

Discrete Anomaly in 2D Conformal Field Theories

Yang Zhou(周洋) Based on arXiv:1908.02918 Ken Kikuchi,YZ &JHEP 1907 (2019) 091,YZ

2019 弦论、场论与宇宙学相关专题研讨会

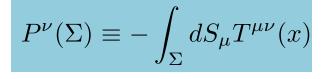
Global Symmetry

- Global symmetries are powerful in constraining correlation functions and other physical observables in quantum field theory (QFT).
 - Ward identity, representations, selection rules...
- `t Hooft anomaly is an obstruction for gauging a global symmetry. It constrains the dynamics and phases of QFT. ['t Hooft anomaly is not bad but physical->ABJ]
 - 't Hooft anomaly matching, RG flows, boundaries and interfaces...
- Symmetry transformations on operators can be implemented by topological operators $\rightarrow U_g(M)$ topological defects

Topological Defects

• Ward identity

 $\partial_{\mu} \langle T^{\mu\nu}(x) \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle = -\sum_i \delta(x - x_i) \partial_i^{\nu} \langle \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle$



- Continuous U(1) symmetry $\rightarrow U_g(M) = e^{i\theta Q}$
 - topological property follows from the current conservation
- In general (continuous or discrete), a (0-form) global symmetry $g \in G$ is associated to a codimension-1 topological defect L_g .
- Symmetry transformation on local operators can be implemented by topological defect surrounding. In 2d, L_g is a line.

Ρ'(Σ)

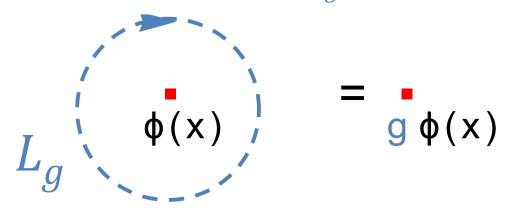
• 0,

• V2

p"(z')

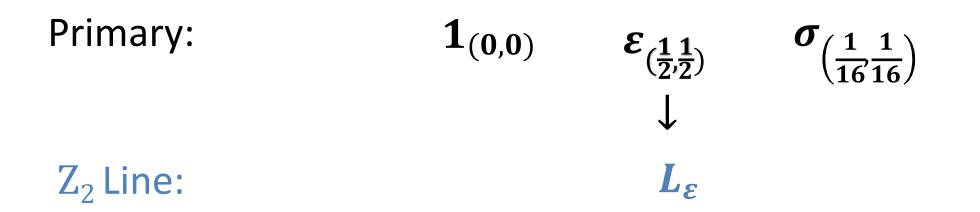
Topological Defects

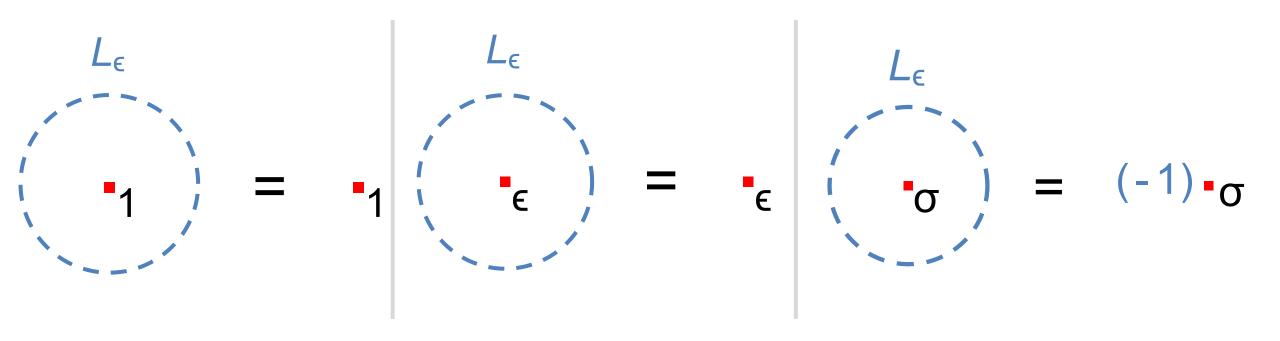
- Continuous U(1) symmetry $\rightarrow U_g(M) = e^{i\theta Q}$
 - topological property follows from the current conservation
- In general (continuous or discrete), a (0-form) global symmetry $g \in G$ is associated to a codimension-1 topological defect L_g .
- Symmetry transformation on local operators can be implemented by topological defect surrounding. In 2d, L_g is a line.



