Analytic Two－Loop Higgs Amplitudes and Maximal Transcendentality Principle

Gang Yang（杨刚）

Institute of Theoretical Physics， Chinese Academy of Sciences

Based on the work with Qingjun Jin（靳庆军） arXiv：1804．04653 and in progress

Content

- Motivation
- Computation
- Results
- Summary and outlook

Quantum Field theory (QFT)

QFT is the foundation of modern theoretical physics: particle physics, condensed matter, gravity and cosmology, etc.

SM-like Higgs boson discovered

Challenges

Experimental

Efficient
perturbative
methods

Theoretical

Non-perturbative method

Large Hadron Collider (LHC)

Precise test of SM

New physics?!

Simulated CMS event
Higher energy and luminosity -> increasing precision
Precise theoretical prediction - at two or higher loops of the scattering processes is mandatory.

Higgs boson @ LHC

The dominant production mechanism is the gluon fusion through a top quark loop.

Effective Field Theory (EFT)

Effective gluon-Higgs vertex:

$$
\mathcal{L}_{\mathrm{eff}}=C_{0} H \operatorname{tr}\left(G^{2}\right)+\mathcal{O}\left(\frac{1}{m_{\mathrm{t}}^{2}}\right)
$$

There have been computations for inclusive Higgs production to $N \wedge 3 L O$ orders in the heavy quark limit.

Effective Field Theory (EFT)

Higgs plus jet production is sensitive to new physics.
EFT description is not good when $p_{T} \sim 2 m_{t}$

High dimension operators contribution are important.

$$
\mathcal{L}_{\text {eff }}=C_{0} O_{0}+\frac{1}{m_{\mathrm{t}}^{2}} \sum_{i=1}^{4} C_{i} O_{i}+\mathcal{O}\left(\frac{1}{m_{\mathrm{t}}^{4}}\right) \quad l \begin{array}{ll}
& \\
& O_{1}=H \operatorname{Tr}\left(G_{\mu}{ }^{\nu} G_{\nu}{ }^{\rho} G_{\rho}{ }^{\mu}\right), \\
& O_{2}=H \operatorname{Tr}\left(D_{\rho} G_{\mu \nu} D^{\rho} G^{\mu \nu}\right), \\
& O_{3}=H \operatorname{Tr}\left(D^{\rho} G_{\rho \mu} D_{\sigma} G^{\sigma \mu}\right), \\
& O_{4}=H \operatorname{Tr}\left(G_{\mu \rho} D^{\rho} D_{\sigma} G^{\sigma \mu}\right) .
\end{array}
$$

Goal

Compute two-loop Higgs amplitudes with dim-7 operators

This provides the two-loop virtual amplitudes for the top mass correction in EFT.

Form factors

Higgs amplitudes are equivalent to form factors:

$$
F_{\mathcal{O}_{i}, n}=\int d^{4} x e^{-i q \cdot x}\left\langle p_{1}, \ldots, p_{n}\right| \mathcal{O}_{i}(x)|0\rangle
$$

Linear relation:

$$
\mathcal{O}_{2}=\frac{1}{2} \partial^{2} \mathcal{O}_{0}-4 g_{\mathrm{YM}} \mathcal{O}_{1}+2 \mathcal{O}_{4} \longrightarrow F_{\mathcal{O}_{2}}=\frac{1}{2} q^{2} F_{\mathcal{O}_{0}}-4 g_{\mathrm{YM}} F_{\mathcal{O}_{1}}
$$

Theoretical motivations

Feynman diagram?

Feynman diagram method works in principle, but the complexity grows extremely fast with increasing number of external legs / loops.

n-gluon tree amplitudes:

n	2	3	4	5	6	7	8
\# of diagrams	4	25	220	2485	34300	559405	10525900

Surprising simplicity

MHV (Maximally-helicity-violating) amplitudes: [Parke, Taylor '86]

$$
A_{n}^{\text {tree }}\left(1^{+}, \ldots, i^{-}, \ldots, j^{-}, \ldots, n^{+}\right)=\frac{\langle i j\rangle^{4}}{\langle 12\rangle \cdots\langle n 1\rangle}
$$

Comparing with result of Feynman diagrams:

[Bern '93]

Surprising simplicity

A more non-trivial example of two-loop amplitudes:

```
Six-gluon MHV amplitudes in N=4 SYM
```


[Del Duca, Duhr, Smirnov 2010]

a heroic analytical computation
[Del Duca, Duhr, Smirnov 2010]
$R_{6 W L}^{(2)}\left(u_{1}, u_{2}, u_{3}\right)=$
$\frac{1}{24} \pi^{2} G\left(\frac{1}{1-u_{1}}, \frac{u_{2}-1}{u_{1}+u_{2}-1} ; 1\right)+\frac{1}{24} \pi^{2} G\left(\frac{1}{u_{1}}, \frac{1}{u_{1}+u_{2}} ; 1\right)+\frac{1}{24} \pi^{2} G\left(\frac{1}{u_{1}}, \frac{1}{u_{1}+u_{3}} ; 1\right)+$
$\frac{1}{24} \pi^{2} G\left(\frac{1}{1-u_{2}}, \frac{u_{3}-1}{u_{2}+u_{3}-1} ; 1\right)+\frac{1}{24} \pi^{2} G\left(\frac{1}{u_{2}}, \frac{1}{u_{1}+u_{2}} ; 1\right)+\frac{1}{24} \pi^{2} G\left(\frac{1}{u_{2}}, \frac{1}{u_{2}+u_{3}} ; 1\right)+$
$\frac{1}{24} \pi^{2} G\left(\frac{1}{1-u_{3}}, \frac{u_{1}-1}{u_{1}+u_{3}-1} ; 1\right)+\frac{1}{24} \pi^{2} G\left(\frac{1}{u_{3}}, \frac{1}{u_{1}+u_{3}} ; 1\right)+\frac{1}{24} \pi^{2} G\left(\frac{1}{u_{3}}, \frac{1}{u_{2}+u_{3}} ; 1\right)+$
$\frac{3}{2} G\left(0,0, \frac{1}{u_{1}}, \frac{1}{u_{1}+u_{2}} ; 1\right)+\frac{3}{2} G\left(0,0, \frac{1}{u_{1}}, \frac{1}{u_{1}+u_{3}} ; 1\right)+\frac{3}{2} G\left(0,0, \frac{1}{u_{2}}, \frac{1}{u_{1}+u_{2}} ; 1\right)+$
$\frac{3}{2} G\left(0,0, \frac{1}{u_{2}}, \frac{1}{u_{2}+u_{3}} ; 1\right)+\frac{3}{2} G\left(0,0, \frac{1}{u_{3}}, \frac{1}{u_{1}+u_{3}} ; 1\right)+\frac{3}{2} G\left(0,0, \frac{1}{u_{3}}, \frac{1}{u_{2}+u_{3}} ; 1\right)-$
$\frac{1}{2} G\left(0, \frac{1}{u_{1}}, 0, \frac{1}{u_{2}} ; 1\right)+G\left(0, \frac{1}{u_{1}}, 0, \frac{1}{u_{1}+u_{2}} ; 1\right)-\frac{1}{2} G\left(0, \frac{1}{u_{1}}, 0, \frac{1}{u_{3}} ; 1\right)+$
$G\left(0, \frac{1}{u_{1}}, 0, \frac{1}{u_{1}+u_{3}} ; 1\right)-\frac{1}{2} G\left(0, \frac{1}{u_{1}}, \frac{1}{u_{1}}, \frac{1}{u_{1}+u_{2}} ; 1\right)-\frac{1}{2} G\left(0, \frac{1}{u_{1}}, \frac{1}{u_{1}}, \frac{1}{u_{1}+u_{3}} ; 1\right)-$
$\frac{1}{2} G\left(0, \frac{1}{u_{1}}, \frac{1}{u_{2}}, \frac{1}{u_{1}+u_{2}} ; 1\right)-\frac{1}{2} G\left(0, \frac{1}{u_{1}}, \frac{1}{u_{3}}, \frac{1}{u_{1}+u_{3}} ; 1\right)-\frac{1}{2} G\left(0, \frac{1}{u_{2}}, 0, \frac{1}{u_{1}} ; 1\right)+$
$G\left(0, \frac{1}{u_{2}}, 0, \frac{1}{u_{1}+u_{2}} ; 1\right)-\frac{1}{2} G\left(0, \frac{1}{u_{2}}, 0, \frac{1}{u_{3}} ; 1\right)+G\left(0, \frac{1}{u_{2}}, 0, \frac{1}{u_{2}+u_{3}} ; 1\right)-$
$\frac{1}{2} G\left(0, \frac{1}{u_{2}}, \frac{1}{u_{1}}, \frac{1}{u_{1}+u_{2}} ; 1\right)-\frac{1}{2} G\left(0, \frac{1}{u_{2}}, \frac{1}{u_{2}}, \frac{1}{u_{1}+u_{2}} ; 1\right)-\frac{1}{2} G\left(0, \frac{1}{u_{2}}, \frac{1}{u_{2}}, \frac{1}{u_{2}+u_{3}} ; 1\right)-$
$\frac{1}{2} G\left(0, \frac{1}{u_{2}}, \frac{1}{u_{3}}, \frac{1}{u_{2}+u_{3}} ; 1\right)+\frac{1}{4} G\left(0, \frac{u_{2}-1}{u_{1}+u_{2}-1}, 0, \frac{1}{1-u_{1}} ; 1\right)+$
$\frac{1}{4} G\left(0, \frac{u_{2}-1}{u_{1}+u_{2}-1}, \frac{1}{1-u_{1}}, 0 ; 1\right)-\frac{1}{4} G\left(0, \frac{u_{2}-1}{u_{1}+u_{2}-1}, \frac{1}{1-u_{1}}, 1 ; 1\right)+$
$\frac{1}{4} G\left(0, \frac{u_{2}-1}{u_{1}+u_{2}-1}, \frac{1}{1-u_{1}}, \frac{1}{1-u_{1}} ; 1\right)-\frac{1}{4} G\left(0, \frac{u_{2}-1}{u_{1}+u_{2}-1}, \frac{u_{2}-1}{u_{1}+u_{2}-1}, \frac{1}{1-u_{1}} ; 1\right)-$
$\frac{1}{2} G\left(0, \frac{1}{u_{3}}, 0, \frac{1}{u_{1}} ; 1\right)-\frac{1}{2} G\left(0, \frac{1}{u_{3}}, 0, \frac{1}{u_{2}} ; 1\right)+G\left(0, \frac{1}{u_{3}}, 0, \frac{1}{u_{1}+u_{3}} ; 1\right)+$
$G\left(0, \frac{1}{u_{3}}, 0, \frac{1}{u_{2}+u_{3}} ; 1\right)-\frac{1}{2} G\left(0, \frac{1}{u_{3}}, \frac{1}{u_{1}}, \frac{1}{u_{1}+u_{3}} ; 1\right)-\frac{1}{2} G\left(0, \frac{1}{u_{3}}, \frac{1}{u_{2}}, \frac{1}{u_{2}+u_{3}} ; 1\right)-$
$\frac{1}{2} G\left(0, \frac{1}{u_{3}}, \frac{1}{u_{3}}, \frac{1}{u_{1}+u_{3}} ; 1\right)-\frac{1}{2} G\left(0, \frac{1}{u_{3}}, \frac{1}{u_{3}}, \frac{1}{u_{2}+u_{3}} ; 1\right)+$
$\frac{1}{4} G\left(0, \frac{u_{1}-1}{u_{1}+u_{3}-1}, 0, \frac{1}{1-u_{3}} ; 1\right)+\frac{1}{4} G\left(0, \frac{u_{1}-1}{u_{1}+u_{3}-1}, \frac{1}{1-u_{3}}, 0 ; 1\right)-$
$\frac{1}{4} G\left(0, \frac{u_{1}-1}{u_{1}+u_{3}-1}, \frac{1}{1-u_{3}}, 1 ; 1\right)+\frac{1}{4} G\left(0, \frac{u_{1}-1}{u_{1}+u_{3}-1}, \frac{1}{1-u_{3}}, \frac{1}{1-u_{3}} ; 1\right)-$
$\frac{1}{4} G\left(0, \frac{u_{1}-1}{u_{1}+u_{3}-1}, \frac{u_{1}-1}{u_{1}+u_{3}-1}, \frac{1}{1-u_{3}} ; 1\right)+\frac{1}{4} G\left(0, \frac{u_{3}-1}{u_{2}+u_{3}-1}, 0, \frac{1}{1-u_{2}} ; 1\right)+$
$\frac{1}{4} G\left(0, \frac{u_{3}-1}{u_{2}+u_{3}-1}, \frac{1}{1-u_{2}}, 0 ; 1\right)-\frac{1}{4} G\left(0, \frac{u_{3}-1}{u_{2}+u_{3}-1}, \frac{1}{1-u_{2}}, 1 ; 1\right)+$
$\frac{1}{4} G\left(0, \frac{u_{3}-1}{u_{2}+u_{3}-1}, \frac{1}{1-u_{2}}, \frac{1}{1-u_{2}} ; 1\right)-\frac{1}{4} G\left(0, \frac{u_{3}-1}{u_{2}+u_{3}-1}, \frac{u_{3}-1}{u_{2}+u_{3}-1}, \frac{1}{1-u_{2}} ; 1\right)-$
$\frac{1}{4} G\left(\frac{1}{1-u_{1}}, 1, \frac{1}{u_{3}}, 0 ; 1\right)+\frac{1}{2} G\left(\frac{1}{1-u_{1}}, \frac{1}{1-u_{1}}, 1, \frac{1}{1-u_{1}} ; 1\right)+$

