions.
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Equations of motion

The dilaton, Maxwell and Einstein equations are

∂µ(
√
−ggµν∂νϕ)−

a

4

√
−geaϕF 2 = 0, ∂ν(

√
−geaϕFµν) = 0,

(Rµν −
1

2
gµνR)−

1

2
eaϕFµρFν

ρ +
1

8
gµνe

aϕF 2 − 1

2
∂µϕ∂νϕ

+
1

4
gµν(∂ϕ)

2 = 0. (2)

The Einstein equation is equivalent to

Eµν ≡ Rµν −
1

2
eaϕFµρFν

ρ +
1

8
gµνe

aϕF 2 − 1

2
∂µϕ∂νϕ = 0, (3)
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Bondi gauge

We study the above EMD theory in four dimensions in Bondi
gauge. The metric has the form [Bondi, van der Burg, Metzner,
1962]

ds2 =

[
−V (u, r, θ)

r
e2β(u,r,θ) + U(u, r, θ)2r2e2γ(u,r,θ)

]
du2

− 2e2β(u,r,θ)dudr − 2U(u, r, θ)r2e2γ(u,r,θ)dudθ

+ r2
[
e2γ(u,r,θ)dθ2 + e−2γ(u,r,θ) sin2 θdφ2

]
. (4)

A = Au(u, r, θ)du+Aθ(u, r, θ)dθ. (5)
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Bondi gauge

The inverse metric is simple

gµν =


0 −e−2β 0 0

−e−2β V
r e
−2β −Ue−2β 0

0 −Ue−2β e−2γ

r2
0

0 0 0 e2γ

sin2 θr2

 . (6)
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Boundary conditions

The falloff conditions for the functions β, γ, U, V are

β = O(r−1), γ = O(r−1), U = O(r−2), V = O(r). (7)

The boundary conditions for gauge fields are

Au = O(r−1), Aθ = O(1), ϕ = O(r−1). (8)
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Constraints among equations of motion

Since the EMD theory has gauge symmetry and diffeomorphism
invariance, the equations of motion are not all independent.

The constraints among them are the following identities

∇µ(Gµν − Tµν) = 0, ∂ν∂µ(
√
−geaϕFµν) = 0. (9)

Making use of these constraints, we are able to arrange the fifteen
equations of motion into four classes.
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Arranging the equations of motion

Class 1: five hypersurface equations:

∂ν(
√
−geaϕF uν) = 0,

Err = Erθ = Erφ = 0,

Eθθg
θθ + Eφφg

φφ = 0.

(10)

Class 2: five standard equations:

∂ν(
√
−geaϕF θν) = ∂ν(

√
−geaϕF φν) = 0,

∂µ(
√
−ggµν∂νϕ)−

a

4

√
−geaϕF 2 = 0,

Eθθ = Eθφ = 0.

(11)
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Arranging the equations of motion

Class 3: one trivial equation:

Eru = 0. (12)

Class 4: four supplementary equations:

∂ν(
√
−geaϕF rν) = 0,

Euθ = Euφ = Euu = 0.
(13)

Once the hypersurface equations and standard equations are
satisfied, the(constraint) identities (9) yield that the trivial equation
is satisfied automatically
and the supplementary equations are left with only one order in
the 1

r expansions.
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Hypersurface equations

∂rβ =
r

2
(∂rγ)

2 +
r

8
(∂rϕ)

2 +
1

8r
eaϕ−2γ(∂rAθ)

2. (14)

Let us define L to be

L ≡ (∂rAu + U∂rAθ) r
2eaϕ−2β. (15)

∂rL =
1

sin θ
∂θ
[
sin θeaϕ−2γ∂rAθ

]
, (16)

∂r

[
r4e2(γ−β)∂rU

]
= 2r2

[
∂r∂θ(β − γ) + 2∂rγ∂θγ −

2∂θβ

r

−2∂rγ cot θ] + r2∂rϕ∂θϕ+ L∂rAθ. (17)
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Hypersurface equations

∂rV = 2r∂θU +
1

2
r2∂r∂θU −

1

4
r4e2(γ−β)(∂rU)2 +

1

2
r2∂rU cot θ

+ 2rU cot θ + e2(β−γ)
[
1− (∂θβ)

2 − ∂θβ cot θ + 2∂θβ∂θγ

+ 3∂θγ cot θ − 2(∂θγ)
2 − ∂2θβ + ∂2θγ

]
− 1

4r2
L2e2β−aϕ − 1

4
e2(β−γ)(∂θϕ)

2 (18)
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Hypersurface equations

β is fixed by γ, ϕ,Aθ.
U is fixed by β, γ, ϕ,Aθ.
Au is fixed by β, γ, U, ϕ,Aθ.
V is fixed by β, γ, U, ϕ,Aθ, Au.

