Gravitational Wave Echoes

Shuang-Yong Zhou, ICTS-USTC (周双勇, 中科大交叉中心)

ICTS Workshop, Yichang, 24 November 2019

Zhang & **SYZ**, 1709.07503 Huang, Xu & **SYZ**, 1908.00189 Wang, Zhang, SYZ & Piao, 1802.02003, 1904.00212

The photo of a black hole

What defines a black hole?

good PR but atrocious, grotesque abuse!

The photo of a black hole

What defines a black hole?

good PR but atrocious, grotesque abuse!

The sound of a black hole merger

GW150914

But have we observed an event horizon?

$$
r_* = r + 2GM \ln \left(\frac{r}{2GM} - 1\right)
$$

$$
ds^2 = \left(1 - \frac{2GM}{r}\right) \left(-dt^2 + dr_*^2\right) + r^2 d\Omega^2
$$

The magic of quasi-normal modes?

• QNMs of BH: characteristic oscillation modes of BH spacetime

Regge-Wheeler-Zerilli equation $20\left[\text{Im}(2M\phi)\right]$ d^2 Ψ_l (r_*) dr_*^2 $+ \left[\omega^2 - V_l(r_*) \right] \psi_l(r) = S_l$

• damped: $\omega = \omega_R + i\omega_I$

- ringdown dominated by QNMs
- QNM spectrum determined by BH's M and a (Kerr)
- test of no-hair theorem

Ringdown: only conclusive test of BH(?)

Not necessarily!

- This is based on assumption: Ringdown \simeq QNMs
- Ringdown simply determined by photosphere

frequency & damping time \sim circular photo orbit

• QNMs are sensitive to boundary conditions

Exotic compact object (ECO): an example

120

For an ECO 1. Ringdown is same as BH 2. There are extra echoes

Smoking gun for new physics: echoes

New physics radius

$$
r_0=r_g(1+\epsilon)
$$

Echo interval

$$
\tau_{\text{echo}} \sim \frac{|r_*(1.5 r_g) - r_*(r_0)|}{c} \sim \frac{2 r_g}{c} |\log(\epsilon)|
$$

What kind of new physics?

black hole mimickers: fuzzball, gravastar, boson stars, …

quantum gravity effects: firewall

Planck length $\epsilon \sim 10^{-40}$ $\rightarrow \tau_{\text{echo}}(60M_{\odot}) \sim 50 \text{ ms}$

Mass-varying massive gravity

$$
S=M_P^2\!\!\int\!\!{\rm d}^4x\sqrt{-g}\left[\frac{R}{2}\!+\!V(\sigma)\mathcal{U}\!-\!\frac{1}{2}(\partial\sigma)^2\!-\!W(\sigma)\right]
$$

Hairy black hole

graviton mass becomes very big close to the horizon

How to characterize GW echoes?

Mark, Zimmerman, Du & Chen, 1709.07503 Parametrize new physics with a reflective boundary

 F_{total} F_{current} F_{total}

$$
\psi \propto e^{-i\omega(x-x_0)} + \tilde{\mathcal{R}}(\omega)e^{i\omega(x-x_0)}, \quad x \to x_0
$$
\n
$$
\psi(x) = \int_{-\infty}^{\infty} dx' \tilde{g}_{\text{ref}}(x, x') \tilde{S}(x')
$$
\n
$$
\tilde{g}_{\text{ref}}(x, x') = \tilde{g}_{\text{BH}}(x, x') + \tilde{\kappa} \underbrace{\psi_{\text{up}}(x)\tilde{\psi}_{\text{up}}(x')}_{W_{\text{BH}}}
$$
\n
$$
\text{GR part} \qquad \text{echo part}
$$
\n
$$
\tilde{\kappa} = \tilde{\tau}_{\text{BH}}\tilde{\kappa} e^{-2i\omega x_0} \sum_{n=1}^{\infty} (\tilde{\kappa}_{\text{BH}}\tilde{\kappa})^{(n-1)} e^{-2i(n-1)\omega x_0} \underbrace{\sum_{\substack{\xi \in \text{odd} \\ \xi \to 0 \\ \xi \to 0 \\ \xi \to 0 \\ -100}}^{\xi_{\text{top}}(x,x')} \underbrace{\sum_{n=1}^{\xi_{\text{max}}(x,x)} \left(\tilde{\kappa} \sum_{n=1}^{\xi_{\text{max}}(x,x')} \tilde{\kappa} e^{-2i\omega x_0} \sum_{n=1}^{\infty} (\tilde{\kappa}_{\text{BH}}\tilde{\kappa})^{(n-1)} e^{-2i(n-1)\omega x_0} \underbrace{\sum_{\substack{\xi \in \text{odd} \\ \xi \to 0 \\ \xi \to 0 \\ -100}}^{\xi_{\text{top}}(x,x')} \underbrace{\sum_{n=1}^{\xi_{\text{max}}(x,x')} \left(\tilde{\kappa} \sum_{n=1}^{\xi_{\text{max}}(x,x')} \tilde{\kappa} e^{-2i\omega x_0} \sum_{n=1}^{\xi_{\text{max}}(x,x')} \tilde{\kappa} e^{-2i\omega x_0} \sum_{n=1}^{\xi_{\text{max}}(x,x')} \tilde{\kappa} e^{-2i\omega x_0} \sum_{n=1}^{\xi_{\text{max}}(x,x')} \tilde{\kappa} e^{-2i\omega x_0} \underbrace{\sum_{n=1}^{\xi_{\text{max}}(x,x')} \left(\tilde{\kappa} \sum_{n=1}^{\xi_{\text{max}}(x
$$