2D Ising Model (c=1/2)

• 3 primary operators in the Ising model and there is a \mathbb{Z}_2 global symmetry.



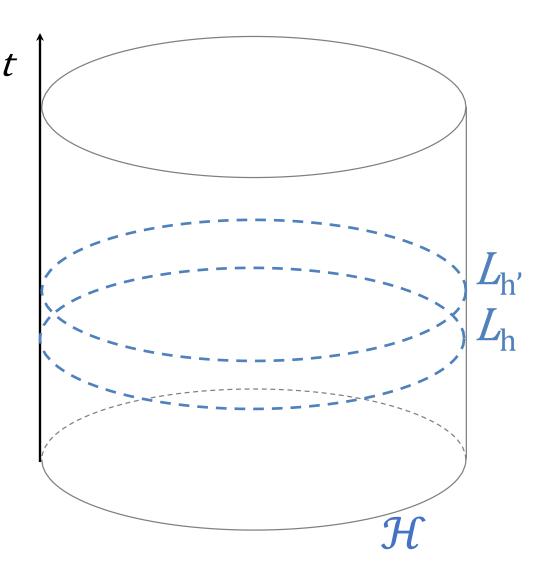


• Z_2 symmetry transformation is implemented by L_{ε} .

Symmetry Lines and Partition Function

• Symmetry lines act as symmetry transformation of local operator.

- The fusion of symmetry lines follows the group multiplication rules.
- The (inserted) torus partition function is $Z_{(h,1)}(\tau) = \operatorname{Tr}_{\mathcal{H}}[\hat{h}q^{L_0-c/24}\bar{q}^{\bar{L}_0-c/24}]$

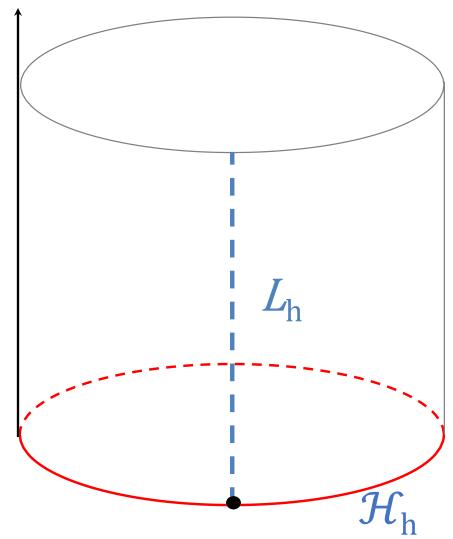


Symmetry Lines and Partition Function

t

- Symmetry lines twist the boundary condition in quantization, therefore modified the Hilbert space.
- This twisting is related to automorphism of operator algebra
- The (twisted') torus partition function is

$$Z_{(1,h)}(\tau) = \operatorname{Tr}_{\mathcal{H}_h}[q^{L_0 - c/24}\bar{q}^{\bar{L}_0 - c/24}]$$
$$SZ_{(h,1)}(\tau) = Z_{(1,h)}(\tau)$$



How to detect 't Hooft anomaly for a global symmetry G in 2d CFT?