$$
\begin{aligned}
& \begin{array}{l}
\frac{1}{4} G\left(\frac{1}{1-u_{1}}, \frac{u_{2}-1}{u_{1}+u_{2}-1}, 0,1 ; 1\right)-\frac{1}{4} G\left(\frac{1}{1-u_{1}}, \frac{u_{2}-1}{u_{1}+u_{2}-1}, 0, \frac{1}{1-u_{1}} ; 1\right)+ \\
\frac{1}{4} G\left(\frac{1}{1-u_{1}}, \frac{u_{2}-1}{u_{1}+u_{2}-1}, 1,0 ; 1\right)-\frac{1}{4} G\left(\frac{1}{1-u_{1}}, \frac{u_{2}-1}{u_{1}+u_{2}-1}, \frac{1}{1-u_{1}}, 0 ; 1\right)+
\end{array} \\
& \frac{1}{4} G\left(\frac{1}{1-u_{1}}, \frac{u_{2}-1}{u_{1}+u_{2}-1}, \frac{1}{1-u_{1}}, 1 ; 1\right)-\frac{1}{4} G\left(\frac{1}{1-u_{1}}, \frac{u_{2}-1}{u_{1}+u_{2}-1}, \frac{1}{1-u_{1}}, \frac{1}{1-u_{1}} ; 1\right)- \\
& \frac{1}{4} G\left(\frac{1}{1-u_{1}}, \frac{u_{2}-1}{u_{1}+u_{2}-1}, \frac{u_{2}-1}{u_{1}+u_{2}-1}, 1 ; 1\right)+ \\
& \frac{1}{4} G\left(\frac{1}{1-u_{1}}, \frac{u_{2}-1}{u_{1}+u_{2}-1}, \frac{u_{2}-1}{u_{1}+u_{2}-1}, \frac{1}{1-u_{1}} ; 1\right)-G\left(\frac{1}{u_{1}}, 0,0, \frac{1}{u_{2}} ; 1\right)+ \\
& \frac{1}{2} G\left(\frac{1}{u_{1}}, 0,0, \frac{1}{u_{1}+u_{2}} ; 1\right)-G\left(\frac{1}{u_{1}}, 0,0, \frac{1}{u_{3}} ; 1\right)+\frac{1}{2} G\left(\frac{1}{u_{1}}, 0,0, \frac{1}{u_{1}+u_{3}} ; 1\right)- \\
& \frac{1}{4} G\left(\frac{1}{u_{1}}, 0, \frac{1}{u_{1}}, \frac{1}{u_{1}+u_{2}} ; 1\right)-\frac{1}{4} G\left(\frac{1}{u_{1}}, 0, \frac{1}{u_{1}}, \frac{1}{u_{1}+u_{3}} ; 1\right)-\frac{1}{4} G\left(\frac{1}{u_{1}}, 0, \frac{1}{u_{2}}, \frac{1}{u_{1}+u_{2}} ; 1\right)- \\
& \frac{1}{4} G\left(\frac{1}{u_{1}}, 0, \frac{1}{u_{3}}, \frac{1}{u_{1}+u_{3}} ; 1\right)-\frac{1}{4} G\left(\frac{1}{1-u_{2}}, 1, \frac{1}{u_{1}}, 0 ; 1\right)+ \\
& \frac{1}{2} G\left(\frac{1}{1-u_{2}}, \frac{1}{1-u_{2}}, 1, \frac{1}{1-u_{2}} ; 1\right)+\frac{1}{4} G\left(\frac{1}{1-u_{2}}, \frac{u_{3}-1}{u_{2}+u_{3}-1}, 0,1 ; 1\right)- \\
& \frac{1}{4} G\left(\frac{1}{1-u_{2}}, \frac{u_{3}-1}{u_{2}+u_{3}-1}, 0, \frac{1}{1-u_{2}} ; 1\right)+\frac{1}{4} G\left(\frac{1}{1-u_{2}}, \frac{u_{3}-1}{u_{2}+u_{3}-1}, 1,0 ; 1\right)- \\
& \frac{1}{4} G\left(\frac{1}{1-u_{2}}, \frac{u_{3}-1}{u_{2}+u_{3}-1}, \frac{1}{1-u_{2}}, 0 ; 1\right)+\frac{1}{4} G\left(\frac{1}{1-u_{2}}, \frac{u_{3}-1}{u_{2}+u_{3}-1}, \frac{1}{1-u_{2}}, 1 ; 1\right)- \\
& \frac{1}{4} G\left(\frac{1}{1-u_{2}}, \frac{u_{3}-1}{u_{2}+u_{3}-1}, \frac{1}{1-u_{2}}, \frac{1}{1-u_{2}} ; 1\right)- \\
& \frac{1}{4} G\left(\frac{1}{1-u_{2}}, \frac{u_{3}-1}{u_{2}+u_{3}-1}, \frac{u_{3}-1}{u_{2}+u_{3}-1}, 1 ; 1\right)+ \\
& \frac{1}{4} G\left(\frac{1}{1-u_{2}}, \frac{u_{3}-1}{u_{2}+u_{3}-1}, \frac{u_{3}-1}{u_{2}+u_{3}-1}, \frac{1}{1-u_{2}} ; 1\right)-G\left(\frac{1}{u_{2}}, 0,0, \frac{1}{u_{1}} ; 1\right)+ \\
& \frac{1}{2} G\left(\frac{1}{u_{2}}, 0,0, \frac{1}{u_{1}+u_{2}} ; 1\right)-G\left(\frac{1}{u_{2}}, 0,0, \frac{1}{u_{3}} ; 1\right)+\frac{1}{2} G\left(\frac{1}{u_{2}}, 0,0, \frac{1}{u_{2}+u_{3}} ; 1\right)- \\
& \frac{1}{4} G\left(\frac{1}{u_{2}}, 0, \frac{1}{u_{1}}, \frac{1}{u_{1}+u_{2}} ; 1\right)-\frac{1}{4} G\left(\frac{1}{u_{2}}, 0, \frac{1}{u_{2}}, \frac{1}{u_{1}+u_{2}} ; 1\right)-\frac{1}{4} G\left(\frac{1}{u_{2}}, 0, \frac{1}{u_{2}}, \frac{1}{u_{2}+u_{3}} ; 1\right)- \\
& \frac{1}{4} G\left(\frac{1}{u_{2}}, 0, \frac{1}{u_{3}}, \frac{1}{u_{2}+u_{3}} ; 1\right)-\frac{1}{4} G\left(\frac{1}{1-u_{3}}, 1, \frac{1}{u_{2}}, 0 ; 1\right)+ \\
& \frac{1}{2} G\left(\frac{1}{1-u_{3}}, \frac{1}{1-u_{3}}, 1, \frac{1}{1-u_{3}} ; 1\right)+\frac{1}{4} G\left(\frac{1}{1-u_{3}}, \frac{u_{1}-1}{u_{1}+u_{3}-1}, 0,1 ; 1\right)- \\
& \frac{1}{4} G\left(\frac{1}{1-u_{3}}, \frac{u_{1}-1}{u_{1}+u_{3}-1}, 0, \frac{1}{1-u_{3}} ; 1\right)+\frac{1}{4} G\left(\frac{1}{1-u_{3}}, \frac{u_{1}-1}{u_{1}+u_{3}-1}, 1,0 ; 1\right)- \\
& \frac{1}{4} G\left(\frac{1}{1-u_{3}}, \frac{u_{1}-1}{u_{1}+u_{3}-1}, \frac{1}{1-u_{3}}, 0 ; 1\right)+\frac{1}{4} G\left(\frac{1}{1-u_{3}}, \frac{u_{1}-1}{u_{1}+u_{3}-1}, \frac{1}{1-u_{3}}, 1 ; 1\right)- \\
& \frac{1}{4} G\left(\frac{1}{1-u_{3}}, \frac{u_{1}-1}{u_{1}+u_{3}-1}, \frac{1}{1-u_{3}}, \frac{1}{1-u_{3}} ; 1\right)- \\
& \frac{1}{4} G\left(\frac{1}{1-u_{3}}, \frac{u_{1}-1}{u_{1}+u_{3}-1}, \frac{u_{1}-1}{u_{1}+u_{3}-1}, 1 ; 1\right)-\frac{79 \pi^{4}}{360}+ \\
& \frac{1}{4} G\left(\frac{1}{1-u_{3}}, \frac{u_{1}-1}{u_{1}+u_{3}-1}, \frac{u_{1}-1}{u_{1}+u_{3}-1}, \frac{1}{1-u_{3}} ; 1\right)-G\left(\frac{1}{u_{3}}, 0,0, \frac{1}{u_{1}} ; 1\right)-
\end{aligned}
$$