The Fredholm approach to echoes

Huang, Xu & SYZ, 1908.00189

Regge-Wheeler-Zerilli equation

$$
\phi''(\omega, x) + (\omega^2 - V(x))\phi(\omega, x) = \mathcal{I}(\omega, x)
$$

Fredholm integral equation

$$
\phi(x) = f(x) + \lambda \int dy K(x, y) \phi(y)
$$

$$
K(x, y) = G(x, y)V(y) \quad \left(\frac{d^2}{dx^2} + \omega^2\right) G(x, y) = \delta(x - y) \quad f(x) = \int dy G(x, y) \mathcal{I}(y)
$$

Separate kernel function

$$
K(x, y) = \sum_{j=1}^{\infty} \alpha_j(x) \beta_j(y)
$$

Solution

$$
\phi(x) = f(x) - \lambda \int dy f(y) \frac{\Delta_K(x, y, \lambda)}{\Delta(\lambda)}
$$

$$
\Delta(\lambda) = \det(c)
$$

$$
c_{ij} = \delta_{ij} - \lambda \int dx \beta_i(x) \alpha_j(x) \frac{\Delta_K(x, y, \lambda)}{\Delta_K(x, y, \lambda)} = \begin{vmatrix} 0 & \alpha_1(x) & \alpha_2(x) & \cdots \\ \beta_1(y) & c_{11} & c_{12} & \cdots \\ \beta_2(y) & c_{21} & c_{22} & \cdots \\ \cdots & \cdots & \cdots & \vdots \end{vmatrix}
$$

Example: BH boundary condition with potential *V*(*x*)

$$
G(x,y) = \frac{e^{i\omega|x-y|}}{2i\omega}
$$

Observer at large *x*

$$
K(x, y) = \alpha(x)\beta(y) \qquad \alpha(x) = \frac{e^{i\omega x}}{2i\omega}, \quad \beta(y) = e^{-i\omega y}V(y).
$$

$$
\phi(x) = f(x) + \int dx_1 \frac{e^{i\omega(x-x_1)}}{2i\omega} \frac{V(x_1)f(x_1)}{1 - \frac{1}{2i\omega} \int dy V(y)}
$$

Perturbation scheme

If separation is difficult, expand in $K(x, y)$

$$
\phi(x) = f(x) + \lambda \int dy f(y) \frac{\sum_{n=0}^{\infty} \frac{(-\lambda)^n}{n!} A_n(x, y)}{\sum_{n=0}^{\infty} \frac{(-\lambda)^n}{n!} D_n}
$$

$$
A_n(x, y) = \int \prod_{i=1}^n dx_i \begin{vmatrix} K(x, y) & K(x, x_1) & K(x, x_2) & \cdots & K(x, x_n) \\ K(x_1, y) & K(x_1, x_1) & K(x_1, x_2) & \cdots & K(x_1, x_n) \\ \vdots & \vdots & \ddots & \vdots \\ K(x_n, y) & K(x_n, x_1) & K(x_1, x_2) & \cdots & K(x_n, x_n) \end{vmatrix}
$$

$$
D_n = \int \prod_{i=1}^n dx_i \begin{vmatrix} K(x_1, x_1) & K(x_1, x_2) & K(x_1, x_3) & \cdots & K(x_1, x_n) \\ K(x_2, x_1) & K(x_2, x_2) & K(x_2, x_3) & \cdots & K(x_2, x_n) \\ \vdots & \vdots & \ddots & \vdots \\ K(x_n, x_1) & K(x_n, x_2) & K(x_n, x_3) & \cdots & K(x_n, x_n) \end{vmatrix}
$$