Initial data: γ, ϕ,Aθ.
Their time evolutions (w. r. t. u) are controlled by the standard
equations.
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Standard equations

Eθφ = 0 and ∂ν(
√
−geaϕF φν) = 0 are held automatically due to no

φ-dependence in our system.

The rest three equations,

1

2
re2βEφφg

φφ = 0, (19)

1

2 sin θ
e2γ−aϕ∂ν(

√
−geaϕF θν) = 0, (20)

1

2r sin θ

[
∂µ(
√
−ggµν∂νϕ)−

a

4

√
−geaϕF 2

]
= 0, (21)

will determine the time evolution of γ, ϕ and Aθ, which will be
calculated in this subsection.
There is no constraint at the order O(1r ) of γ and ϕ, and at the
order O(1) of Aθ from those three equations. They are related to
the “news” functions in the system which indicating radiations.
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Solution space in series expansion

Suppose that γ, ϕ and Aθ are given in 1
r series expansion as initial

data

γ =
c(u, θ)

r
+

∞∑
a=3

γa(u, θ)

ra
, (22)

ϕ =

∞∑
a=1

ϕa(u, θ)

ra
. (23)

Aθ = A0(u, θ) +

∞∑
a=1

Aa(u, θ)
ra

, (24)
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Solution space in series expansion

Then hypersurface equations gives

β = −4c2 + ϕ2
1

16r2
− ϕ1ϕ2

6r3
−

12cγ3 + 2ϕ2
2 + 3ϕ1ϕ3 +

1
2A

16r4
+O(r−5),

(25)

U = −∂θc+ 2c cot θ

r2
+

4c (∂θc+ 2c cot θ)−N(u, θ)

3r3
+O(r−4), (26)

Au = −q(u, θ)
r
− A1 cot θ + ∂θA1 − aqϕ1

2r2
+O(r−3), (27)

and

V = r −M(u, θ) +O(r−1), (28)

where M(u, θ), N(u, θ) and q(u, θ) are the integration “constants”
from solving the partial differential equation associate with r.
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Standard equations determine the time evolution of the whole
series of γ, ϕ and Aθ except for their leading order terms.

In particular the first order of the standard equations are listed as
follows:

∂uϕ2 = −
1

2
(∂2θϕ1 + cot θ∂θϕ1). (29)

∂uA1 = c∂uA0 −
1

2
∂θq −

1

2
aϕ1∂uA0. (30)

∂uγ3 =
1

96

[
c2(16−32 csc2 θ)−4 cot θN−3 cot θ∂θϕ1ϕ1−3(∂θϕ1)

2

+ 3ϕ1∂
2
θϕ1 + 4c

(
6M + 3 cot θ∂θc+ 5∂2θc

)
+ 4

(
∂θN + 5(∂θc)

2

−3A1∂uA0)

]
. (31)
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News functions

All the time evolution equations of the sub-leading terms in γ, ϕ
and Aθ can be derived recursively order by order. However the
time evolution of c, A0 and ϕ1 are not constrained. Hence, ċ, Ȧ0

and ϕ̇1
1 are the news functions of this system that indicate

gravitational, electromagnetic, and scalar radiations.

1An overdot denotes a time derivative ∂u.
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Supplementary equations

There are four supplementary equations to be solved and we only
need to solve them at one order in the 1

r expansion.

Equation Euφ = 0 holds automatically, again from the assumption
that the system is φ-independent.
The rest three supplementary equations determine the time
evolution of the integration constants M , N and q.
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Conservation of the electric charges

From ∂ν(
√
−geaϕF rν) = 0, we obtain

∂uq = − cot θ∂uA0 − ∂u∂θA0. (32)

From the identity∮
sin θ(cot θ∂uA0 + ∂u∂θA0)dθdφ = 2π∂uA0 sin θ |π0= 0, (33)

we can conclude that the total electric charge Q, defined by

Q =

∮
q(u, θ) sin θdθdφ, (34)

is conserved. This is not surprising because the dilaton scalar
field is real and it cannot carry electric charges.
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Mass-loss formula

The supplementary equation Euu = 0 leads to

∂uM = −2(ċ)2−1

2
(Ȧ0)

2−1

2
(ϕ̇1)

2+3 cot θ∂u∂θc+∂u∂
2
θc−2∂uc. (35)

This is the generalized Bondi mass-loss formula in the four
dimensional EMD theory.