$$
\begin{aligned}
& G\left(\frac{1}{u_{3}}, 0,0, \frac{1}{u_{2}} ; 1\right)+\frac{1}{2} G\left(\frac{1}{u_{3}}, 0,0, \frac{1}{u_{1}+u_{3}} ; 1\right)+\frac{1}{2} G\left(\frac{1}{u_{3}}, 0,0, \frac{1}{u_{2}+u_{3}} ; 1\right)- \\
& \frac{1}{4} G\left(\frac{1}{u_{3}}, 0, \frac{1}{u_{1}}, \frac{1}{u_{1}+u_{3}} ; 1\right)-\frac{1}{4} G\left(\frac{1}{u_{3}}, 0, \frac{1}{u_{2}}, \frac{1}{u_{2}+u_{3}} ; 1\right)-\frac{1}{4} G\left(\frac{1}{u_{3}}, 0, \frac{1}{u_{3}}, \frac{1}{u_{1}+u_{3}} ; 1\right)- \\
& \frac{1}{4} G\left(\frac{1}{u_{3}}, 0, \frac{1}{u_{3}}, \frac{1}{u_{2}+u_{3}} ; 1\right)-\frac{1}{24} \pi^{2} \mathcal{G}\left(\frac{1}{1-u_{1}}, u_{123} ; 1\right)+\frac{1}{8} \pi^{2} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{123} ; 1\right)+ \\
& \frac{1}{8} \pi^{2} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{132} ; 1\right)-\frac{1}{24} \pi^{2} \mathcal{G}\left(\frac{1}{1-u_{2}}, u_{231} ; 1\right)+\frac{1}{8} \pi^{2} \mathcal{G}\left(\frac{1}{1-u_{2}}, v_{213} ; 1\right)+ \\
& \frac{1}{8} \pi^{2} \mathcal{G}\left(\frac{1}{1-u_{2}}, v_{231} ; 1\right)-\frac{1}{24} \pi^{2} \mathcal{G}\left(\frac{1}{1-u_{3}}, u_{312} ; 1\right)+\frac{1}{8} \pi^{2} \mathcal{G}\left(\frac{1}{1-u_{3}}, v_{312} ; 1\right)+ \\
& \frac{1}{8} \pi^{2} \mathcal{G}\left(\frac{1}{1-u_{3}}, v_{321} ; 1\right)-\frac{1}{4} \mathcal{G}\left(0,0, \frac{1}{1-u_{1}}, v_{123} ; 1\right)-\frac{1}{4} \mathcal{G}\left(0,0, \frac{1}{1-u_{1}}, v_{132} ; 1\right)- \\
& \frac{1}{4} \mathcal{G}\left(0,0, \frac{1}{1-u_{2}}, v_{213} ; 1\right)-\frac{1}{4} \mathcal{G}\left(0,0, \frac{1}{1-u_{2}}, v_{231} ; 1\right)-\frac{1}{4} \mathcal{G}\left(0,0, \frac{1}{1-u_{3}}, v_{312} ; 1\right)- \\
& \frac{1}{4} \mathcal{G}\left(0,0, \frac{1}{1-u_{3}}, v_{321} ; 1\right)-\frac{1}{4} \mathcal{G}\left(0,0, v_{123}, \frac{1}{1-u_{1}} ; 1\right)+\mathcal{G}\left(0,0, v_{132}, 0 ; 1\right)- \\
& \frac{1}{4} \mathcal{G}\left(0,0, v_{132}, \frac{1}{1-u_{1}} ; 1\right)+\mathcal{G}\left(0,0, v_{213}, 0 ; 1\right)-\frac{1}{4} \mathcal{G}\left(0,0, v_{213}, \frac{1}{1-u_{2}} ; 1\right)- \\
& \frac{1}{4} \mathcal{G}\left(0,0, v_{231}, \frac{1}{1-u_{2}} ; 1\right)-\frac{1}{4} \mathcal{G}\left(0,0, v_{312}, \frac{1}{1-u_{3}} ; 1\right)+\mathcal{G}\left(0,0, v_{321}, 0 ; 1\right)- \\
& \frac{1}{4} \mathcal{G}\left(0,0, v_{321}, \frac{1}{1-u_{3}} ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{1}}, 0, v_{123} ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{1}}, 0, v_{132} ; 1\right)- \\
& \frac{1}{2} \mathcal{G}\left(0, \frac{1}{1-u_{1}}, \frac{1}{1-u_{1}}, v_{123} ; 1\right)-\frac{1}{2} \mathcal{G}\left(0, \frac{1}{1-u_{1}}, \frac{1}{1-u_{1}}, v_{132} ; 1\right)- \\
& \frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{1}}, v_{123}, 1 ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{1}}, v_{123}, \frac{1}{1-u_{1}} ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{1}}, v_{132}, 1 ; 1\right)- \\
& \frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{1}}, v_{132}, \frac{1}{1-u_{1}} ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{2}}, 0, v_{213} ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{2}}, 0, v_{231} ; 1\right)- \\
& \frac{1}{2} \mathcal{G}\left(0, \frac{1}{1-u_{2}}, \frac{1}{1-u_{2}}, v_{213} ; 1\right)-\frac{1}{2} \mathcal{G}\left(0, \frac{1}{1-u_{2}}, \frac{1}{1-u_{2}}, v_{231} ; 1\right)- \\
& \frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{2}}, v_{213}, 1 ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{2}}, v_{213}, \frac{1}{1-u_{2}} ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{2}}, v_{231}, 1 ; 1\right)- \\
& \frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{2}}, v_{231}, \frac{1}{1-u_{2}} ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{3}}, 0, v_{312} ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{3}}, 0, v_{321} ; 1\right)- \\
& \frac{1}{2} \mathcal{G}\left(0, \frac{1}{1-u_{3}}, \frac{1}{1-u_{3}}, v_{312} ; 1\right)-\frac{1}{2} \mathcal{G}\left(0, \frac{1}{1-u_{3}}, \frac{1}{1-u_{3}}, v_{321} ; 1\right)- \\
& \frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{3}}, v_{312}, 1 ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{3}}, v_{312}, \frac{1}{1-u_{3}} ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{3}}, v_{321}, 1 ; 1\right)- \\
& \frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{3}}, v_{321}, \frac{1}{1-u_{3}} ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, u_{123}, 0, \frac{1}{1-u_{1}} ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, u_{123}, \frac{1}{1-u_{1}}, 0 ; 1\right)+ \\
& \frac{1}{4} \mathcal{G}\left(0, u_{123}, \frac{1}{1-u_{1}}, 1 ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, u_{123}, \frac{1}{1-u_{1}}, \frac{1}{1-u_{1}} ; 1\right)- \\
& \frac{1}{4} \mathcal{G}\left(0, u_{123}, \frac{u_{2}-1}{u_{1}+u_{2}-1}, 1 ; 1\right)+\frac{1}{4} \mathcal{G}\left(0, u_{123}, \frac{u_{2}-1}{u_{1}+u_{2}-1}, \frac{1}{1-u_{1}} ; 1\right)- \\
& \frac{1}{4} \mathcal{G}\left(0, u_{123}, \frac{1}{u_{3}}, 0 ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, u_{231}, 0, \frac{1}{1-u_{2}} ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, u_{231}, \frac{1}{u_{1}}, 0 ; 1\right)-
\end{aligned}
$$

```
\(\frac{1}{4} \mathcal{G}\left(0, u_{231}, \frac{1}{1-u_{2}}, 0 ; 1\right)+\frac{1}{4} \mathcal{G}\left(0, u_{231}, \frac{1}{1-u_{2}}, 1 ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, u_{231}, \frac{1}{1-u_{2}}, \frac{1}{1-u_{2}} ; 1\right)-\)
\(\frac{1}{4} \mathcal{G}\left(0, u_{231}, \frac{u_{3}-1}{u_{2}+u_{3}-1}, 1 ; 1\right)+\frac{1}{4} \mathcal{G}\left(0, u_{231}, \frac{u_{3}-1}{u_{2}+u_{3}-1}, \frac{1}{1-u_{2}} ; 1\right)-\)
\(\frac{1}{4} \mathcal{G}\left(0, u_{312}, 0, \frac{1}{1-u_{3}} ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, u_{312}, \frac{1}{u_{2}}, 0 ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, u_{312}, \frac{1}{1-u_{3}}, 0 ; 1\right)+\)
\(\frac{1}{4} \mathcal{G}\left(0, u_{312}, \frac{1}{1-u_{3}}, 1 ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, u_{312}, \frac{1}{1-u_{3}}, \frac{1}{1-u_{3}} ; 1\right)-\)
\(\frac{1}{4} \mathcal{G}\left(0, u_{312}, \frac{u_{1}-1}{u_{1}+u_{3}-1}, 1 ; 1\right)+\frac{1}{4} \mathcal{G}\left(0, u_{312}, \frac{u_{1}-1}{u_{1}+u_{3}-1}, \frac{1}{1-u_{3}} ; 1\right)+\)
\(\frac{1}{4} \mathcal{G}\left(0, v_{123}, 0, \frac{1}{1-u_{1}} ; 1\right)-\frac{1}{2} \mathcal{G}\left(0, v_{123}, 1, \frac{1}{1-u_{1}} ; 1\right)+\frac{1}{4} \mathcal{G}\left(0, v_{123}, \frac{1}{1-u_{1}}, 0 ; 1\right)-\)
\(\frac{1}{2} \mathcal{G}\left(0, v_{123}, \frac{1}{1-u_{1}}, 1 ; 1\right)+\frac{1}{4} \mathcal{G}\left(0, v_{123}, \frac{1}{1-u_{1}}, \frac{1}{1-u_{1}} ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, v_{132}, 0, \frac{1}{1-u_{1}} ; 1\right)-\)
\(\frac{1}{4} \mathcal{G}\left(0, v_{132}, \frac{1}{1-u_{1}}, 0 ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, v_{132}, \frac{1}{1-u_{1}}, \frac{1}{1-u_{1}} ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, v_{213}, 0, \frac{1}{1-u_{2}} ; 1\right)-\)
\(\frac{1}{4} \mathcal{G}\left(0, v_{213}, \frac{1}{1-u_{2}}, 0 ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, v_{213}, \frac{1}{1-u_{2}}, \frac{1}{1-u_{2}} ; 1\right)+\frac{1}{4} \mathcal{G}\left(0, v_{231}, 0, \frac{1}{1-u_{2}} ; 1\right)-\)
\(\frac{1}{2} \mathcal{G}\left(0, v_{231}, 1, \frac{1}{1-u_{2}} ; 1\right)+\frac{1}{4} \mathcal{G}\left(0, v_{231}, \frac{1}{1-u_{2}}, 0 ; 1\right)-\frac{1}{2} \mathcal{G}\left(0, v_{231}, \frac{1}{1-u_{2}}, 1 ; 1\right)+\)
\(\frac{1}{4} \mathcal{G}\left(0, v_{231}, \frac{1}{1-u_{2}}, \frac{1}{1-u_{2}} ; 1\right)+\frac{1}{4} \mathcal{G}\left(0, v_{312}, 0, \frac{1}{1-u_{3}} ; 1\right)-\frac{1}{2} \mathcal{G}\left(0, v_{312}, 1, \frac{1}{1-u_{3}} ; 1\right)+\)
\(\frac{1}{4} \mathcal{G}\left(0, v_{312}, \frac{1}{1-u_{3}}, 0 ; 1\right)-\frac{1}{2} \mathcal{G}\left(0, v_{312}, \frac{1}{1-u_{3}}, 1 ; 1\right)+\frac{1}{4} \mathcal{G}\left(0, v_{312}, \frac{1}{1-u_{3}}, \frac{1}{1-u_{3}} ; 1\right)-\)
\(\frac{1}{4} \mathcal{G}\left(0, v_{321}, 0, \frac{1}{1-u_{3}} ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, v_{321}, \frac{1}{1-u_{3}}, 0 ; 1\right)-\frac{1}{4} \mathcal{G}\left(0, v_{321}, \frac{1}{1-u_{3}}, \frac{1}{1-u_{3}} ; 1\right)-\)
\(\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, 0,0, v_{123} ; 1\right)-\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, 0,0, v_{132} ; 1\right)-\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{1}}, 0, \frac{1}{1-u_{1}}, v_{123} ; 1\right)-\)
\(\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{1}}, 0, \frac{1}{1-u_{1}}, v_{132} ; 1\right)-\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, 0, v_{123}, 1 ; 1\right)-\)
\(\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, 0, v_{123}, \frac{1}{1-u_{1}} ; 1\right)-\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, 0, v_{132}, 1 ; 1\right)-\)
\(\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, 0, v_{132}, \frac{1}{1-u_{1}} ; 1\right)-\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{1}}, \frac{1}{1-u_{1}}, 0, v_{123} ; 1\right)-\)
\(\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{1}}, \frac{1}{1-u_{1}}, 0, v_{132} ; 1\right)-\frac{3}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, \frac{1}{1-u_{1}}, \frac{1}{1-u_{1}}, v_{123} ; 1\right)-\)
\(\frac{3}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, \frac{1}{1-u_{1}}, \frac{1}{1-u_{1}}, v_{132} ; 1\right)-\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{1}}, \frac{1}{1-u_{1}}, v_{123}, 1 ; 1\right)-\)
\(\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, \frac{1}{1-u_{1}}, v_{123}, \frac{1}{1-u_{1}} ; 1\right)-\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{1}}, \frac{1}{1-u_{1}}, v_{132}, 1 ; 1\right)-\)
\(\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, \frac{1}{1-u_{1}}, v_{132}, \frac{1}{1-u_{1}} ; 1\right)-\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, u_{123}, 0,1 ; 1\right)+\)
\(\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, u_{123}, 0, \frac{1}{1-u_{1}} ; 1\right)-\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, u_{123}, 1,0 ; 1\right)+\)
\(\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, u_{123}, \frac{1}{1-u_{1}}, 0 ; 1\right)-\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, u_{123}, \frac{1}{1-u_{1}}, 1 ; 1\right)+\)
```

```
\(\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, u_{123}, \frac{1}{1-u_{1}}, \frac{1}{1-u_{1}} ; 1\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, u_{123}, \frac{u_{2}-1}{u_{1}+u_{2}-1}, 1 ; 1\right)-\)
\(\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, u_{123}, \frac{u_{2}-1}{u_{1}+u_{2}-1}, \frac{1}{1-u_{1}} ; 1\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, u_{123}, \frac{1}{u_{3}}, 0 ; 1\right)+\)
\(\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{123}, 0,0 ; 1\right)-\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{123}, 0,1 ; 1\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{123}, 0, \frac{1}{1-u_{1}} ; 1\right)-\)
\(\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{123}, 1,0 ; 1\right)-\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{123}, 1, \frac{1}{1-u_{1}} ; 1\right)+\)
\(\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{123}, \frac{1}{1-u_{1}}, 0 ; 1\right)-\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{123}, \frac{1}{1-u_{1}}, 1 ; 1\right)+\)
\(\frac{1}{4} g\left(\frac{1}{1-u_{1}}, v_{123}, \frac{1}{1-u_{i}}, \frac{1}{1-u_{i}} ; 1\right)+\frac{1}{4} g\left(\frac{1}{1-u_{1}}, v_{123}, 0,0 ; 1\right)-\)
\(\frac{1}{4} g\left(\frac{1}{1-u_{1}}, v_{322}, 0,1 ; 1\right)+\frac{1}{4} g\left(\frac{1}{1-u_{1}}, v_{32}, 0, \frac{1}{1-u_{1}} ; 1\right)-\frac{1}{4} g\left(\frac{1}{1-u_{1}}, v_{132}, 1,0 ; 1\right)-\)
\(\frac{1}{2} q\left(\frac{1}{1-u_{1}}, v_{132}, 1, \frac{1}{1-u_{1}} ; 1\right)+\frac{1}{4} q\left(\frac{1}{1-u_{1},}, v_{32}, \frac{1}{1-u_{1}}, 0 ; 1\right)\) -
\(\frac{1}{2} g\left(\frac{1}{1-u_{1}}, v_{132}, \frac{1}{1-u_{1}}, 1 ; 1\right)+\frac{1}{4} g\left(\frac{1}{1-u_{1}}, v_{32}, \frac{1}{1-u_{1}}, \frac{1}{1-u_{1}} ; 1\right)-\)
\(\frac{1}{4} g\left(\frac{1}{1-u_{2}}, 0,0, v_{213} ; 1\right)-\frac{1}{4} G\left(\frac{1}{1-u_{2}}, 0,0, v_{233} ; 1\right)-\frac{1}{2} g\left(\frac{1}{1-u_{2}}, 0, \frac{1}{1-u_{2}}, v_{233} 1\right)-\)
\(\frac{1}{2} g\left(\frac{1}{1-u_{2}}, 0, \frac{1}{1-u_{2}}, v_{23} ; 1\right)-\frac{1}{4} g\left(\frac{1}{1-u_{2}}, 0, v_{213}, 1,1\right)-\)
\(\frac{1}{4} q\left(\frac{1}{1-u_{2}}, 0, v_{23}, \frac{1}{1-u_{2}} ; 1\right)-\frac{1}{4} q\left(\frac{1}{1-u_{2}}, 0, v_{231}, 1 ; 1\right)-\)
\(\frac{1}{4} g\left(\frac{1}{1-u_{2}}, 0, v_{23}, \frac{1}{1-u_{2}} ; 1\right)-\frac{1}{2} g\left(\frac{1}{1-u_{2}}, \frac{1}{1-u_{2}}, 0, v_{213} ; 1\right)-\)
\(\frac{1}{2} \mathfrak{G}\left(\frac{1}{1-u_{2}}, \frac{1}{1-u_{2}}, 0, v_{23} ; 1\right)-\frac{3}{4} \mathfrak{G}\left(\frac{1}{1-u_{2}}, \frac{1}{1-u_{2}}, \frac{1}{1-u_{2}}, v_{213} ; 1\right)-\)
\({ }_{4}^{3} G\left(\frac{1}{1-u_{2}}, \frac{1}{1-u_{2}}, \frac{1}{1-u_{2}}, v_{23} ; 1\right)-\frac{1}{2} g\left(\frac{1}{1-u_{2}}, \frac{1}{1-u_{2}}, v_{23}, 1 ; 1\right)-\)
\(\frac{1}{4} G\left(\frac{1}{1-u_{2}}, \frac{1}{1-u_{2}}, v_{213}, \frac{1}{1-u_{2}} ; 1\right)-\frac{1}{2} g\left(\frac{1}{1-u_{2}}, \frac{1}{1-u_{2}}, v_{231}, 1 ; 1\right)-\)
\(\frac{1}{4} g\left(\frac{1}{1-u_{2}}, \frac{1}{1-u_{2}}, v_{23}, \frac{1}{1-u_{2}} ; 1\right)-\frac{1}{4} g\left(\frac{1}{1-u_{2}}, u_{231}, 0,1 ; 1\right)+\)
\(\frac{1}{4} g\left(\frac{1}{1-u_{2}}, u_{231}, 0, \frac{1}{1-u_{2}} ; 1\right)-\frac{1}{4} g\left(\frac{1}{1-u_{2}}, u_{231}, 1,0 ; 1\right)+\)
```



```
\(\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, u_{23,}, \frac{1}{1-u_{2}}, 1 ; 1\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, u_{23}, \frac{1}{1-u_{2}}, \frac{1}{1-u_{2}} ; 1\right)+\)
```



```
\(\frac{1}{4} g\left(\frac{1}{1-u_{2}}, v_{213}, 0,0 ; 1\right)-\frac{1}{4} g\left(\frac{1}{1-u_{2}}, v_{23}, 0,1 ; 1\right)+\frac{1}{4} g\left(\frac{1}{1-u_{2}}, v_{213}, 0, \frac{1}{1-u_{2}} ; 1\right)-\)
\(\frac{1}{4} g\left(\frac{1}{1-u_{2}}, v_{233}, 1,0 ; 1\right)-\frac{1}{2} g\left(\frac{1}{1-u_{2}}, v_{23}, 1, \frac{1}{1-u_{2}} ; 1\right)+\)
```

```
\(\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, v_{213}, \frac{1}{1-u_{2}}, 0 ; 1\right)-\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{2}}, v_{213}, \frac{1}{1-u_{2}}, 1 ; 1\right)+\)
\(\frac{1}{4} g\left(\frac{1}{1-u_{2}}, v_{213}, \frac{1}{1-u_{2}}, \frac{1}{1-u_{2}} ; 1\right)+\frac{1}{4} g\left(\frac{1}{1-u_{2}}, v_{231}, 0,0 ; 1\right)-\)