Convergence and error estimate

• Approximate solution

Huang, Xu & SYZ, 1908.00189

$$
\phi_{\rm app}(x) = f(x) + \int_a^b \frac{\sum_{n=0}^N \frac{(-\lambda)^n}{n!} A_n(x, y)}{\sum_{n=0}^N \frac{(-\lambda)^n}{n!} D_n} f(y) dy
$$

- \cdot absolute convergent if $V(x)$ is normalizable
- For Schwarzschild potential
	- estimated errors from truncating *N*
	- estimated errors from neglecting (−*L*, *a*) ∪ (*b*, + ∞)

Echoes in Fredholm formalism

1. Reflective "mirror"

$$
G(x,y) = \frac{e^{i\omega|x-y|}}{2i\omega} + R(\omega)\frac{e^{i\omega(x+y)}}{2i\omega}
$$

2. Extra potential barrier

$$
V(x) = \bar{V}(x) + R(\omega)V_{\mathcal{Q}}(x)
$$

For either case

$$
K(x, y) = \bar{K}(x, y) + R(\omega)Q(x, y)
$$

GR kernel echo kernel

$$
\phi(x)=f(x)+\lambda\int\mathrm{d}y f(y)\frac{\sum_{n=0}^{\infty}\frac{(-\lambda)^n}{n!}A_n(x,y)}{\sum_{n=0}^{\infty}\frac{(-\lambda)^n}{n!}D_n}
$$

$$
D_n = \sum_{j=0}^n R^j D_n^j, \quad A_n(x, y) = \sum_{j=0}^{n+1} R^j A_n^j(x, y)
$$

$$
D_n^j = \sum_{1 \leq i_1 < \dots < i_j \leq n} \int \prod_{i=1}^n dx_i \begin{vmatrix} \bar{K}(x_1, x_1) & \cdots & Q(x_1, x_{i_1}) & \cdots & \bar{K}(x_1, x_n) \\ \vdots & \vdots & \ddots & \vdots \\ \bar{K}(x_n, x_1) & \cdots & Q(x_n, x_{i_1}) & \cdots & Q(x_n, x_{i_j}) & \cdots & \bar{K}(x_n, x_n) \end{vmatrix},
$$

$$
A_n^j(x,y) = \sum_{1 \leq i_1 < \dots < i_j \leq n} \int \prod_{i=1}^n dx_i \begin{vmatrix} \bar{K}(x,y) & \bar{K}(x,x_1) & \dots & Q(x,x_{i_1}) & \dots & Q(x,x_{i_j}) & \dots & \bar{K}(x,x_n) \\ \bar{K}(x_1,y) & \bar{K}(x_1,x_1) & \dots & Q(x_1,x_{i_1}) & \dots & Q(x_1,x_{i_j}) & \dots & \bar{K}(x_1,x_n) \\ \dots & \dots & \dots & \dots & \vdots \\ \bar{K}(x_n,y) & \bar{K}(x_n,x_1) & \dots & Q(x_n,x_{i_1}) & \dots & Q(x_n,x_{i_j}) & \dots & \bar{K}(x_n,x_n) \end{vmatrix}
$$

Huang, Xu & **SYZ**, 1908.00189

$$
K(x,y) = -\Theta^-, \quad \int dx K(x,x) = \bigcirc \Theta^-, \quad \int dx K(x_1,x)K(x,x_2) = -\Theta^-\Theta^-
$$

$$
D_4 = (\bigcirc \Theta)^4 - 6 \bigcirc \Theta^-, \quad (\bigcirc \Theta)^2 + 3 \bigcirc \Theta^2 + 8 \bigcirc \Theta^-, \quad \bigcirc \Theta^-\text{= 3!} \bigcirc \Theta^-\text{= 3!}
$$

$$
A_3(x,y) = -\Theta^-, \quad (\bigcirc \Theta)^3 - 3 - \Theta^-, \quad (\bigcirc \Theta)^2 - 3 - \Theta^-, \quad \bigcirc \Theta^-\text{= 3!}
$$