We define the mass density

m =M − 1

sin θ
∂θ (2 cos θc+ sin θ∂θc) . (36)

Inserting the mass density into the generalized Bondi mass-loss
formula (35), one obtains

∂um = −2(ċ)2 − 1

2
(Ȧ0)

2 − 1

2
(ϕ̇1)

2. (37)

Jun-Bao Wu CJQS-TJU



Mass-loss formula

The supplementary equation Euu = 0 leads to

∂uM = −2(ċ)2−1
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Mass-loss formula

Thus, we have the following theorem in four dimensional
Einstein-Maxwell-dilaton theory:
The mass density at any angle of the system can never
increase. It is a constant if and only if there is no news.
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Asymptotic symmetries

The complete set of local symmetry involves a pair (ξ, χ) of a
vector field ξ = ξµ∂µ and an internal gauge parameter χ.

The generating infinitesimal transformations are given by

δ(ξ,χ)gµν = Lξgµν , δ(ξ,χ)Aµ = ∂µχ+LξAµ, δ(ξ,χ)ϕ = Lξϕ. (38)

The infinitesimal transformation parameters are independent of φ
in order to keep the φ-independence of the fields.

Jun-Bao Wu CJQS-TJU



Asymptotic symmetries

The complete set of local symmetry involves a pair (ξ, χ) of a
vector field ξ = ξµ∂µ and an internal gauge parameter χ.
The generating infinitesimal transformations are given by

δ(ξ,χ)gµν = Lξgµν , δ(ξ,χ)Aµ = ∂µχ+LξAµ, δ(ξ,χ)ϕ = Lξϕ. (38)

The infinitesimal transformation parameters are independent of φ
in order to keep the φ-independence of the fields.

Jun-Bao Wu CJQS-TJU



Asymptotic symmetries

The complete set of local symmetry involves a pair (ξ, χ) of a
vector field ξ = ξµ∂µ and an internal gauge parameter χ.
The generating infinitesimal transformations are given by

δ(ξ,χ)gµν = Lξgµν , δ(ξ,χ)Aµ = ∂µχ+LξAµ, δ(ξ,χ)ϕ = Lξϕ. (38)

The infinitesimal transformation parameters are independent of φ
in order to keep the φ-independence of the fields.

Jun-Bao Wu CJQS-TJU



Asymptotic symmetries

Gauge conditions

grr = grφ = grθ = guφ = gθφ = Ar = 0, (39)

lead to

Lξgrr = Lξgrφ = Lξgrθ = Lξguφ = 0Lξgθφ = 0, δ(ξ,χ)Ar = 0. (40)

We have one more gauge condition from angular part of metric
elements

Lξ(
gφφ
gθθ

) = 0. (41)

Jun-Bao Wu CJQS-TJU



Asymptotic symmetries

The transformation should also respect the boundary conditions

β = O(r−1), γ = O(r−1), U = O(r−2), V = O(r). (42)

Au = O(r−1), Aθ = O(1), ϕ = O(r−1). (43)
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Asymptotic symmetries

The results

ξu = f = T + uy cos θ,

ξr = −r
2

(
∂θξ

θ + cot θξθ − grθgur∂θf
)
,

ξθ = y sin θ + ∂θf

∫ ∞
r

dr grug
θθ,

ξφ = ξφ,

(44)

and
χ = ε−

∫ ∞
r

dr Aθg
θθgru∂θf. (45)

Notice that ξr, ξθ, χ depend on the coupling constant a through
their dependence on the metric and Maxwell field.

Jun-Bao Wu CJQS-TJU



Asymptotic symmetries

The results

ξu = f = T + uy cos θ,

ξr = −r
2

(
∂θξ

θ + cot θξθ − grθgur∂θf
)
,

ξθ = y sin θ + ∂θf

∫ ∞
r

dr grug
θθ,

ξφ = ξφ,

(44)

and
χ = ε−

∫ ∞
r

dr Aθg
θθgru∂θf. (45)

Notice that ξr, ξθ, χ depend on the coupling constant a through
their dependence on the metric and Maxwell field.

Jun-Bao Wu CJQS-TJU



Asymptotic symmetry algebra

The asymptotic symmetry transformations satisfy a modified
algebra introduced in [Barnich etal, 2001][Barnich etal, 2013]

[(ξ1, χ1), (ξ2, χ2)]M = (ξ̂, χ̂), (46)

where

ξ̂ = [ξ1, ξ2]− δ(ξ1,χ1)ξ2 + δ(ξ2,χ2)ξ1, (47)
χ̂ = ξµ1 ∂µχ2 − ξµ2 ∂µχ1 − δ(ξ1,χ1)χ2 + δ(ξ2,χ2)χ1 (48)
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Asymptotic symmetry algebra

The algebra is closed which can be seen from straightforward
computation

ξ̂u = f̂ = y1 sin θ(∂θT2 − cot θT2)− y2 sin θ(∂θT1 − cot θT1),

∂r(ξ̂
θ) = −gurgθθ∂θf̂ ,

∂r(
ξ̂r

r
) =

1

2

[
∂θ(g

θθgur∂θf̂) + cot θ(gθθgur∂θf̂) + ∂r(g
rθgur∂θf̂))

]
,

∂r(χ̂) = Aθg
θθgru∂θf̂ .