\(\frac{1}{4} \mathfrak{G}\left(\frac{1}{1-u_{2}}, v_{231}, 0,1 ; 1\right)+\frac{1}{4} \mathfrak{G}\left(\frac{1}{\left.1-u_{2}, v_{231}, 0, \frac{1}{1-u_{2}} ; 1\right)-\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, v_{231}, 1,0 ; 1\right)-1}\right.\)
\(\frac{1}{2} g\left(\frac{1}{1-u_{2}}, v_{23}, 1, \frac{1}{1-u_{2}} ; 1\right)+\frac{1}{4} g\left(\frac{1}{1-u_{2}}, v_{233}, \frac{1}{1-u_{2}}, 0 ; 1\right)\)
\(\frac{1}{2} G\left(\frac{1}{1-u_{2}}, v_{231}, \frac{1}{1-u_{2}}, 1 ; 1\right)+\frac{1}{4} G\left(\frac{1}{1-u_{2}}, v_{231}, \frac{1}{1-u_{2}}, \frac{1}{1-u_{2}} ; 1\right)-\)
\(\frac{1}{4} q\left(\frac{1}{1-u_{3}}, 0,0, v_{3212} ; 1\right)-\frac{1}{4} g\left(\frac{1}{1-u_{3}}, 0,0, v_{32} ; 1\right)-\frac{1}{2} q\left(\frac{1}{1-u_{3}}, 0, \frac{1}{1-u_{3}}, v_{32} ; 1\right)-\)
\(\frac{1}{2} g\left(\frac{1}{1-u_{3}}, 0, \frac{1}{1-u_{3}}, v_{32} ; 1\right)-\frac{1}{4} g\left(\frac{1}{1-u_{3}}, 0, v_{3212}, 1 ; 1\right)-\)
\(\frac{1}{4} g\left(\frac{1}{1-u_{3}}, 0, v_{312}, \frac{1}{1-u_{3}} ; 1\right)-\frac{1}{4} g\left(\frac{1}{1-u_{3}}, 0, v_{331}, 1 ; 1\right)-\)
\(\frac{1}{4} g\left(\frac{1}{1-u_{3}}, 0, v_{32}, \frac{1}{1-u_{3}} ; 1\right)-\frac{1}{2} g\left(\frac{1}{1-u_{3}}, \frac{1}{1-u_{3}}, 0, v_{322} ; 1\right)-\)
\(\frac{1}{2} \mathfrak{G}\left(\frac{1}{1-u_{3}}, \frac{1}{1-u_{3}}, 0,0 v_{32} ; 1\right)-\frac{3}{4} G\left(\frac{1}{1} \frac{1}{1-u_{3}}, \frac{1}{1-u_{3}}, \frac{1}{1-u_{3}}, v_{332} ; 1\right)-\)
\(\frac{3}{4} G\left(\frac{1}{1-u_{3}}, \frac{1}{1-u_{3}}, \frac{1}{1-u_{3}}, v_{32} ; 1 ;-\frac{1}{2} g\left(\frac{1}{1-u_{3}}, \frac{1}{1-u_{3}}, v_{32}, 1 ; 1\right)-\right.\)
\(\frac{1}{4} G\left(\frac{1}{1-u_{3}}, \frac{1}{1-u_{3}}, v_{321}, \frac{1}{1-u_{3}} ; 1\right)-\frac{1}{2} g\left(\frac{1}{1-u_{3}}, \frac{1}{1-u_{3}}, v_{321}, 1 ; 1\right)-\)
\(\frac{1}{4} G\left(\frac{1}{1-u_{3}}, \frac{1}{1-u_{3}}, v_{31}, \frac{1}{1-u_{3}} ; 1\right)-\frac{1}{4} g\left(\frac{1}{1-u_{3}}, v_{331}, 0,1 ; 1\right)+\)
\(\frac{1}{4} g\left(\frac{1}{1-u_{3}}, u_{312}, 0, \frac{1}{1-u_{3}} ; 1\right)-\frac{1}{4} g\left(\frac{1}{1-u_{3}}, u_{332}, 1,0 ; 1\right)+\)
\(\frac{1}{4} g\left(\frac{1}{1-u_{3}}, u_{32}, \frac{1}{u_{2}}, 0 ; 1\right)+\frac{1}{4} g\left(\frac{1}{1-u_{3}}, u_{32}, \frac{1}{1-u_{3}}, 0 ; 1\right)-\)
\(\frac{1}{4} g\left(\frac{1}{1-u_{3}}, u_{32}, \frac{1}{1-u_{3}}, 1 ; 1\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, u_{321}, \frac{1}{1-u_{3}}, \frac{1}{1-u_{3}} ; 1\right)+\)
\(\frac{1}{4} g\left(\frac{1}{1-u_{3}}, u_{32}, \frac{u_{1}-1}{u_{1}+u_{3}-1}, 1 ; 1\right)-\frac{1}{4} g\left(\frac{1}{\left.1-u_{3}, u_{321}, \frac{u_{1}}{u_{1}+u_{3}-1}, \frac{1}{1-u_{3}} ; 1\right)+}\right.\)
\(\frac{1}{4} g\left(\frac{1}{1-u_{3}}, v_{332}, 0,0 ; 1\right)-\frac{1}{4} G\left(\frac{1}{1-u_{s}}, v_{312}, 0,1 ; 1\right)+\frac{1}{4} g\left(\frac{1}{1-u_{3}}, v_{312}, 0, \frac{1}{1-u_{3}} ; 1\right)-\)
\(\frac{1}{4} \mathfrak{q}\left(\frac{1}{1-u_{3}}, v_{312}, 1,0 ; 1\right)-\frac{1}{2} G\left(\frac{1}{1-u_{3}}, v_{321}, 1, \frac{1}{1-u_{3}} ; 1\right)+\)
\(\frac{1}{4} g\left(\frac{1}{1-u_{3}}, v_{312}, \frac{1}{1-u_{3}}, 0 ; 1\right)-\frac{1}{2} g\left(\frac{1}{1-u_{3}}, v_{332}, \frac{1}{1-u_{3}}, 1 ; 1\right)+\)
\(\frac{1}{4} g\left(\frac{1}{1-u_{3}}, v_{312}, \frac{1}{1-u_{3}}, \frac{1}{1-u_{3}} 11\right)+\frac{1}{4} g\left(\frac{1}{1-u_{3}}, v_{32}, 0,0 ; 1\right)-\)
\(\frac{1}{4} g\left(\frac{1}{1-u_{3}}, v_{321}, 0,1 ; 1\right)+\frac{1}{4} g\left(\frac{1}{1-u_{3}}, v_{32}, 0, \frac{1}{1-u_{3}} ; 1\right)-\frac{1}{4} g\left(\frac{1}{1-u_{3}}, v_{321}, 1,0 ; 1\right)-\)
\(\frac{1}{2} g\left(\frac{1}{1-u_{3}}, v_{322}, 1, \frac{1}{1-u_{3}} ; 1\right)+\frac{1}{4} g\left(\frac{1}{1-u_{3}}, v_{321}, \frac{1}{1-u_{3}}, 0 ; 1\right)-\)
```

```
\(\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{3}}, v_{321}, \frac{1}{1-u_{3}}, 1 ; 1\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, v_{321}, \frac{1}{1-u_{3}}, \frac{1}{1-u_{3}} ; 1\right)+\)
\(\frac{1}{2} \mathcal{G}\left(v_{123}, 0,1, \frac{1}{1-u_{1}} ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{123}, 0, \frac{1}{1-u_{1}}, 1 ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{123}, 1,0, \frac{1}{1-u_{1}} ; 1\right)-\)
\(\frac{5}{4} \mathcal{G}\left(v_{123}, 1,1, \frac{1}{1-u_{1}} ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{123}, 1, \frac{1}{1-u_{1}}, 0 ; 1\right)-\frac{5}{4} \mathcal{G}\left(v_{123}, 1, \frac{1}{1-u_{1}}, 1 ; 1\right)+\)
\(\frac{1}{2} \mathcal{G}\left(v_{123}, 1, \frac{1}{1-u_{1}}, \frac{1}{1-u_{1}} ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{123}, \frac{1}{1-u_{1}}, 0,1 ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{123}, \frac{1}{1-u_{1}}, 1,0 ; 1\right)-\)
\(\frac{5}{4} \mathcal{G}\left(v_{123}, \frac{1}{1-u_{1}}, 1,1 ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{123}, \frac{1}{1-u_{1}}, 1, \frac{1}{1-u_{1}} ; 1\right)+\)
\(\frac{1}{2} \mathcal{G}\left(v_{123}, \frac{1}{1-u_{1}}, \frac{1}{1-u_{1}}, 1 ; 1\right)-\frac{1}{4} \mathcal{G}\left(v_{132}, 1,1, \frac{1}{1-u_{1}} ; 1\right)-\frac{1}{4} \mathcal{G}\left(v_{132}, 1, \frac{1}{1-u_{1}}, 1 ; 1\right)-\)
\(\frac{1}{4} \mathcal{G}\left(v_{132}, \frac{1}{1-u_{1}}, 1,1 ; 1\right)-\frac{1}{4} \mathcal{G}\left(v_{213}, 1,1, \frac{1}{1-u_{2}} ; 1\right)-\frac{1}{4} \mathcal{G}\left(v_{213}, 1, \frac{1}{1-u_{2}}, 1 ; 1\right)-\)
\(\frac{1}{4} \mathcal{G}\left(v_{213}, \frac{1}{1-u_{2}}, 1,1 ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{231}, 0,1, \frac{1}{1-u_{2}} ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{231}, 0, \frac{1}{1-u_{2}}, 1 ; 1\right)+\)
\(\frac{1}{2} \mathcal{G}\left(v_{231}, 1,0, \frac{1}{1-u_{2}} ; 1\right)-\frac{5}{4} \mathcal{G}\left(v_{231}, 1,1, \frac{1}{1-u_{2}} ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{231}, 1, \frac{1}{1-u_{2}}, 0 ; 1\right)-\)
\(\frac{5}{4} \mathcal{G}\left(v_{231}, 1, \frac{1}{1-u_{2}}, 1 ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{231}, 1, \frac{1}{1-u_{2}}, \frac{1}{1-u_{2}} ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{231}, \frac{1}{1-u_{2}}, 0,1 ; 1\right)+\)
\(\frac{1}{2} \mathcal{G}\left(v_{231}, \frac{1}{1-u_{2}}, 1,0 ; 1\right)-\frac{5}{4} \mathcal{G}\left(v_{231}, \frac{1}{1-u_{2}}, 1,1 ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{231}, \frac{1}{1-u_{2}}, 1, \frac{1}{1-u_{2}} ; 1\right)+\)
\(\frac{1}{2} \mathcal{G}\left(v_{231}, \frac{1}{1-u_{2}}, \frac{1}{1-u_{2}}, 1 ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{312}, 0,1, \frac{1}{1-u_{3}} ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{312}, 0, \frac{1}{1-u_{3}}, 1 ; 1\right)+\)
\(\frac{1}{2} \mathcal{G}\left(v_{312}, 1,0, \frac{1}{1-u_{3}} ; 1\right)-\frac{5}{4} \mathcal{G}\left(v_{312}, 1,1, \frac{1}{1-u_{3}} ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{312}, 1, \frac{1}{1-u_{3}}, 0 ; 1\right)-\)
\(\frac{5}{4} \mathcal{G}\left(v_{312}, 1, \frac{1}{1-u_{3}}, 1 ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{312}, 1, \frac{1}{1-u_{3}}, \frac{1}{1-u_{3}} ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{312}, \frac{1}{1-u_{3}}, 0,1 ; 1\right)+\)
\(\frac{1}{2} \mathcal{G}\left(v_{312}, \frac{1}{1-u_{3}}, 1,0 ; 1\right)-\frac{5}{4} \mathcal{G}\left(v_{312}, \frac{1}{1-u_{3}}, 1,1 ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{312}, \frac{1}{1-u_{3}}, 1, \frac{1}{1-u_{3}} ; 1\right)+\)
\(\frac{1}{2} \mathcal{G}\left(v_{312}, \frac{1}{1-u_{3}}, \frac{1}{1-u_{3}}, 1 ; 1\right)-\frac{1}{4} \mathcal{G}\left(v_{321}, 1,1, \frac{1}{1-u_{3}} ; 1\right)-\frac{1}{4} \mathcal{G}\left(v_{321}, 1, \frac{1}{1-u_{3}}, 1 ; 1\right)-\)
\(\frac{1}{4} \mathcal{G}\left(v_{321}, \frac{1}{1-u_{3}}, 1,1 ; 1\right)-\frac{3}{4} G\left(0, \frac{1}{u_{1}}, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(0 ; u_{1}\right)-\)
\(\frac{3}{4} G\left(0, \frac{1}{u_{1}}, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(0 ; u_{1}\right)-\frac{1}{4} G\left(0, \frac{1}{u_{2}}, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(0 ; u_{1}\right)-\)
\(\frac{1}{4} G\left(0, \frac{1}{u_{3}}, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(0 ; u_{1}\right)-\frac{1}{4} G\left(0, \frac{u_{1}-1}{u_{1}+u_{3}-1}, \frac{1}{1-u_{3}} ; 1\right) H\left(0 ; u_{1}\right)+\)
\(\frac{1}{4} G\left(0, \frac{u_{3}-1}{u_{2}+u_{3}-1}, \frac{1}{1-u_{2}} ; 1\right) H\left(0 ; u_{1}\right)-\frac{3}{4} G\left(\frac{1}{u_{1}}, 0, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(0 ; u_{1}\right)-\)
\(\frac{3}{4} G\left(\frac{1}{u_{1}}, 0, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(0 ; u_{1}\right)+\frac{1}{2} G\left(\frac{1}{u_{1}}, \frac{1}{u_{1}}, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(0 ; u_{1}\right)+\)
\(\frac{1}{2} G\left(\frac{1}{u_{1}}, \frac{1}{u_{1}}, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(0 ; u_{1}\right)+\frac{1}{4} G\left(\frac{1}{u_{1}}, \frac{1}{u_{2}}, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(0 ; u_{1}\right)+\)
\(\frac{1}{4} G\left(\frac{1}{u_{1}}, \frac{1}{u_{3}}, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(0 ; u_{1}\right)-\frac{1}{4} G\left(\frac{1}{1-u_{2}}, 1, \frac{1}{u_{1}} ; 1\right) H\left(0 ; u_{1}\right)+\)
\(\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{3}}, v_{321}, \frac{1}{1-u_{3}}, 1 ; 1\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, v_{321}, \frac{1}{1-u_{3}}, \frac{1}{1-u_{3}} ; 1\right)+\)
\(\frac{1}{2} \mathcal{G}\left(v_{123}, 0,1, \frac{1}{1-u_{1}} ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{123}, 0, \frac{1}{1-u_{1}}, 1 ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{123}, 1,0, \frac{1}{1-u_{1}} ; 1\right)-\)
\(\frac{5}{4} \mathcal{G}\left(v_{123}, 1,1, \frac{1}{1-u_{1}} ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{123}, 1, \frac{1}{1-u_{1}}, 0 ; 1\right)-\frac{5}{4} \mathcal{G}\left(v_{123}, 1, \frac{1}{1-u_{1}}, 1 ; 1\right)+\)
\(\frac{1}{2} \mathcal{G}\left(v_{123}, 1, \frac{1}{1-u_{1}}, \frac{1}{1-u_{1}} ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{123}, \frac{1}{1-u_{1}}, 0,1 ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{123}, \frac{1}{1-u_{1}}, 1,0 ; 1\right)-\)
\(\frac{5}{4} \mathcal{G}\left(v_{123}, \frac{1}{1-u_{1}}, 1,1 ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{123}, \frac{1}{1-u_{1}}, 1, \frac{1}{1-u_{1}} ; 1\right)+\)
\(\frac{1}{2} \mathcal{G}\left(v_{123}, \frac{1}{1-u_{1}}, \frac{1}{1-u_{1}}, 1 ; 1\right)-\frac{1}{4} \mathcal{G}\left(v_{132}, 1,1, \frac{1}{1-u_{1}} ; 1\right)-\frac{1}{4} \mathcal{G}\left(v_{132}, 1, \frac{1}{1-u_{1}}, 1 ; 1\right)-\)
\(\frac{1}{4} \mathcal{G}\left(v_{132}, \frac{1}{1-u_{1}}, 1,1 ; 1\right)-\frac{1}{4} \mathcal{G}\left(v_{213}, 1,1, \frac{1}{1-u_{2}} ; 1\right)-\frac{1}{4} \mathcal{G}\left(v_{213}, 1, \frac{1}{1-u_{2}}, 1 ; 1\right)-\)
\(\frac{1}{4} \mathcal{G}\left(v_{213}, \frac{1}{1-u_{2}}, 1,1 ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{231}, 0,1, \frac{1}{1-u_{2}} ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{231}, 0, \frac{1}{1-u_{2}}, 1 ; 1\right)+\)
\(\frac{1}{2} \mathcal{G}\left(v_{231}, 1,0, \frac{1}{1-u_{2}} ; 1\right)-\frac{5}{4} \mathcal{G}\left(v_{231}, 1,1, \frac{1}{1-u_{2}} ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{231}, 1, \frac{1}{1-u_{2}}, 0 ; 1\right)-\)
\(\frac{5}{4} \mathcal{G}\left(v_{231}, 1, \frac{1}{1-u_{2}}, 1 ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{231}, 1, \frac{1}{1-u_{2}}, \frac{1}{1-u_{2}} ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{231}, \frac{1}{1-u_{2}}, 0,1 ; 1\right)+\)
\(\frac{1}{2} \mathcal{G}\left(v_{231}, \frac{1}{1-u_{2}}, 1,0 ; 1\right)-\frac{5}{4} \mathcal{G}\left(v_{231}, \frac{1}{1-u_{2}}, 1,1 ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{231}, \frac{1}{1-u_{2}}, 1, \frac{1}{1-u_{2}} ; 1\right)+\)
\(\frac{1}{2} \mathcal{G}\left(v_{231}, \frac{1}{1-u_{2}}, \frac{1}{1-u_{2}}, 1 ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{312}, 0,1, \frac{1}{1-u_{3}} ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{312}, 0, \frac{1}{1-u_{3}}, 1 ; 1\right)+\)
\(\frac{1}{2} \mathcal{G}\left(v_{312}, 1,0, \frac{1}{1-u_{3}} ; 1\right)-\frac{5}{4} \mathcal{G}\left(v_{312}, 1,1, \frac{1}{1-u_{3}} ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{312}, 1, \frac{1}{1-u_{3}}, 0 ; 1\right)-\)
\(\frac{5}{4} \mathcal{G}\left(v_{312}, 1, \frac{1}{1-u_{3}}, 1 ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{312}, 1, \frac{1}{1-u_{3}}, \frac{1}{1-u_{3}} ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{312}, \frac{1}{1-u_{3}}, 0,1 ; 1\right)+\)
\(\frac{1}{2} \mathcal{G}\left(v_{312}, \frac{1}{1-u_{3}}, 1,0 ; 1\right)-\frac{5}{4} \mathcal{G}\left(v_{312}, \frac{1}{1-u_{3}}, 1,1 ; 1\right)+\frac{1}{2} \mathcal{G}\left(v_{312}, \frac{1}{1-u_{3}}, 1, \frac{1}{1-u_{3}} ; 1\right)+\)
\(\frac{1}{2} \mathcal{G}\left(v_{312}, \frac{1}{1-u_{3}}, \frac{1}{1-u_{3}}, 1 ; 1\right)-\frac{1}{4} \mathcal{G}\left(v_{321}, 1,1, \frac{1}{1-u_{3}} ; 1\right)-\frac{1}{4} \mathcal{G}\left(v_{321}, 1, \frac{1}{1-u_{3}}, 1 ; 1\right)-\)
\(\frac{1}{4} \mathcal{G}\left(v_{321}, \frac{1}{1-u_{3}}, 1,1 ; 1\right)-\frac{3}{4} G\left(0, \frac{1}{u_{1}}, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(0 ; u_{1}\right)-\)
\(\frac{3}{4} G\left(0, \frac{1}{u_{1}}, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(0 ; u_{1}\right)-\frac{1}{4} G\left(0, \frac{1}{u_{2}}, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(0 ; u_{1}\right)-\)
\(\frac{1}{4} G\left(0, \frac{1}{u_{3}}, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(0 ; u_{1}\right)-\frac{1}{4} G\left(0, \frac{u_{1}-1}{u_{1}+u_{3}-1}, \frac{1}{1-u_{3}} ; 1\right) H\left(0 ; u_{1}\right)+\)
\(\frac{1}{4} G\left(0, \frac{u_{3}-1}{u_{2}+u_{3}-1}, \frac{1}{1-u_{2}} ; 1\right) H\left(0 ; u_{1}\right)-\frac{3}{4} G\left(\frac{1}{u_{1}}, 0, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(0 ; u_{1}\right)-\)
\(\frac{3}{4} G\left(\frac{1}{u_{1}}, 0, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(0 ; u_{1}\right)+\frac{1}{2} G\left(\frac{1}{u_{1}}, \frac{1}{u_{1}}, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(0 ; u_{1}\right)+\)
\(\frac{1}{2} G\left(\frac{1}{u_{1}}, \frac{1}{u_{1}}, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(0 ; u_{1}\right)+\frac{1}{4} G\left(\frac{1}{u_{1}}, \frac{1}{u_{2}}, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(0 ; u_{1}\right)+\)
\(\frac{1}{4} G\left(\frac{1}{u_{1}}, \frac{1}{u_{3}}, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(0 ; u_{1}\right)-\frac{1}{4} G\left(\frac{1}{1-u_{2}}, 1, \frac{1}{u_{1}} ; 1\right) H\left(0 ; u_{1}\right)+\)
```