- Solving crossing phases (F-symbol) of TDLs [Chang-Lin-// ____ // ___ // ____ //
- F-symbol anomaly of G are classified/constrained by the pentagon identity → group cohomology H³(G,U(1))
 [Dijkgraaf-Witten,Chen-Gu-Liu-Wen]

 $\bigwedge \rightarrow \bigwedge$

• Our main result is that: [K.Kikuchi-YZ] A new mixed anomaly=noncommutativity of symmetry line insertions on torus

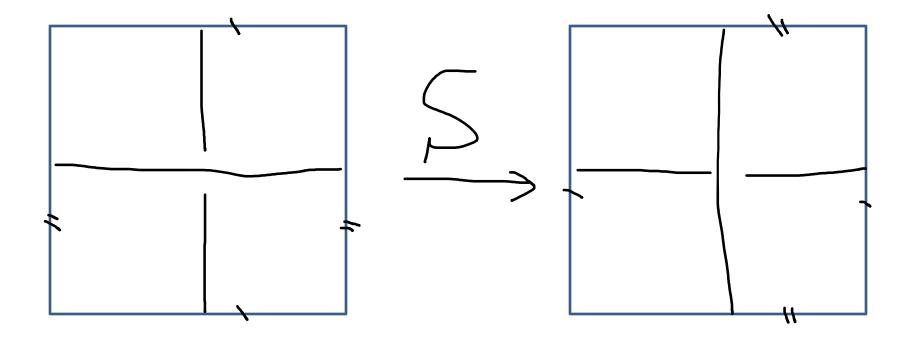
Consistency Conditions I

- Untwisted partition function is modular S and T invariant.
- If **2** circles on torus inserted by the same line, it is expected to be modular **S**-invariant

$$SZ_{(h,h)}(\tau) = Z_{(h,h)}(\tau)$$

• In general, when **2** circles inserted by two different lines, we should have

$$SZ_{(h,h')} = Z_{(h',h)}$$



Ising Model (c=1/2)

$$Z_{(h,1)}(\tau) = |\chi_{id}(\tau)|^2 + |\chi_{\varepsilon}(\tau)|^2 - |\chi_{\sigma}(\tau)|^2$$

$$Z_{(1,h)}(\tau) = \bar{\chi}_{id}(\bar{\tau})\chi_{\varepsilon}(\tau) + \bar{\chi}_{\varepsilon}(\bar{\tau})\chi_{id}(\tau) + |\chi_{\sigma}(\tau)|^2$$

$$Z_{(h,h)}(\tau) = -\bar{\chi}_{id}(\bar{\tau})\chi_{\varepsilon}(\tau) - \bar{\chi}_{\varepsilon}(\bar{\tau})\chi_{id}(\tau) + \bar{\chi}_{\sigma}(\bar{\tau})\chi_{\sigma}(\tau)$$

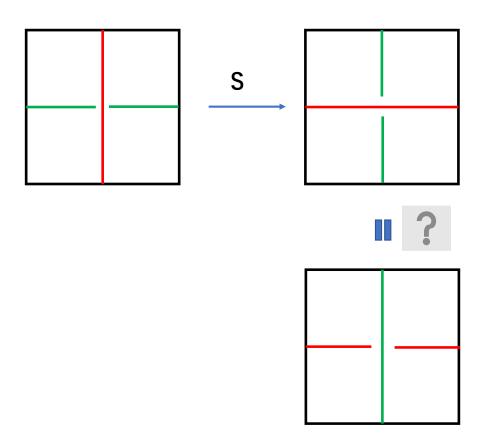
 $SZ_{(h,h)}(\tau) = Z_{(h,h)}(\tau)$ [Lin-Shao, Kikuchi-YZ]