(49)

When r →∞, the algebra is reduced to

[(T1, y1, ε1), (T2, y2, ε2)] = (T̂ , ŷ, ε̂), (50)

where

T̂ = y1 sin θ(∂θT2 − cot θT2)− (1↔ 2), (51)
ŷ = 0, ε̂ = y1 sin θ∂θε2 − (1↔ 2). (52)
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Mode expansion

To implement mode expansions, we define t = tan θ
2 . In the new

coordinate, we have

T̂ = y1(t∂tT2 −
1− t2

1 + t2
T2)− (1↔ 2), (53)

ŷ = 0, (54)
ε̂ = y1t∂tε2 − (1↔ 2). (55)

The basis vectors are chosen as

Tm =

(
t

1 + t2

)
tm∂u, Y0 = t∂t, εm = tm. (56)

In terms of the basis vector, the asymptotic symmetry algebra is

[Tm, Tn] = [εm, εn] = [Tm, εn] = 0, (57)

[Y0, Tn] = nTn, [Y0, εn] = nεn. (58)
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Uplifting to five dimensions

When a =
√
3, the above 4d EMD theory can be obtained from S1

reduction of pure Einstein gravity in 5d.

So in the case the above solutions of 4d EMD theory can be
uplifted to solutions of 5d Einstein gravity theory.

ds25 = e
− 1√

3
ϕ
ds24 + e

2√
3
ϕ
(dz +Aµdx

µ)2. (59)

The different types of news functions ċ, Ȧ0 and ϕ̇1 in 4d are now
purely gravitational in five dimensions. They represent
gravitational radiations in five dimensions.
The extra news functions arises because the asymptotic
spacetimes in five dimensions is a product of four-dimensional
Minkowski spacetimes and a circle.
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5d Asymptotic symmetries

5d gauge conditions are

grr = grθ = grφ = grz = guφ = gθφ = gφz = 0, (60)

Lξ(
gzzgφφ
gθθ

) = 0. (61)

The asymptotic Killing vector ξµ is independent of φ, z.
5d boundary conditions:

gur = −1+O(r−1), guθ = O(1), guz = O(r−1), gθθ = r2+O(r).
(62)
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5d Asymptotic Killing vectors

The solutions are

ξu = f = T +
1

2
(∂θY

θ + cot θY θ)u,

ξr = −r
2

(
∂θξ

θ + cot θξθ − grθgur∂θf
)
,

ξθ = Y + ∂θf

∫ ∞
r

dr grug
θθ,

ξφ = ξφ,

ξz = ε+ ∂θf

∫ ∞
r

dr grug
zθ.

(63)
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5d Asymptotic symmetry algebra

The 5d asymptotic Killing vectors satisfy the following algebra

[ξ1, ξ2]M = [ξ1, ξ2]− δξ1ξ2 + δξ2ξ1, (64)

which is closed.

When r →∞, the algebra will be reduced to

[(T1, y1, ε1), (T2, y2, ε2)] = (T̂ , ŷ, ε̂), (65)

where

T̂ = y1 sin θ(∂θT2 − cot θT2)− (1↔ 2), (66)
ŷ = 0, (67)
ε̂ = y1 sin θ∂θε2 − (1↔ 2). (68)

Unsurprisingly, we recover the same algebra as the one in 4d
EMD theory.
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Conclusions

We investigate the asymptotics in cases with coupled massless
dynamical fields with various spins.

Three type of news functions were identified and the generalized
Bondi mass-loss formula was obtained.
The four dimensional solutions were uplifted to five dimensions
and this gave us the guide for gauge and boundary conditions for
this class of solutions to five dimensional pure Einstein theory.
This is a case study of the asymptotics of five dimensional pure
gravity among a well-chosen class of solutions avoiding
half-integer powers in 1/r expansions.
Asymptotic symmetry algebras in both four and five dimensional
cases were computed and they are the same.
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Future directions

One of the straightforward generalizations of this work is to relax
the axisymmetric condition and study general four dimensional
asymptotic flatness solutions and their uplift to five dimensions.

A more challenging point is about the asymptotic behavior of
these five dimensional solutions when the z direction is
noncompact.(cf. 4d/3d story, [Ashtekar, etal, 1996])
It will be of interest to see whether the asymptotic behavior has
strong dependence on the chosen null direction.
We may need to study behavior of four dimensional fields at
timelike infinity in additional to the behavior at null infinity studied
here.
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Future directions

Last week, soft theorem from compactification was studied
[Marotta, Verma].

This work and our studies on asymptotics of four dimensional
EMD theory here also strongly motivates us to study triangular
equivalent relations of Strominger among asymptotic symmetries,
various soft theorems and memory effects in this theory.
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