$\frac{1}{4} G\left(\frac{1}{1-u_{2}}, \frac{u_{3}-1}{u_{2}+u_{3}-1}, 1 ; 1\right) H\left(0 ; u_{1}\right)-$
$\frac{1}{4} G\left(\frac{1}{1-u_{2}}, \frac{u_{3}-1}{u_{2}+u_{3}-1}, \frac{1}{1-u_{2}} ; 1\right) H\left(0 ; u_{1}\right)+\frac{1}{2} G\left(\frac{1}{u_{2}}, 0, \frac{1}{u_{1}} ; 1\right) H\left(0 ; u_{1}\right)-$
$\frac{1}{4} G\left(\frac{1}{u_{2}}, 0, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(0 ; u_{1}\right)+\frac{1}{4} G\left(\frac{1}{u_{2}}, \frac{1}{u_{1}}, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(0 ; u_{1}\right)+$
$\frac{1}{4} G\left(\frac{1}{1-u_{3}}, \frac{u_{1}-1}{u_{1}+u_{3}-1}, 0 ; 1\right) H\left(0 ; u_{1}\right)+\frac{1}{4} G\left(\frac{1}{1-u_{3}}, \frac{u_{1}-1}{u_{1}+u_{3}-1}, \frac{1}{1-u_{3}} ; 1\right) H\left(0 ; u_{1}\right)-$
$\frac{1}{4} G\left(\frac{1}{1-u_{3}}, \frac{u_{1}-1}{u_{1}+u_{3}-1}, \frac{u_{1}-1}{u_{1}+u_{3}-1} ; 1\right) H\left(0 ; u_{1}\right)+\frac{1}{2} G\left(\frac{1}{u_{3}}, 0, \frac{1}{u_{1}} ; 1\right) H\left(0 ; u_{1}\right)-$
$\frac{1}{4} G\left(\frac{1}{u_{3}}, 0, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(0 ; u_{1}\right)+\frac{1}{4} G\left(\frac{1}{u_{3}}, \frac{1}{u_{1}}, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(0 ; u_{1}\right)+$
$\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{1}}, v_{123} ; 1\right) H\left(0 ; u_{1}\right)+\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{1}}, v_{132} ; 1\right) H\left(0 ; u_{1}\right)+$
$\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{2}}, v_{213} ; 1\right) H\left(0 ; u_{1}\right)-\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{2}}, v_{23} ; 1\right) H\left(0 ; u_{1}\right)+$
$\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{3}}, v_{312} ; 1\right) H\left(0 ; u_{1}\right)-\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{3}}, v_{32} ; 1\right) H\left(0 ; u_{1}\right)-$
$\frac{1}{4} \mathcal{G}\left(0, u_{231}, \frac{1}{u_{1}} ; 1\right) H\left(0 ; u_{1}\right)-\frac{1}{4} \mathcal{G}\left(0, u_{231}, \frac{1}{1-u_{2}} ; 1\right) H\left(0 ; u_{1}\right)+$
$\frac{1}{4} \mathcal{G}\left(0, u_{312}, \frac{1}{1-u_{3}} ; 1\right) H\left(0 ; u_{1}\right)-\frac{1}{4} \mathcal{G}\left(0, u_{312}, \frac{u_{1}-1}{u_{1}+u_{3}-1} ; 1\right) H\left(0 ; u_{1}\right)+$
$\frac{1}{4} \mathcal{G}\left(0, v_{123}, \frac{1}{1-u_{1}} ; 1\right) H\left(0 ; u_{1}\right)+\frac{1}{4} \mathcal{G}\left(0, v_{132}, \frac{1}{1-u_{1}} ; 1\right) H\left(0 ; u_{1}\right)-$
$\frac{1}{2} \mathcal{G}\left(0, v_{231}, \frac{1}{1-u_{2}} ; 1\right) H\left(0 ; u_{1}\right)+\frac{1}{2} \mathcal{G}\left(0, v_{312}, \frac{1}{1-u_{3}} ; 1\right) H\left(0 ; u_{1}\right)+$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, 0, v_{123} ; 1\right) H\left(0 ; u_{1}\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, 0, v_{132} ; 1\right) H\left(0 ; u_{1}\right)+$
$\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{1}}, \frac{1}{1-u_{1}}, v_{123} ; 1\right) H\left(0 ; u_{1}\right)+\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{1}}, \frac{1}{1-u_{1}}, v_{122} ; 1\right) H\left(0 ; u_{1}\right)+$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{123}, 1 ; 1\right) H\left(0 ; u_{1}\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{123}, \frac{1}{1-u_{1}} ; 1\right) H\left(0 ; u_{1}\right)+$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{132}, 1 ; 1\right) H\left(0 ; u_{1}\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{132}, \frac{1}{1-u_{1}} ; 1\right) H\left(0 ; u_{1}\right)+$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, 0, v_{213} ; 1\right) H\left(0 ; u_{1}\right)-\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, 0, v_{23} ; 1\right) H\left(0 ; u_{1}\right)+$
$\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{2}}, \frac{1}{1-u_{2}}, v_{213} ; 1\right) H\left(0 ; u_{1}\right)-\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{2}}, \frac{1}{1-u_{2}}, v_{231} ; 1\right) H\left(0 ; u_{1}\right)-$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, u_{231}, 1 ; 1\right) H\left(0 ; u_{1}\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, u_{231}, \frac{1}{u_{1}} ; 1\right) H\left(0 ; u_{1}\right)+$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, u_{231}, \frac{1}{1-u_{2}} ; 1\right) H\left(0 ; u_{1}\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, v_{213}, 0 ; 1\right) H\left(0 ; u_{1}\right)+$
$\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{2}}, v_{213}, \frac{1}{1-u_{2}} ; 1\right) H\left(0 ; u_{1}\right)-\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, v_{231}, 0 ; 1\right) H\left(0 ; u_{1}\right)-$
$\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{2}}, v_{231}, \frac{1}{1-u_{2}} ; 1\right) H\left(0 ; u_{1}\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, 0, v_{312} ; 1\right) H\left(0 ; u_{1}\right)-$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, 0, v_{321} ; 1\right) H\left(0 ; u_{1}\right)+\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{3}}, \frac{1}{1-u_{3}}, v_{312} ; 1\right) H\left(0 ; u_{1}\right)-$ $\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{3}}, \frac{1}{1-u_{3}}, v_{321} ; 1\right) H\left(0 ; u_{1}\right)-\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, u_{312}, 0 ; 1\right) H\left(0 ; u_{1}\right)-$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, u_{312}, \frac{1}{1-u_{3}} ; 1\right) H\left(0 ; u_{1}\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, u_{312}, \frac{u_{1}-1}{u_{1}+u_{3}-1} ; 1\right) H\left(0 ; u_{1}\right)+$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, v_{312}, 0 ; 1\right) H\left(0 ; u_{1}\right)+\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{3}}, v_{312}, \frac{1}{1-u_{3}} ; 1\right) H\left(0 ; u_{1}\right)-$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, v_{321}, 0 ; 1\right) H\left(0 ; u_{1}\right)-\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{3}}, v_{321}, \frac{1}{1-u_{3}} ; 1\right) H\left(0 ; u_{1}\right)+$
$\frac{1}{4} \mathcal{G}\left(v_{123}, 1, \frac{1}{1-u_{1}} ; 1\right) H\left(0 ; u_{1}\right)+\frac{1}{4} \mathcal{G}\left(v_{123}, \frac{1}{1-u_{1}}, 1 ; 1\right) H\left(0 ; u_{1}\right)+$
$\frac{1}{4} \mathcal{G}\left(v_{132}, 1, \frac{1}{1-u_{1}} ; 1\right) H\left(0 ; u_{1}\right)+\frac{1}{4} \mathcal{G}\left(v_{132}, \frac{1}{1-u_{1}}, 1 ; 1\right) H\left(0 ; u_{1}\right)+$
$\frac{1}{4} \mathcal{G}\left(v_{213}, 1, \frac{1}{1-u_{2}} ; 1\right) H\left(0 ; u_{1}\right)+\frac{1}{4} \mathcal{G}\left(v_{213}, \frac{1}{1-u_{2}}, 1 ; 1\right) H\left(0 ; u_{1}\right)-$
$\frac{3}{4} \mathcal{G}\left(v_{231}, 1, \frac{1}{1-u_{2}} ; 1\right) H\left(0 ; u_{1}\right)-\frac{3}{4} \mathcal{G}\left(v_{231}, \frac{1}{1-u_{2}}, 1 ; 1\right) H\left(0 ; u_{1}\right)+$
$\frac{3}{4} \mathcal{G}\left(v_{312}, 1, \frac{1}{1-u_{3}} ; 1\right) H\left(0 ; u_{1}\right)+\frac{3}{4} \mathcal{G}\left(v_{312}, \frac{1}{1-u_{3}}, 1 ; 1\right) H\left(0 ; u_{1}\right)-$
$\frac{1}{4} \mathcal{G}\left(v_{321}, 1, \frac{1}{1-u_{3}} ; 1\right) H\left(0 ; u_{1}\right)-\frac{1}{4} \mathcal{G}\left(v_{321}, \frac{1}{1-u_{3}}, 1 ; 1\right) H\left(0 ; u_{1}\right)-$
$\frac{1}{4} G\left(0, \frac{1}{u_{1}}, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(0 ; u_{2}\right)-\frac{3}{4} G\left(0, \frac{1}{u_{2}}, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(0 ; u_{2}\right)-$
$\frac{3}{4} G\left(0, \frac{1}{u_{2}}, \frac{1}{u_{2}+u_{3}} ; 1\right) H\left(0 ; u_{2}\right)-\frac{1}{4} G\left(0, \frac{u_{2}-1}{u_{1}+u_{2}-1}, \frac{1}{1-u_{1}} ; 1\right) H\left(0 ; u_{2}\right)-$
$\frac{1}{4} G\left(0, \frac{1}{u_{3}}, \frac{1}{u_{2}+u_{3}} ; 1\right) H\left(0 ; u_{2}\right)+\frac{1}{4} G\left(0, \frac{u_{1}-1}{u_{1}+u_{3}-1}, \frac{1}{1-u_{3}} ; 1\right) H\left(0 ; u_{2}\right)+$
$\frac{1}{4} G\left(\frac{1}{1-u_{1}}, \frac{u_{2}-1}{u_{1}+u_{2}-1}, 0 ; 1\right) H\left(0 ; u_{2}\right)+\frac{1}{4} G\left(\frac{1}{1-u_{1}}, \frac{u_{2}-1}{u_{1}+u_{2}-1}, \frac{1}{1-u_{1}} ; 1\right) H\left(0 ; u_{2}\right)-$
$\frac{1}{4} G\left(\frac{1}{1-u_{1}}, \frac{u_{2}-1}{u_{1}+u_{2}-1}, \frac{u_{2}-1}{u_{1}+u_{2}-1} ; 1\right) H\left(0 ; u_{2}\right)+\frac{1}{2} G\left(\frac{1}{u_{1}}, 0, \frac{1}{u_{2}} ; 1\right) H\left(0 ; u_{2}\right)-$
$\frac{1}{4} G\left(\frac{1}{u_{1}}, 0, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(0 ; u_{2}\right)+\frac{1}{4} G\left(\frac{1}{u_{1}}, \frac{1}{u_{2}}, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(0 ; u_{2}\right)-$
$\frac{3}{4} G\left(\frac{1}{u_{2}}, 0, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(0 ; u_{2}\right)-\frac{3}{4} G\left(\frac{1}{u_{2}}, 0, \frac{1}{u_{2}+u_{3}} ; 1\right) H\left(0 ; u_{2}\right)+$
$\frac{1}{4} G\left(\frac{1}{u_{2}}, \frac{1}{u_{1}}, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(0 ; u_{2}\right)+\frac{1}{2} G\left(\frac{1}{u_{2}}, \frac{1}{u_{2}}, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(0 ; u_{2}\right)+$
$\frac{1}{2} G\left(\frac{1}{u_{2}}, \frac{1}{u_{2}}, \frac{1}{u_{2}+u_{3}} ; 1\right) H\left(0 ; u_{2}\right)+\frac{1}{4} G\left(\frac{1}{u_{2}}, \frac{1}{u_{3}}, \frac{1}{u_{2}+u_{3}} ; 1\right) H\left(0 ; u_{2}\right)-$
$\frac{1}{4} G\left(\frac{1}{1-u_{3}}, 1, \frac{1}{u_{2}} ; 1\right) H\left(0 ; u_{2}\right)+\frac{1}{4} G\left(\frac{1}{1-u_{3}}, \frac{u_{1}-1}{u_{1}+u_{3}-1}, 1 ; 1\right) H\left(0 ; u_{2}\right)-$
$\frac{1}{4} G\left(\frac{1}{1-u_{3}}, \frac{u_{1}-1}{u_{1}+u_{3}-1}, \frac{1}{1-u_{3}} ; 1\right) H\left(0 ; u_{2}\right)+\frac{1}{2} G\left(\frac{1}{u_{3}}, 0, \frac{1}{u_{2}} ; 1\right) H\left(0 ; u_{2}\right)-$
$\frac{1}{4} G\left(\frac{1}{u_{3}}, 0, \frac{1}{u_{2}+u_{3}} ; 1\right) H\left(0 ; u_{2}\right)+\frac{1}{4} G\left(\frac{1}{u_{3}}, \frac{1}{u_{2}}, \frac{1}{u_{2}+u_{3}} ; 1\right) H\left(0 ; u_{2}\right)+$
$\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{1}}, v_{123} ; 1\right) H\left(0 ; u_{2}\right)-\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{1}}, v_{132} ; 1\right) H\left(0 ; u_{2}\right)+$ $\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{2}}, v_{213} ; 1\right) H\left(0 ; u_{2}\right)+\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{2}}, v_{231} ; 1\right) H\left(0 ; u_{2}\right)-$ $\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{3}}, v_{312} ; 1\right) H\left(0 ; u_{2}\right)+\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{3}}, v_{321} ; 1\right) H\left(0 ; u_{2}\right)+$ $\frac{1}{4} \mathcal{G}\left(0, u_{123}, \frac{1}{1-u_{1}} ; 1\right) H\left(0 ; u_{2}\right)-\frac{1}{4} \mathcal{G}\left(0, u_{123}, \frac{u_{2}-1}{u_{1}+u_{2}-1} ; 1\right) H\left(0 ; u_{2}\right)-$ $\frac{1}{4} \mathcal{G}\left(0, u_{312}, \frac{1}{u_{2}} ; 1\right) H\left(0 ; u_{2}\right)-\frac{1}{4} \mathcal{G}\left(0, u_{312}, \frac{1}{1-u_{3}} ; 1\right) H\left(0 ; u_{2}\right)+$ $\frac{1}{2} \mathcal{G}\left(0, v_{123}, \frac{1}{1-u_{1}} ; 1\right) H\left(0 ; u_{2}\right)+\frac{1}{4} \mathcal{G}\left(0, v_{213}, \frac{1}{1-u_{2}} ; 1\right) H\left(0 ; u_{2}\right)+$ $\frac{1}{4} \mathcal{G}\left(0, v_{231}, \frac{1}{1-u_{2}} ; 1\right) H\left(0 ; u_{2}\right)-\frac{1}{2} \mathcal{G}\left(0, v_{312}, \frac{1}{1-u_{3}} ; 1\right) H\left(0 ; u_{2}\right)+$ $\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, 0, v_{123} ; 1\right) H\left(0 ; u_{2}\right)-\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, 0, v_{132} ; 1\right) H\left(0 ; u_{2}\right)+$ $\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{1}}, \frac{1}{1-u_{1}}, v_{123} ; 1\right) H\left(0 ; u_{2}\right)-\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{1}}, \frac{1}{1-u_{1}}, v_{132} ; 1\right) H\left(0 ; u_{2}\right)-$ $\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, u_{123}, 0 ; 1\right) H\left(0 ; u_{2}\right)-\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, u_{123}, \frac{1}{1-u_{1}} ; 1\right) H\left(0 ; u_{2}\right)+$ $\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, u_{123}, \frac{u_{2}-1}{u_{1}+u_{2}-1} ; 1\right) H\left(0 ; u_{2}\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{123}, 0 ; 1\right) H\left(0 ; u_{2}\right)+$ $\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{123}, \frac{1}{1-u_{1}} ; 1\right) H\left(0 ; u_{2}\right)-\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{132}, 0 ; 1\right) H\left(0 ; u_{2}\right)-$ $\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{132}, \frac{1}{1-u_{1}} ; 1\right) H\left(0 ; u_{2}\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, 0, v_{213} ; 1\right) H\left(0 ; u_{2}\right)+$ $\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, 0, v_{231} ; 1\right) H\left(0 ; u_{2}\right)+\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{2}}, \frac{1}{1-u_{2}}, v_{213} ; 1\right) H\left(0 ; u_{2}\right)+$ $\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{2}}, \frac{1}{1-u_{2}}, v_{231} ; 1\right) H\left(0 ; u_{2}\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, v_{213}, 1 ; 1\right) H\left(0 ; u_{2}\right)+$ $\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, v_{213}, \frac{1}{1-u_{2}} ; 1\right) H\left(0 ; u_{2}\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, v_{231}, 1 ; 1\right) H\left(0 ; u_{2}\right)+$ $\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, v_{231}, \frac{1}{1-u_{2}} ; 1\right) H\left(0 ; u_{2}\right)-\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, 0, v_{312} ; 1\right) H\left(0 ; u_{2}\right)+$ $\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, 0, v_{321} ; 1\right) H\left(0 ; u_{2}\right)-\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{3}}, \frac{1}{1-u_{3}}, v_{312} ; 1\right) H\left(0 ; u_{2}\right)+$ $\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{3}}, \frac{1}{1-u_{3}}, v_{321} ; 1\right) H\left(0 ; u_{2}\right)-\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, u_{312}, 1 ; 1\right) H\left(0 ; u_{2}\right)+$ $\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, u_{312}, \frac{1}{u_{2}} ; 1\right) H\left(0 ; u_{2}\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, u_{312}, \frac{1}{1-u_{3}} ; 1\right) H\left(0 ; u_{2}\right)-$ $\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, v_{312}, 0 ; 1\right) H\left(0 ; u_{2}\right)-\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{3}}, v_{312}, \frac{1}{1-u_{3}} ; 1\right) H\left(0 ; u_{2}\right)+$ $\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, v_{321}, 0 ; 1\right) H\left(0 ; u_{2}\right)+\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{3}}, v_{321}, \frac{1}{1-u_{3}} ; 1\right) H\left(0 ; u_{2}\right)+$ $\frac{3}{4} \mathcal{G}\left(v_{123}, 1, \frac{1}{1-u_{1}} ; 1\right) H\left(0 ; u_{2}\right)+\frac{3}{4} \mathcal{G}\left(v_{123}, \frac{1}{1-u_{1}}, 1 ; 1\right) H\left(0 ; u_{2}\right)-$

```
\(\frac{1}{4} \mathcal{G}\left(v_{132}, 1, \frac{1}{1-u_{1}} ; 1\right) H\left(0 ; u_{2}\right)-\frac{1}{4} \mathcal{G}\left(v_{132}, \frac{1}{1-u_{1}}, 1 ; 1\right) H\left(0 ; u_{2}\right)+\)
\(\frac{1}{4} \mathcal{G}\left(v_{213}, 1, \frac{1}{1-u_{2}} ; 1\right) H\left(0 ; u_{2}\right)+\frac{1}{4} \mathcal{G}\left(v_{213}, \frac{1}{1-u_{2}}, 1 ; 1\right) H\left(0 ; u_{2}\right)+\)
\(\frac{1}{4} \mathcal{G}\left(v_{231}, 1, \frac{1}{1-u_{2}} ; 1\right) H\left(0 ; u_{2}\right)+\frac{1}{4} \mathcal{G}\left(v_{231}, \frac{1}{1-u_{2}}, 1 ; 1\right) H\left(0 ; u_{2}\right)-\)
\(\frac{3}{4} \mathcal{G}\left(v_{312}, 1, \frac{1}{1-u_{3}} ; 1\right) H\left(0 ; u_{2}\right)-\frac{3}{4} \mathcal{G}\left(v_{312}, \frac{1}{1-u_{3}}, 1 ; 1\right) H\left(0 ; u_{2}\right)+\)
\(\frac{1}{4} \mathcal{G}\left(v_{321}, 1, \frac{1}{1-u_{3}} ; 1\right) H\left(0 ; u_{2}\right)+\frac{1}{4} \mathcal{G}\left(v_{321}, \frac{1}{1-u_{3}}, 1 ; 1\right) H\left(0 ; u_{2}\right)+\)
\(\frac{1}{4} G\left(\frac{1}{u_{1}}, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(0 ; u_{1}\right) H\left(0 ; u_{2}\right)+\frac{1}{4} G\left(\frac{1}{u_{2}}, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(0 ; u_{1}\right) H\left(0 ; u_{2}\right)+\)
\(\frac{1}{4} G\left(\frac{1}{1-u_{3}}, \frac{u_{1}-1}{u_{1}+u_{3}-1} ; 1\right) H\left(0 ; u_{1}\right) H\left(0 ; u_{2}\right)-\)
\(\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, u_{312} ; 1\right) H\left(0 ; u_{1}\right) H\left(0 ; u_{2}\right)-\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, v_{312} ; 1\right) H\left(0 ; u_{1}\right) H\left(0 ; u_{2}\right)-\)
\(\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, v_{321} ; 1\right) H\left(0 ; u_{1}\right) H\left(0 ; u_{2}\right)+\frac{5}{24} \pi^{2} H\left(0 ; u_{1}\right) H\left(0 ; u_{2}\right)-\)
\(\frac{1}{4} G\left(0, \frac{1}{u_{1}}, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(0 ; u_{3}\right)-\frac{1}{4} G\left(0, \frac{1}{u_{2}}, \frac{1}{u_{2}+u_{3}} ; 1\right) H\left(0 ; u_{3}\right)+\)
\(\frac{1}{4} G\left(0, \frac{u_{2}-1}{u_{1}+u_{2}-1}, \frac{1}{1-u_{1}} ; 1\right) H\left(0 ; u_{3}\right)-\frac{3}{4} G\left(0, \frac{1}{u_{3}}, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(0 ; u_{3}\right)-\)
\(\frac{3}{4} G\left(0, \frac{1}{u_{3}}, \frac{1}{u_{2}+u_{3}} ; 1\right) H\left(0 ; u_{3}\right)-\frac{1}{4} G\left(0, \frac{u_{3}-1}{u_{2}+u_{3}-1}, \frac{1}{1-u_{2}} ; 1\right) H\left(0 ; u_{3}\right)-\)
\(\frac{1}{4} G\left(\frac{1}{1-u_{1}}, 1, \frac{1}{u_{3}} ; 1\right) H\left(0 ; u_{3}\right)+\frac{1}{4} G\left(\frac{1}{1-u_{1}}, \frac{u_{2}-1}{u_{1}+u_{2}-1}, 1 ; 1\right) H\left(0 ; u_{3}\right)-\)
\(\frac{1}{4} G\left(\frac{1}{1-u_{1}}, \frac{u_{2}-1}{u_{1}+u_{2}-1}, \frac{1}{1-u_{1}} ; 1\right) H\left(0 ; u_{3}\right)+\frac{1}{2} G\left(\frac{1}{u_{1}}, 0, \frac{1}{u_{3}} ; 1\right) H\left(0 ; u_{3}\right)-\)
\(\frac{1}{4} G\left(\frac{1}{u_{1}}, 0, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(0 ; u_{3}\right)+\frac{1}{4} G\left(\frac{1}{u_{1}}, \frac{1}{u_{3}}, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(0 ; u_{3}\right)+\)
\(\frac{1}{4} G\left(\frac{1}{1-u_{2}}, \frac{u_{3}-1}{u_{2}+u_{3}-1}, 0 ; 1\right) H\left(0 ; u_{3}\right)+\frac{1}{4} G\left(\frac{1}{1-u_{2}}, \frac{u_{3}-1}{u_{2}+u_{3}-1}, \frac{1}{1-u_{2}} ; 1\right) H\left(0 ; u_{3}\right)-\)
\(\frac{1}{4} G\left(\frac{1}{1-u_{2}}, \frac{u_{3}-1}{u_{2}+u_{3}-1}, \frac{u_{3}-1}{u_{2}+u_{3}-1} ; 1\right) H\left(0 ; u_{3}\right)+\frac{1}{2} G\left(\frac{1}{u_{2}}, 0, \frac{1}{u_{3}} ; 1\right) H\left(0 ; u_{3}\right)-\)
\(\frac{1}{4} G\left(\frac{1}{u_{2}}, 0, \frac{1}{u_{2}+u_{3}} ; 1\right) H\left(0 ; u_{3}\right)+\frac{1}{4} G\left(\frac{1}{u_{2}}, \frac{1}{u_{3}}, \frac{1}{u_{2}+u_{3}} ; 1\right) H\left(0 ; u_{3}\right)-\)
\(\frac{3}{4} G\left(\frac{1}{u_{3}}, 0, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(0 ; u_{3}\right)-\frac{3}{4} G\left(\frac{1}{u_{3}}, 0, \frac{1}{u_{2}+u_{3}} ; 1\right) H\left(0 ; u_{3}\right)+\)
\(\frac{1}{4} G\left(\frac{1}{u_{3}}, \frac{1}{u_{1}}, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(0 ; u_{3}\right)+\frac{1}{4} G\left(\frac{1}{u_{3}}, \frac{1}{u_{2}}, \frac{1}{u_{2}+u_{3}} ; 1\right) H\left(0 ; u_{3}\right)+\)
\(\frac{1}{2} G\left(\frac{1}{u_{3}}, \frac{1}{u_{3}}, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(0 ; u_{3}\right)+\frac{1}{2} G\left(\frac{1}{u_{3}}, \frac{1}{u_{3}}, \frac{1}{u_{2}+u_{3}} ; 1\right) H\left(0 ; u_{3}\right)-\)
\(\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{1}}, v_{123} ; 1\right) H\left(0 ; u_{3}\right)+\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{1}}, v_{132} ; 1\right) H\left(0 ; u_{3}\right)-\)
\(\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{2}}, v_{213} ; 1\right) H\left(0 ; u_{3}\right)+\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{2}}, v_{231} ; 1\right) H\left(0 ; u_{3}\right)+\)
```