SU(2)_k Wess-Zumino-Witten (WZW)

$$Z_{(\mathbf{1},h)} = \mathcal{S}Z_{(h,\mathbf{1})} = \sum_{\hat{\mu}\in P_+^k} \bar{\chi}_{A\hat{\mu}}\chi_{\hat{\mu}}$$

$$\begin{split} SZ_{(h,h)}(\tau) &= S \sum_{j=0,1/2,\dots,k/2} (-i)^k (-)^{2j} \chi_j(\tau) \bar{\chi}_{\frac{k}{2}-j}(\bar{\tau}) \\ &= \sum_{j,j_1,j_2} (-i)^k (-)^{2j} S_{jj_1} S_{\frac{k}{2}-j,j_2} \chi_{j_1}(\tau) \bar{\chi}_{j_2}(\bar{\tau}) \\ &= \sum_{j,j_1,j_2} (-i)^k (-)^{2j_2} S_{jj_1} (-)^{2j_2} S_{jj_2} \chi_{j_1}(\tau) \bar{\chi}_{j_2}(\tau) \\ &= \sum_{j,j_1,j_2} (-i)^k (-)^{2j_2} S_{jj_1} S_{j,\frac{k}{2}-j_2} \chi_{j_1}(\tau) \bar{\chi}_{j_2}(\bar{\tau}) \\ &= \sum_{j_1,j_2} (-i)^k (-)^{2j_2} \delta_{j_1,\frac{k}{2}-j_2} \chi_{j_1}(\tau) \bar{\chi}_{j_2}(\tau) \\ &= \sum_{j} (-i)^k (-)^{2(\frac{k}{2}-j)} \chi_j(\tau) \bar{\chi}_{\frac{k}{2}-j}(\tau) \\ &= (-)^k Z_{(h,h)}(\tau), \end{split}$$

Two different lines inserted



SU(N)_k WZW

$$Z_{(h,h)}(\tau) = \sum_{\hat{\mu} \in P_{+}^{k}} e^{-\pi i k |A\hat{\omega}_{0}|^{2} - 2\pi i (A\hat{\omega}_{0},\hat{\mu})} \bar{\chi}_{A\hat{\mu}}(\bar{\tau}) \chi_{\hat{\mu}}(\tau)$$

$$\begin{split} SZ_{(h,h)}(\tau) &= S \sum_{\hat{\mu} \in P_{+}^{k}} e^{-\pi i k |A\hat{\omega}_{0}|^{2} - 2\pi i (A\hat{\omega}_{0},\hat{\mu})} \bar{\chi}_{A\hat{\mu}}(\bar{\tau}) \chi_{\hat{\mu}}(\tau) \\ &= \sum_{\hat{\mu}, \hat{\nu}_{1}, \hat{\nu}_{2} \in P_{+}^{k}} e^{-\pi i k |A\hat{\omega}_{0}|^{2} - 2\pi i (A\hat{\omega}_{0},\hat{\mu})} S_{\hat{\nu}_{1},A\hat{\mu}}^{*} \bar{\chi}_{\hat{\nu}_{1}}(\bar{\tau}) S_{\hat{\nu}_{2},\hat{\mu}} \chi_{\hat{\nu}_{2}}(\tau) \\ &= \sum_{\hat{\mu}, \hat{\nu}_{1}, \hat{\nu}_{2} \in P_{+}^{k}} e^{-\pi i k |A\hat{\omega}_{0}|^{2} + 2\pi i (A\hat{\omega}_{0},\hat{\nu}_{1})} S_{\hat{\nu}_{1},\hat{\mu}}^{*} \bar{\chi}_{\hat{\nu}_{1}}(\bar{\tau}) S_{A\hat{\nu}_{2},\hat{\mu}} \chi_{\hat{\nu}_{2}}(\tau) \\ &= \sum_{\hat{\mu} \in P_{+}^{k}} e^{-\pi i k |A\hat{\omega}_{0}|^{2} + 2\pi i (A\hat{\omega}_{0},A\hat{\mu})} \bar{\chi}_{A\hat{\mu}}(\bar{\tau}) \chi_{\hat{\mu}}(\tau). \end{split}$$

Consistency Conditions I: continued

- When the order of discrete Abelian G is higher than Z_2 , we have to truncate the S-transformed twisted partition function to that including primaries operators corresponding to symmetry lines (Verlinde lines).
- We interpret the violation of consistency condition I as a signal of a mixed anomaly for RCFT
- This anomaly agrees precisely with 3d 1-form anomaly [Hung-Wu-Zhou]

Remarks:

• In diagonal RCFTs, primaries are 1-1 corresponding to Verlinde lines, among which there are symmetry lines we concern. [Verlinde, Petkova-Zuber, Moore-Seiberg]

• Our 't Hooft anomaly is a mixed anomaly between global symmetry G and the outer automorphism symmetry. Which is different from F-symbol 't Hooft anomaly.