$$
+ 6 - \Theta^-, \quad \bigcirc \Theta^+ + 2 - \Theta^-, \quad \bigcirc \Theta^- = 6 - \Theta^-, \quad \Theta^-\text{= 3!}
$$

$$
\phi(x) = f(x) + \lambda \int dy f(y) \frac{\sum_{n=0}^{\infty} \frac{(-\lambda)^n}{n!} A_n(x,y)}{\sum_{n=0}^{\infty} \frac{(-\lambda)^n}{n!} D_n}
$$

$$
= f(x) - \lambda \int dy \frac{\cot \exp(-\lambda \Theta^-, \frac{\lambda^2 \Theta^+}{2}) - \cdots}{\exp(-\lambda \Theta^-, \frac{\lambda^2 \Theta^+}{2}) - \cdots} f(y)
$$

For echoes, add $R(\omega)Q(x,y) = -\rightarrow -\right.$

For *n*-th echo, collect all vacuum and 2-point diagrams with *n* solid vertices

Diagrammatical rules

- $\bar{K}(x_i, x_j)$ is represented as a (2-point) circle vertex;
- $R(\omega)Q(x_i, x_j)$ is represented as a (2-point) solid vertex;
- Diagrams with n solid vertices contribute to the n -th echo waveform;
- $\int dx$ is represented as a "propagator";
- For each diagram with an odd number of loops, assign a minus sign;
- D_n includes all loop diagrams with *n* vertices;
- A_n is obtained by cutting open one of the loops in D_{n+1} .

Numerical results

Huang, Xu & SYZ, 1908.00189

extra barrier reflective boundary

Numerical accuracy

Echoes from rotating (Kerr-like) ECOs

Teukolsky master equation

Huang, Xu & SYZ, 1908.00189

$$
\Delta^{-s} \frac{d}{dr} \left(\Delta^{s+1} \frac{dR(r)}{dr} \right) + U(\omega, r)R(r) = \mathcal{I}_1(\omega, r)
$$

$$
\phi = \Delta^{\frac{s}{2}} (r^2 + a^2)^{\frac{1}{2}} R, \quad \frac{d}{dx} = \frac{\Delta}{r^2 + a^2} \frac{d}{dr}
$$

$$
\frac{d^2 \phi}{dx^2} + (\omega^2 - V(\omega, x))\phi = \mathcal{I}(\omega, x)
$$

$$
V(\omega, x) = \frac{3}{4} \frac{\Delta^2 r}{(r^2 + a^2)^5} - \frac{2\Delta}{(r^2 + a^2)^3} (\Delta + 2r^2)
$$

$$
+ \frac{a^2 m^2}{(r^2 + a^2)^2} - \frac{2am\lambda}{(r^2 + a^2)} + \frac{(4i\omega r - \lambda)\Delta}{(r^2 + a^2)^2} - \frac{s\Delta + s^2(r - M)^2}{(r^2 + a^2)^2}
$$

complex, frequency-dependent effective potential but Fredholm formalism still applies

Unequal interval echoes?

Slowly pinch-off worm hole Wang, Zhang, SYZ & Piao, 1802.02003

Multiple extra barriers

400

600

800

-3

 $\pmb{0}$

200

Model selection: equal *vs* unequal wang, Zhang, SYZ & Piao, 1904.00212

Equal interval echoes Unequal interval echoes $x_n = t - t_{echo} - n\Delta t_{echo} - \frac{n(n+1)}{2}r\Delta t_{echo}$ $x_n = t - t_{echo} - n\Delta t_{echo}$

use unequal echo templates if variation of echo intervals is greater than statistical errors of intervals

Bayes factor $\ln B_{01} = \ln p(d|\mathcal{H}_1, I) - \ln p(d|\mathcal{H}_0, I)$

Summary

- We have not observed BH horizons.
- GW echoes encode new physics.
- Massive graviton \rightarrow Echoes
- Possibility of unequal echo intervals
- 1.0_l 0.10 0.05 0.5 GW strain -0.10 100 150 200 250 0.0 τ_{echo} ~2 r_a /c |log ϵ | EC -0.5 50 100 150 Ω time [ms]

Thank you

- We use the Fredholm approach to re-process GW echoes.
	- This approach can be presented diagrammatically.
	- Numerically, the Fredholm formalism is very accurate.