$\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{3}}, v_{312} ; 1\right) H\left(0 ; u_{3}\right)+\frac{1}{4} \mathcal{G}\left(0, \frac{1}{1-u_{3}}, v_{321} ; 1\right) H\left(0 ; u_{3}\right)-$
$\frac{1}{4} \mathcal{G}\left(0, u_{123}, \frac{1}{1-u_{1}} ; 1\right) H\left(0 ; u_{3}\right)-\frac{1}{4} \mathcal{G}\left(0, u_{123}, \frac{1}{u_{3}} ; 1\right) H\left(0 ; u_{3}\right)+$
$\frac{1}{4} \mathcal{G}\left(0, u_{231}, \frac{1}{1-u_{2}} ; 1\right) H\left(0 ; u_{3}\right)-\frac{1}{4} \mathcal{G}\left(0, u_{231}, \frac{u_{3}-1}{u_{2}+u_{3}-1} ; 1\right) H\left(0 ; u_{3}\right)-$
$\frac{1}{2} \mathcal{G}\left(0, v_{123}, \frac{1}{1-u_{1}} ; 1\right) H\left(0 ; u_{3}\right)+\frac{1}{2} \mathcal{G}\left(0, v_{231}, \frac{1}{1-u_{2}} ; 1\right) H\left(0 ; u_{3}\right)+$
$\frac{1}{4} \mathcal{G}\left(0, v_{312}, \frac{1}{1-u_{3}} ; 1\right) H\left(0 ; u_{3}\right)+\frac{1}{4} \mathcal{G}\left(0, v_{321}, \frac{1}{1-u_{3}} ; 1\right) H\left(0 ; u_{3}\right)-$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, 0, v_{123} ; 1\right) H\left(0 ; u_{3}\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, 0, v_{132} ; 1\right) H\left(0 ; u_{3}\right)-$
$\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{1}}, \frac{1}{1-u_{1}}, v_{123} ; 1\right) H\left(0 ; u_{3}\right)+\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{1}}, \frac{1}{1-u_{1}}, v_{132} ; 1\right) H\left(0 ; u_{3}\right)-$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, u_{123}, 1 ; 1\right) H\left(0 ; u_{3}\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, u_{123}, \frac{1}{1-u_{1}} ; 1\right) H\left(0 ; u_{3}\right)+$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, u_{123}, \frac{1}{u_{3}} ; 1\right) H\left(0 ; u_{3}\right)-\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{123}, 0 ; 1\right) H\left(0 ; u_{3}\right)-$
$\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{123}, \frac{1}{1-u_{1}} ; 1\right) H\left(0 ; u_{3}\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{132}, 0 ; 1\right) H\left(0 ; u_{3}\right)+$
$\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{132}, \frac{1}{1-u_{1}} ; 1\right) H\left(0 ; u_{3}\right)-\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, 0, v_{213} ; 1\right) H\left(0 ; u_{3}\right)+$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, 0, v_{231} ; 1\right) H\left(0 ; u_{3}\right)-\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{2}}, \frac{1}{1-u_{2}}, v_{213} ; 1\right) H\left(0 ; u_{3}\right)+$
$\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{2}}, \frac{1}{1-u_{2}}, v_{231} ; 1\right) H\left(0 ; u_{3}\right)-\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, u_{231}, 0 ; 1\right) H\left(0 ; u_{3}\right)-$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, u_{231}, \frac{1}{1-u_{2}} ; 1\right) H\left(0 ; u_{3}\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, u_{231}, \frac{u_{3}-1}{u_{2}+u_{3}-1} ; 1\right) H\left(0 ; u_{3}\right)-$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, v_{213}, 0 ; 1\right) H\left(0 ; u_{3}\right)-\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{2}}, v_{213}, \frac{1}{1-u_{2}} ; 1\right) H\left(0 ; u_{3}\right)+$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, v_{231}, 0 ; 1\right) H\left(0 ; u_{3}\right)+\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{2}}, v_{231}, \frac{1}{1-u_{2}} ; 1\right) H\left(0 ; u_{3}\right)+$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, 0, v_{312} ; 1\right) H\left(0 ; u_{3}\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, 0, v_{321} ; 1\right) H\left(0 ; u_{3}\right)+$
$\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{3}}, \frac{1}{1-u_{3}}, v_{312} ; 1\right) H\left(0 ; u_{3}\right)+\frac{1}{2} \mathcal{G}\left(\frac{1}{1-u_{3}}, \frac{1}{1-u_{3}}, v_{321} ; 1\right) H\left(0 ; u_{3}\right)+$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, v_{312}, 1 ; 1\right) H\left(0 ; u_{3}\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, v_{312}, \frac{1}{1-u_{3}} ; 1\right) H\left(0 ; u_{3}\right)+$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, v_{321}, 1 ; 1\right) H\left(0 ; u_{3}\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, v_{321}, \frac{1}{1-u_{3}} ; 1\right) H\left(0 ; u_{3}\right)-$
$\frac{3}{4} \mathcal{G}\left(v_{123}, 1, \frac{1}{1-u_{1}} ; 1\right) H\left(0 ; u_{3}\right)-\frac{3}{4} \mathcal{G}\left(v_{123}, \frac{1}{1-u_{1}}, 1 ; 1\right) H\left(0 ; u_{3}\right)+$
$\frac{1}{4} \mathcal{G}\left(v_{132}, 1, \frac{1}{1-u_{1}} ; 1\right) H\left(0 ; u_{3}\right)+\frac{1}{4} \mathcal{G}\left(v_{132}, \frac{1}{1-u_{1}}, 1 ; 1\right) H\left(0 ; u_{3}\right)-$
$\frac{1}{4} \mathcal{G}\left(v_{213}, 1, \frac{1}{1-u_{2}} ; 1\right) H\left(0 ; u_{3}\right)-\frac{1}{4} \mathcal{G}\left(v_{213}, \frac{1}{1-u_{2}}, 1 ; 1\right) H\left(0 ; u_{3}\right)+$
$\frac{3}{4} \mathcal{G}\left(v_{231}, 1, \frac{1}{1-u_{2}} ; 1\right) H\left(0 ; u_{3}\right)+\frac{3}{4} \mathcal{G}\left(v_{231}, \frac{1}{1-u_{2}}, 1 ; 1\right) H\left(0 ; u_{3}\right)+$
$\frac{1}{4} \mathcal{G}\left(v_{312}, 1, \frac{1}{1-u_{3}} ; 1\right) H\left(0 ; u_{3}\right)+\frac{1}{4} \mathcal{G}\left(v_{312}, \frac{1}{1-u_{3}}, 1 ; 1\right) H\left(0 ; u_{3}\right)+$
$\frac{1}{4} \mathcal{G}\left(v_{321}, 1, \frac{1}{1-u_{3}} ; 1\right) H\left(0 ; u_{3}\right)+\frac{1}{4} \mathcal{G}\left(v_{321}, \frac{1}{1-u_{3}}, 1 ; 1\right) H\left(0 ; u_{3}\right)+$
$\frac{1}{4} G\left(\frac{1}{u_{1}}, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(0 ; u_{1}\right) H\left(0 ; u_{3}\right)+$
$\frac{1}{4} G\left(\frac{1}{1-u_{2}}, \frac{u_{3}-1}{u_{2}+u_{3}-1} ; 1\right) H\left(0 ; u_{1}\right) H\left(0 ; u_{3}\right)+$
$\frac{1}{4} G\left(\frac{1}{u_{3}}, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(0 ; u_{1}\right) H\left(0 ; u_{3}\right)-\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, u_{231} ; 1\right) H\left(0 ; u_{1}\right) H\left(0 ; u_{3}\right)-$ $\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, v_{213} ; 1\right) H\left(0 ; u_{1}\right) H\left(0 ; u_{3}\right)-\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, v_{231} ; 1\right) H\left(0 ; u_{1}\right) H\left(0 ; u_{3}\right)+$ $\frac{5}{24} \pi^{2} H\left(0 ; u_{1}\right) H\left(0 ; u_{3}\right)+\frac{1}{4} G\left(\frac{1}{1-u_{1}}, \frac{u_{2}-1}{u_{1}+u_{2}-1} ; 1\right) H\left(0 ; u_{2}\right) H\left(0 ; u_{3}\right)+$
$\frac{1}{4} G\left(\frac{1}{u_{2}}, \frac{1}{u_{2}+u_{3}} ; 1\right) H\left(0 ; u_{2}\right) H\left(0 ; u_{3}\right)+\frac{1}{4} G\left(\frac{1}{u_{3}}, \frac{1}{u_{2}+u_{3}} ; 1\right) H\left(0 ; u_{2}\right) H\left(0 ; u_{3}\right)-$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, u_{123} ; 1\right) H\left(0 ; u_{2}\right) H\left(0 ; u_{3}\right)-\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{123} ; 1\right) H\left(0 ; u_{2}\right) H\left(0 ; u_{3}\right)-$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{132} ; 1\right) H\left(0 ; u_{2}\right) H\left(0 ; u_{3}\right)+\frac{5}{24} \pi^{2} H\left(0 ; u_{2}\right) H\left(0 ; u_{3}\right)+$
$3 H\left(0 ; u_{2}\right) H\left(0,0 ; u_{1}\right) H\left(0 ; u_{3}\right)+3 H\left(0 ; u_{1}\right) H\left(0,0 ; u_{2}\right) H\left(0 ; u_{3}\right)+$
$\frac{1}{4} H\left(0 ; u_{2}\right) H\left(0,1 ; \frac{u_{1}+u_{2}-1}{u_{2}-1}\right) H\left(0 ; u_{3}\right)+\frac{1}{2} H\left(0 ; u_{1}\right) H\left(0,1 ;\left(u_{1}+u_{3}\right)\right) H\left(0 ; u_{3}\right)+$
$\frac{1}{4} H\left(0 ; u_{1}\right) H\left(0,1 ; \frac{u_{2}+u_{3}-1}{u_{3}-1}\right) H\left(0 ; u_{3}\right)+\frac{1}{2} H\left(0 ; u_{2}\right) H\left(0,1 ;\left(u_{2}+u_{3}\right)\right) H\left(0 ; u_{3}\right)+$
${ }_{4}^{3} H\left(0 ; u_{2}\right) H\left(1,0 ; u_{1}\right) H\left(0 ; u_{3}\right)+\frac{3}{4} H\left(0 ; u_{1}\right) H\left(1,0 ; u_{2}\right) H\left(0 ; u_{3}\right)+$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, v_{213} ; 1\right) H\left(0,0 ; u_{1}\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, v_{231} ; 1\right) H\left(0,0 ; u_{1}\right)+$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, v_{312} ; 1\right) H\left(0,0 ; u_{1}\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, v_{321} ; 1\right) H\left(0,0 ; u_{1}\right)-\frac{23}{24} \pi^{2} H\left(0,0 ; u_{1}\right)+$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{123} ; 1\right) H\left(0,0 ; u_{2}\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{132} ; 1\right) H\left(0,0 ; u_{2}\right)+$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, v_{312} ; 1\right) H\left(0,0 ; u_{2}\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, v_{32} ; 1\right) H\left(0,0 ; u_{2}\right)-$
$\frac{25}{4} H\left(0,0 ; u_{1}\right) H\left(0,0 ; u_{2}\right)-\frac{23}{24} \pi^{2} H\left(0,0 ; u_{2}\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{123} ; 1\right) H\left(0,0 ; u_{3}\right)+$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, v_{122} ; 1\right) H\left(0,0 ; u_{3}\right)+\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, v_{213} ; 1\right) H\left(0,0 ; u_{3}\right)+$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, v_{231} ; 1\right) H\left(0,0 ; u_{3}\right)+3 H\left(0 ; u_{1}\right) H\left(0 ; u_{2}\right) H\left(0,0 ; u_{3}\right)-$
$\frac{25}{4} H\left(0,0 ; u_{1}\right) H\left(0,0 ; u_{3}\right)-\frac{25}{4} H\left(0,0 ; u_{2}\right) H\left(0,0 ; u_{3}\right)-\frac{23}{24} \pi^{2} H\left(0,0 ; u_{3}\right)+\frac{1}{12} \pi^{2} H\left(0,1 ; u_{1}\right)+$
$\frac{1}{12} \pi^{2} H\left(0,1 ; u_{2}\right)-\frac{1}{24} \pi^{2} H\left(0,1 ; \frac{u_{1}+u_{2}-1}{u_{2}-1}\right)+\frac{1}{2} H\left(0 ; u_{1}\right) H\left(0 ; u_{2}\right) H\left(0,1 ;\left(u_{1}+u_{2}\right)\right)+$
$\frac{1}{12} \pi^{2} H\left(0,1 ;\left(u_{1}+u_{2}\right)\right)+\frac{1}{12} \pi^{2} H\left(0,1 ; u_{3}\right)+\frac{1}{4} H\left(0 ; u_{1}\right) H\left(0 ; u_{2}\right) H\left(0,1 ; \frac{u_{1}+u_{3}-1}{u_{1}-1}\right)-$
$\frac{1}{24} \pi^{2} H\left(0,1 ; \frac{u_{1}+u_{3}-1}{u_{1}-1}\right)+\frac{1}{12} \pi^{2} H\left(0,1 ;\left(u_{1}+u_{3}\right)\right)-\frac{1}{24} \pi^{2} H\left(0,1 ; \frac{u_{2}+u_{3}-1}{u_{3}-1}\right)+$
$\frac{1}{12} \pi^{2} H\left(0,1 ;\left(u_{2}+u_{3}\right)\right)-\frac{1}{2} G\left(0, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(1,0 ; u_{1}\right)-$
$\frac{1}{2} G\left(0, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(1,0 ; u_{1}\right)+\frac{1}{4} G\left(\frac{1}{u_{1}}, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(1,0 ; u_{1}\right)+$ $\frac{1}{4} G\left(\frac{1}{u_{1}}, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(1,0 ; u_{1}\right)+\frac{1}{4} G\left(\frac{1}{u_{2}}, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(1,0 ; u_{1}\right)+$ $\frac{1}{4} G\left(\frac{1}{1-u_{3}}, \frac{u_{1}-1}{u_{1}+u_{3}-1} ; 1\right) H\left(1,0 ; u_{1}\right)+\frac{1}{4} G\left(\frac{1}{u_{3}}, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(1,0 ; u_{1}\right)-$
$\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{3}}, u_{312} ; 1\right) H\left(1,0 ; u_{1}\right)-\frac{3}{4} H\left(0,0 ; u_{2}\right) H\left(1,0 ; u_{1}\right)-\frac{3}{4} H\left(0,0 ; u_{3}\right) H\left(1,0 ; u_{1}\right)+$ $\frac{1}{4} H\left(0,1 ; \frac{u_{1}+u_{3}-1}{u_{1}-1}\right) H\left(1,0 ; u_{1}\right)-\frac{1}{3} \pi^{2} H\left(1,0 ; u_{1}\right)-\frac{1}{2} G\left(0, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(1,0 ; u_{2}\right)-$ $\frac{1}{2} G\left(0, \frac{1}{u_{2}+u_{3}} ; 1\right) H\left(1,0 ; u_{2}\right)+\frac{1}{4} G\left(\frac{1}{1-u_{1}}, \frac{u_{2}-1}{u_{1}+u_{2}-1} ; 1\right) H\left(1,0 ; u_{2}\right)+$ $\frac{1}{4} G\left(\frac{1}{u_{1}}, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(1,0 ; u_{2}\right)+\frac{1}{4} G\left(\frac{1}{u_{2}}, \frac{1}{u_{1}+u_{2}} ; 1\right) H\left(1,0 ; u_{2}\right)+$ $\frac{1}{4} G\left(\frac{1}{u_{2}}, \frac{1}{u_{2}+u_{3}} ; 1\right) H\left(1,0 ; u_{2}\right)+\frac{1}{4} G\left(\frac{1}{u_{3}}, \frac{1}{u_{2}+u_{3}} ; 1\right) H\left(1,0 ; u_{2}\right)-$ $\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{1}}, u_{123} ; 1\right) H\left(1,0 ; u_{2}\right)-\frac{3}{4} H\left(0,0 ; u_{1}\right) H\left(1,0 ; u_{2}\right)-\frac{3}{4} H\left(0,0 ; u_{3}\right) H\left(1,0 ; u_{2}\right)+$ $\frac{1}{4} H\left(0,1 ; \frac{u_{1}+u_{2}-1}{u_{2}-1}\right) H\left(1,0 ; u_{2}\right)-\frac{1}{4} H\left(1,0 ; u_{1}\right) H\left(1,0 ; u_{2}\right)-\frac{1}{3} \pi^{2} H\left(1,0 ; u_{2}\right)-$ $\frac{1}{2} G\left(0, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(1,0 ; u_{3}\right)-\frac{1}{2} G\left(0, \frac{1}{u_{2}+u_{3}} ; 1\right) H\left(1,0 ; u_{3}\right)+$ $\frac{1}{4} G\left(\frac{1}{u_{1}}, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(1,0 ; u_{3}\right)+\frac{1}{4} G\left(\frac{1}{1-u_{2}}, \frac{u_{3}-1}{u_{2}+u_{3}-1} ; 1\right) H\left(1,0 ; u_{3}\right)+$ $\frac{1}{4} G\left(\frac{1}{u_{2}}, \frac{1}{u_{2}+u_{3}} ; 1\right) H\left(1,0 ; u_{3}\right)-\frac{1}{3} \pi^{2} H\left(1,0 ; u_{3}\right)+\frac{1}{4} G\left(\frac{1}{u_{3}}, \frac{1}{u_{1}+u_{3}} ; 1\right) H\left(1,0 ; u_{3}\right)+$ $\frac{1}{4} G\left(\frac{1}{u_{3}}, \frac{1}{u_{2}+u_{3}} ; 1\right) H\left(1,0 ; u_{3}\right)-\frac{1}{4} \mathcal{G}\left(\frac{1}{1-u_{2}}, u_{23} ; 1\right) H\left(1,0 ; u_{3}\right)+$