Tests:

• Ising CFT: (Kramers-Wannier duality=anomaly free)

• SU(3)_1:

$$Z_{diag} = |\chi_1|^2 + |\chi_3|^2 + |\chi_{\bar{3}}|^2$$
. $Z_{orb} = |$
• SU(N)_k:

$$Z_{orb} = |\chi_1|^2 + \chi_3 \bar{\chi}_{\bar{\mathbf{3}}} + \chi_{\bar{\mathbf{3}}} \bar{\chi}_{\mathbf{3}}.$$

Consistency Conditions II

- We have used modular S-transformation, but not yet T.
- If **2** circles on torus inserted by a generating line of Z_n , it is expected, after n times of T-twist [CFT yellow book]

$$T^{n}Z_{(1,h)}(\tau) = Z_{(h^{n},h)}(\tau) = Z_{(1,h)}(\tau)$$

• In general, when 2 circles inserted by different lines,

$$Z_{(h^n,h')}(\tau) = Z_{(1,h')}(\tau)$$

Consistency Conditions II

- The violation of this condition is interpreted as a mixed anomaly between G and diffeomorphism [Numasawa-Yamaguchi]
- This consistency was considered as (generalized) orbifolding conditions when $G=Z_N$ in early days [CFT yellow book]
- We generalize this consistency condition to arbitrary abelian discrete symmetry $G = Z_M * Z_N ...$, and find consistency condition I is sufficient but not necessary condition for II.

WZW Models (Condition I, 't Hooft anomaly)

type	center Γ	Smatrix	$\left SZ_{(h,h')}\right = Z_{(h',h)}$	$ A\hat{\mu}\rangle_{c} = \hat{\mu}\rangle_{c}$
A_r	\mathbb{Z}_{r+1}	$k \in (r+1)\mathbb{Z}$	$k \in (r+1)\mathbb{Z}$	$k \in (r+1)\mathbb{Z}$
B_r	\mathbb{Z}_2	$k \in \mathbb{Z}$	$k \in \mathbb{Z}$	$k \in \mathbb{Z}$
C_r	\mathbb{Z}_2	$rk \in 2\mathbb{Z}$	$rk \in 2\mathbb{Z}$	$rk \in 2\mathbb{Z}$
D_{2l}	$\mathbb{Z}_2 imes \mathbb{Z}_2$	$k \in 2\mathbb{Z}$	$k \in 2\mathbb{Z}$	$k \in 2\mathbb{Z}$
D_{2l+1}	\mathbb{Z}_4	$k \in 4\mathbb{Z}$	$k \in 4\mathbb{Z}$	$k \in 4\mathbb{Z}$
E_6	\mathbb{Z}_3	$k \in 3\mathbb{Z}$	$k\in 3\mathbb{Z}$	$k \in 3\mathbb{Z}$
E_7	\mathbb{Z}_2	$k\in 2\mathbb{Z}$	$k \in 2\mathbb{Z}$	$k \in 2\mathbb{Z}$

[Kikuchi-YZ]

WZW(Condition II, orbifolding)