${ }_{4}^{3} H\left(0 ; u_{1}\right) H\left(0 ; u_{2}\right) H\left(1,0 ; u_{3}\right)-\frac{3}{4} H\left(0,0 ; u_{1}\right) H\left(1,0 ; u_{3}\right)-\frac{3}{4} H\left(0,0 ; u_{2}\right) H\left(1,0 ; u_{3}\right)+$ $\frac{1}{4} H\left(0,1 ; \frac{u_{2}+u_{3}-1}{u_{3}-1}\right) H\left(1,0 ; u_{3}\right)-\frac{1}{4} H\left(1,0 ; u_{1}\right) H\left(1,0 ; u_{3}\right)-\frac{1}{4} H\left(1,0 ; u_{2}\right) H\left(1,0 ; u_{3}\right)+$ $\frac{1}{24} \pi^{2} H\left(1,1 ; u_{1}\right)+\frac{1}{24} \pi^{2} H\left(1,1 ; u_{2}\right)+\frac{1}{24} \pi^{2} H\left(1,1 ; u_{3}\right)+\frac{1}{2} H\left(0 ; u_{2}\right) H\left(0,0,0 ; u_{1}\right)+$ $\frac{1}{2} H\left(0 ; u_{3}\right) H\left(0,0,0 ; u_{2}\right)+\frac{1}{2} H\left(0 ; u_{1}\right) H\left(0,0,0 ; u_{3}\right)-\frac{1}{2} H\left(0 ; u_{2}\right) H\left(0,0,1 ; \frac{u_{1}+u_{2}-1}{u_{2}-1}\right)-$ $\frac{1}{2} H\left(0 ; u_{3}\right) H\left(0,0,1 ; \frac{u_{1}+u_{2}-1}{u_{2}-1}\right)-H\left(0 ; u_{1}\right) H\left(0,0,1 ;\left(u_{1}+u_{2}\right)\right)-$ $H\left(0 ; u_{2}\right) H\left(0,0,1 ;\left(u_{1}+u_{2}\right)\right)-\frac{1}{2} H\left(0 ; u_{1}\right) H\left(0,0,1 ; \frac{u_{1}+u_{3}-1}{u_{1}-1}\right)-$
$\frac{1}{2} H\left(0 ; u_{2}\right) H\left(0,0,1 ; \frac{u_{1}+u_{3}-1}{u_{1}-1}\right)-H\left(0 ; u_{1}\right) H\left(0,0,1 ;\left(u_{1}+u_{3}\right)\right)-$
$H\left(0 ; u_{3}\right) H\left(0,0,1 ;\left(u_{1}+u_{3}\right)\right)-\frac{1}{2} H\left(0 ; u_{1}\right) H\left(0,0,1 ; \frac{u_{2}+u_{3}-1}{u_{3}-1}\right)-$
$\frac{1}{2} H\left(0 ; u_{3}\right) H\left(0,0,1 ; \frac{u_{2}+u_{3}-1}{u_{3}-1}\right)-H\left(0 ; u_{2}\right) H\left(0,0,1 ;\left(u_{2}+u_{3}\right)\right)-$
$H\left(0 ; u_{3}\right) H\left(0,0,1 ;\left(u_{2}+u_{3}\right)\right)-\frac{1}{2} H\left(0 ; u_{2}\right) H\left(0,1,0 ; u_{1}\right)-\frac{1}{2} H\left(0 ; u_{3}\right) H\left(0,1,0 ; u_{2}\right)-$
$\frac{1}{2} H\left(0 ; u_{1}\right) H\left(0,1,0 ; u_{3}\right)+\frac{1}{4} H\left(0 ; u_{2}\right) H\left(0,1,1 ; \frac{u_{1}+u_{2}-1}{u_{2}-1}\right)-$
$\frac{1}{4} H\left(0 ; u_{3}\right) H\left(0,1,1 ; \frac{u_{1}+u_{2}-1}{u_{2}-1}\right)+\frac{1}{4} H\left(0 ; u_{1}\right) H\left(0,1,1 ; \frac{u_{1}+u_{3}-1}{u_{1}-1}\right)-$
$\frac{1}{4} H\left(0 ; u_{2}\right) H\left(0,1,1 ; \frac{u_{1}+u_{3}-1}{u_{1}-1}\right)-\frac{1}{4} H\left(0 ; u_{1}\right) H\left(0,1,1 ; \frac{u_{2}+u_{3}-1}{u_{3}-1}\right)+$
$\frac{1}{4} H\left(0 ; u_{3}\right) H\left(0,1,1 ; \frac{u_{2}+u_{3}-1}{u_{3}-1}\right)+\frac{1}{2} H\left(0 ; u_{2}\right) H\left(1,0,0 ; u_{1}\right)-\frac{1}{2} H\left(0 ; u_{3}\right) H\left(1,0,0 ; u_{1}\right)-$
$\frac{1}{2} H\left(0 ; u_{1}\right) H\left(1,0,0 ; u_{2}\right)+\frac{1}{2} H\left(0 ; u_{3}\right) H\left(1,0,0 ; u_{2}\right)+\frac{1}{2} H\left(0 ; u_{1}\right) H\left(1,0,0 ; u_{3}\right)-$
$\frac{1}{2} H\left(0 ; u_{2}\right) H\left(1,0,0 ; u_{3}\right)-\frac{1}{4} H\left(0 ; u_{3}\right) H\left(1,0,1 ; \frac{u_{1}+u_{2}-1}{u_{2}-1}\right)-$
$\frac{1}{4} H\left(0 ; u_{2}\right) H\left(1,0,1 ; \frac{u_{1}+u_{3}-1}{u_{1}-1}\right)-\frac{1}{4} H\left(0 ; u_{1}\right) H\left(1,0,1 ; \frac{u_{2}+u_{3}-1}{u_{3}-1}\right)-$
$7 H\left(0,0,0,0 ; u_{1}\right)-7 H\left(0,0,0,0 ; u_{2}\right)-7 H\left(0,0,0,0 ; u_{3}\right)+\frac{3}{2} H\left(0,0,0,1 ; \frac{u_{1}+u_{2}-1}{u_{2}-1}\right)+$
$3 H\left(0,0,0,1 ;\left(u_{1}+u_{2}\right)\right)+\frac{3}{2} H\left(0,0,0,1 ; \frac{u_{1}+u_{3}-1}{u_{1}-1}\right)+3 H\left(0,0,0,1 ;\left(u_{1}+u_{3}\right)\right)+$
$\frac{3}{2} H\left(0,0,0,1 ; \frac{u_{2}+u_{3}-1}{u_{3}-1}\right)+3 H\left(0,0,0,1 ;\left(u_{2}+u_{3}\right)\right)+\frac{9}{4} H\left(0,0,1,0 ; u_{1}\right)+$
$\frac{9}{4} H\left(0,0,1,0 ; u_{2}\right)+\frac{9}{4} H\left(0,0,1,0 ; u_{3}\right)-\frac{1}{2} H\left(0,1,0,0 ; u_{1}\right)-\frac{1}{2} H\left(0,1,0,0 ; u_{2}\right)-$
$\frac{1}{2} H\left(0,1,0,0 ; u_{3}\right)+\frac{1}{2} H\left(0,1,0,1 ; \frac{u_{1}+u_{2}-1}{u_{2}-1}\right)+\frac{1}{2} H\left(0,1,0,1 ; \frac{u_{1}+u_{3}-1}{u_{1}-1}\right)+$
$\frac{1}{2} H\left(0,1,0,1 ; \frac{u_{2}+u_{3}-1}{u_{3}-1}\right)+H\left(0,1,1,0 ; u_{1}\right)+H\left(0,1,1,0 ; u_{2}\right)+H\left(0,1,1,0 ; u_{3}\right)-$
$\frac{1}{4} H\left(0,1,1,1 ; \frac{u_{1}+u_{2}-1}{u_{2}-1}\right)-\frac{1}{4} H\left(0,1,1,1 ; \frac{u_{1}+u_{3}-1}{u_{1}-1}\right)-$
$\frac{1}{4} H\left(0,1,1,1 ; \frac{u_{2}+u_{3}-1}{u_{3}-1}\right)+H\left(1,0,0,1 ; \frac{u_{1}+u_{2}-1}{u_{2}-1}\right)+H\left(1,0,0,1 ; \frac{u_{1}+u_{3}-1}{u_{1}-1}\right)+$
$H\left(1,0,0,1 ; \frac{u_{2}+u_{3}-1}{u_{3}-1}\right)+2 H\left(1,0,1,0 ; u_{1}\right)+2 H\left(1,0,1,0 ; u_{2}\right)+2 H\left(1,0,1,0 ; u_{3}\right)+$
$\frac{1}{4} H\left(1,1,0,1 ; \frac{u_{1}+u_{2}-1}{u_{2}-1}\right)+\frac{1}{4} H\left(1,1,0,1 ; \frac{u_{1}+u_{3}-1}{u_{1}-1}\right)+$
$\frac{1}{4} H\left(1,1,0,1 ; \frac{u_{2}+u_{3}-1}{u_{3}-1}\right)+\frac{1}{2} H\left(1,1,1,0 ; u_{1}\right)+\frac{1}{2} H\left(1,1,1,0 ; u_{2}\right)+\frac{1}{2} H\left(1,1,1,0 ; u_{3}\right)-$
$\frac{1}{24} \pi^{2} H\left(0 ; u_{3}\right) \mathcal{H}\left(1 ; \frac{1}{u_{123}}\right)-\frac{1}{24} \pi^{2} H\left(0 ; u_{1}\right) \mathcal{H}\left(1 ; \frac{1}{u_{231}}\right)-\frac{1}{24} \pi^{2} H\left(0 ; u_{2}\right) \mathcal{H}\left(1 ; \frac{1}{u_{312}}\right)+$
$\frac{1}{8} \pi^{2} H\left(0 ; u_{2}\right) \mathcal{H}\left(1 ; \frac{1}{v_{123}}\right)-\frac{1}{8} \pi^{2} H\left(0 ; u_{3}\right) \mathcal{H}\left(1 ; \frac{1}{v_{123}}\right)+\frac{1}{24} \pi^{2} H\left(0 ; u_{2}\right) \mathcal{H}\left(1 ; \frac{1}{v_{132}}\right)-$
$\frac{1}{24} \pi^{2} H\left(0 ; u_{3}\right) \mathcal{H}\left(1 ; \frac{1}{v_{132}}\right)-\frac{1}{24} \pi^{2} H\left(0 ; u_{1}\right) \mathcal{H}\left(1 ; \frac{1}{v_{213}}\right)+\frac{1}{24} \pi^{2} H\left(0 ; u_{3}\right) \mathcal{H}\left(1 ; \frac{1}{v_{213}}\right)-$ $\frac{1}{8} \pi^{2} H\left(0 ; u_{1}\right) \mathcal{H}\left(1 ; \frac{1}{v_{231}}\right)+\frac{1}{8} \pi^{2} H\left(0 ; u_{3}\right) \mathcal{H}\left(1 ; \frac{1}{v_{231}}\right)+\frac{1}{8} \pi^{2} H\left(0 ; u_{1}\right) \mathcal{H}\left(1 ; \frac{1}{v_{312}}\right)-$ $\frac{1}{8} \pi^{2} H\left(0 ; u_{2}\right) \mathcal{H}\left(1 ; \frac{1}{v_{312}}\right)+\frac{1}{24} \pi^{2} H\left(0 ; u_{1}\right) \mathcal{H}\left(1 ; \frac{1}{v_{321}}\right)-\frac{1}{24} \pi^{2} H\left(0 ; u_{2}\right) \mathcal{H}\left(1 ; \frac{1}{v_{321}}\right)-$ $\frac{1}{4} H\left(0 ; u_{2}\right) H\left(0 ; u_{3}\right) \mathcal{H}\left(0,1 ; \frac{1}{u_{123}}\right)-\frac{1}{4} H\left(1,0 ; u_{2}\right) \mathcal{H}\left(0,1 ; \frac{1}{u_{123}}\right)+\frac{1}{24} \pi^{2} \mathcal{H}\left(0,1 ; \frac{1}{u_{123}}\right)+$ $\frac{1}{24} \pi^{2} \mathcal{H}\left(0,1 ; \frac{1}{u_{231}}\right)-\frac{1}{4} H\left(0 ; u_{1}\right) H\left(0 ; u_{3}\right) \mathcal{H}\left(0,1 ; \frac{1}{u_{231}}\right)-\frac{1}{4} H\left(1,0 ; u_{3}\right) \mathcal{H}\left(0,1 ; \frac{1}{u_{231}}\right)-$ $\frac{1}{4} H\left(0 ; u_{1}\right) H\left(0 ; u_{2}\right) \mathcal{H}\left(0,1 ; \frac{1}{u_{312}}\right)-\frac{1}{4} H\left(1,0 ; u_{1}\right) \mathcal{H}\left(0,1 ; \frac{1}{u_{312}}\right)+\frac{1}{24} \pi^{2} \mathcal{H}\left(0,1 ; \frac{1}{u_{312}}\right)-$ $\frac{1}{4} H\left(0 ; u_{2}\right) H\left(0 ; u_{3}\right) \mathcal{H}\left(0,1 ; \frac{1}{v_{123}}\right)+\frac{1}{4} H\left(0,0 ; u_{2}\right) \mathcal{H}\left(0,1 ; \frac{1}{v_{123}}\right)+$
$\frac{1}{4} H\left(0,0 ; u_{3}\right) \mathcal{H}\left(0,1 ; \frac{1}{v_{123}}\right)+\frac{1}{6} \pi^{2} \mathcal{H}\left(0,1 ; \frac{1}{v_{123}}\right)-\frac{1}{4} H\left(0 ; u_{2}\right) H\left(0 ; u_{3}\right) \mathcal{H}\left(0,1 ; \frac{1}{v_{132}}\right)+$ $\frac{1}{4} H\left(0,0 ; u_{2}\right) \mathcal{H}\left(0,1 ; \frac{1}{v_{132}}\right)+\frac{1}{4} H\left(0,0 ; u_{3}\right) \mathcal{H}\left(0,1 ; \frac{1}{v_{132}}\right)+\frac{1}{6} \pi^{2} \mathcal{H}\left(0,1 ; \frac{1}{v_{132}}\right)-$
$\frac{1}{4} H\left(0 ; u_{1}\right) H\left(0 ; u_{3}\right) \mathcal{H}\left(0,1 ; \frac{1}{v_{213}}\right)+\frac{1}{4} H\left(0,0 ; u_{1}\right) \mathcal{H}\left(0,1 ; \frac{1}{v_{213}}\right)+$
$\frac{1}{4} H\left(0,0 ; u_{3}\right) \mathcal{H}\left(0,1 ; \frac{1}{v_{213}}\right)+\frac{1}{6} \pi^{2} \mathcal{H}\left(0,1 ; \frac{1}{v_{213}}\right)-\frac{1}{4} H\left(0 ; u_{1}\right) H\left(0 ; u_{3}\right) \mathcal{H}\left(0,1 ; \frac{1}{v_{231}}\right)+$ $\frac{1}{4} H\left(0,0 ; u_{1}\right) \mathcal{H}\left(0,1 ; \frac{1}{v_{231}}\right)+\frac{1}{4} H\left(0,0 ; u_{3}\right) \mathcal{H}\left(0,1 ; \frac{1}{v_{231}}\right)+\frac{1}{6} \pi^{2} \mathcal{H}\left(0,1 ; \frac{1}{v_{231}}\right)-$
$\frac{1}{4} H\left(0 ; u_{1}\right) H\left(0 ; u_{2}\right) \mathcal{H}\left(0,1 ; \frac{1}{v_{312}}\right)+\frac{1}{4} H\left(0,0 ; u_{1}\right) \mathcal{H}\left(0,1 ; \frac{1}{v_{312}}\right)+$
$\frac{1}{4} H\left(0,0 ; u_{2}\right) \mathcal{H}\left(0,1 ; \frac{1}{v_{312}}\right)+\frac{1}{6} \pi^{2} \mathcal{H}\left(0,1 ; \frac{1}{v_{312}}\right)-\frac{1}{4} H\left(0 ; u_{1}\right) H\left(0 ; u_{2}\right) \mathcal{H}\left(0,1 ; \frac{1}{v 321}\right)+$
$\frac{1}{4} H\left(0,0 ; u_{1}\right) \mathcal{H}\left(0,1 ; \frac{1}{v_{321}}\right)+\frac{1}{4} H\left(0,0 ; u_{2}\right) \mathcal{H}\left(0,1 ; \frac{1}{v_{321}}\right)+\frac{1}{6} \pi^{2} \mathcal{H}\left(0,1 ; \frac{1}{v_{321}}\right)-$
$\frac{1}{2} H\left(0 ; u_{2}\right) H\left(0 ; u_{3}\right) \mathcal{H}\left(1,1 ; \frac{1}{v_{123}}\right)+\frac{1}{2} H\left(0,0 ; u_{2}\right) \mathcal{H}\left(1,1 ; \frac{1}{v_{123}}\right)+$
$\frac{1}{2} H\left(0,0 ; u_{3}\right) \mathcal{H}\left(1,1 ; \frac{1}{v_{123}}\right)+\frac{11}{24} \pi^{2} \mathcal{H}\left(1,1 ; \frac{1}{v_{123}}\right)-\frac{1}{24} \pi^{2} \mathcal{H}\left(1,1 ; \frac{1}{v_{132}}\right)-$ $\frac{1}{24} \pi^{2} \mathcal{H}\left(1,1 ; \frac{1}{v_{213}}\right)-\frac{1}{2} H\left(0 ; u_{1}\right) H\left(0 ; u_{3}\right) \mathcal{H}\left(1,1 ; \frac{1}{v_{231}}\right)+\frac{1}{2} H\left(0,0 ; u_{1}\right) \mathcal{H}\left(1,1 ; \frac{1}{v_{231}}\right)+$ $\frac{1}{2} H\left(0,0 ; u_{3}\right) \mathcal{H}\left(1,1 ; \frac{1}{v_{231}}\right)+\frac{11}{24} \pi^{2} \mathcal{H}\left(1,1 ; \frac{1}{v_{231}}\right)-\frac{1}{2} H\left(0 ; u_{1}\right) H\left(0 ; u_{2}\right) \mathcal{H}\left(1,1 ; \frac{1}{v_{312}}\right)+$ $\frac{1}{2} H\left(0,0 ; u_{1}\right) \mathcal{H}\left(1,1 ; \frac{1}{v_{312}}\right)+\frac{1}{2} H\left(0,0 ; u_{2}\right) \mathcal{H}\left(1,1 ; \frac{1}{v_{312}}\right)+\frac{11}{24} \pi^{2} \mathcal{H}\left(1,1 ; \frac{1}{v_{312}}\right)-$ $\frac{1}{24} \pi^{2} \mathcal{H}\left(1,1 ; \frac{1}{v_{321}}\right)+\frac{1}{2} H\left(0 ; u_{2}\right) \mathcal{H}\left(0,0,1 ; \frac{1}{u_{123}}\right)+\frac{1}{2} H\left(0 ; u_{3}\right) \mathcal{H}\left(0,0,1 ; \frac{1}{u_{123}}\right)+$ $\frac{1}{2} H\left(0 ; u_{1}\right) \mathcal{H}\left(0,0,1 ; \frac{1}{u_{231}}\right)+\frac{1}{2} H\left(0 ; u_{3}\right) \mathcal{H}\left(0,0,1 ; \frac{1}{u_{231}}\right)+\frac{1}{2} H\left(0 ; u_{1}\right) \mathcal{H}\left(0,0,1 ; \frac{1}{u_{312}}\right)+$ $\frac{1}{2} H\left(0 ; u_{2}\right) \mathcal{H}\left(0,0,1 ; \frac{1}{u_{312}}\right)+\frac{1}{4} H\left(0 ; u_{3}\right) \mathcal{H}\left(0,1,1 ; \frac{1}{u_{123}}\right)+\frac{1}{4} H\left(0 ; u_{1}\right) \mathcal{H}\left(0,1,1 ; \frac{1}{u_{231}}\right)+$