Cartan matrix	Group G	center Γ		$e^{-\pi i N A\hat{\omega}_0 ^2}$	Anomaly Free
A_{n-1}	SU(n)	\mathbb{Z}_n	$ \omega_1 ^2 = \frac{n-1}{n}$	$(-1)^{n-1}$	$n \in 2\mathbb{Z} + 1 \text{ or } k \in 2\mathbb{Z}$
B_n	$\operatorname{Spin}(2n+1)$	\mathbb{Z}_2	$ \omega_1 ^2 = 1$	1	$k \in \mathbb{Z}$
C_n	USp(n)	\mathbb{Z}_2	$ \omega_n ^2 = \frac{n}{2}$	$(-1)^n$	$n \in 2\mathbb{Z}$ or $k \in 2\mathbb{Z}$
D_{2l+1}	$ \operatorname{Spin}(4l+2) $	\mathbb{Z}_4	$ \omega_1 ^2 = \frac{2l+1}{2}$	-1	$k \in 2\mathbb{Z}$
E_6	E_6	\mathbb{Z}_3	$ \omega_5 ^2 = \frac{4}{3}$	1	$k \in \mathbb{Z}$
E_7	E_7	\mathbb{Z}_2	$ \omega_{6} ^{2} = \frac{3}{2}$	-1	$k \in 2\mathbb{Z}$

 $T^{n}Z_{(1,h)}(\tau) = Z_{(h^{n},h)}(\tau) = Z_{(1,h)}(\tau)$ [Numasawa-Yamaguchi]

$$Z_{(h^n,h')}(au) = Z_{(1,h')}(au)$$
 [Kikuchi-YZ]

Boundary state

- Conformal invariance finds Ishibashi states, $|\hat{\mu}
 angle$
- Physical conditions find Cardy states,

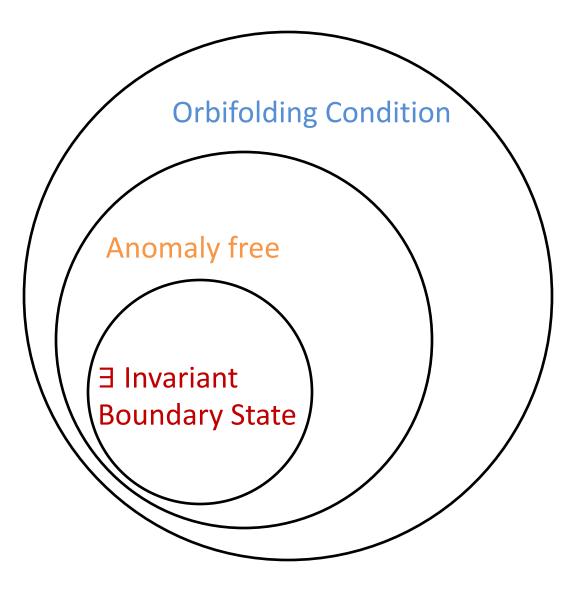
$$|\hat{\mu}\rangle_{c} := \sum_{\hat{\lambda} \in P_{+}^{k}} \frac{S_{\hat{\mu}\hat{\lambda}}}{\sqrt{S_{\hat{0}\hat{\lambda}}}} |\hat{\lambda}\rangle\rangle$$

- For the center symmetry of WZW, it is isomorphic to ``permutation'' of primaries $h: |\hat{\mu}\rangle_c \mapsto |A\hat{\mu}\rangle_c$
- Symmetry invariant boundary state is given by

$$|A\hat{\mu}\rangle_c = |\hat{\mu}\rangle_c$$

∃ invariant boundary state=G is anomaly decoupled

- Invariant boundary state can be used to detect anomaly [Han-Tiwari-Hsieh-Ryu]
- G is anomaly decoupled if G is anomaly (Type I consistency) free and also free of any mixing with other symmetries G'
- For the center symmetry of WZW, we demonstrate the equivalence : G-invariant boundary state = G anomaly decoupled.
- We conjecture this is true for any diagonal RCFT



Conclusion

- We find a general way to detect 't Hooft anomaly based on twisted torus partition function
- In particular a new anomaly between G and the outer automorphism->such theory can not be trivially gapped
- gapless approach to detect bulk topological phase
- Generalizations? (arbitrary CFT, non-abelian G, higher dimensions, higher form symmetry)

Thank You!