$$
\begin{aligned}
& \frac{1}{4} H\left(0 ; u_{2}\right) \mathcal{H}\left(0,1,1 ; \frac{1}{u_{312}}\right)+\frac{1}{4} H\left(0 ; u_{2}\right) \mathcal{H}\left(0,1,1 ; \frac{1}{v_{123}}\right)-\frac{1}{4} H\left(0 ; u_{3}\right) \mathcal{H}\left(0,1,1 ; \frac{1}{v_{123}}\right)- \\
& \frac{1}{4} H\left(0 ; u_{2}\right) \mathcal{H}\left(0,1,1 ; \frac{1}{v_{132}}\right)+\frac{1}{4} H\left(0 ; u_{3}\right) \mathcal{H}\left(0,1,1 ; \frac{1}{v_{132}}\right)+\frac{1}{4} H\left(0 ; u_{1}\right) \mathcal{H}\left(0,1,1 ; \frac{1}{v_{213}}\right)- \\
& \frac{1}{4} H\left(0 ; u_{3}\right) \mathcal{H}\left(0,1,1 ; \frac{1}{v_{213}}\right)-\frac{1}{4} H\left(0 ; u_{1}\right) \mathcal{H}\left(0,1,1 ; \frac{1}{v_{231}}\right)+\frac{1}{4} H\left(0 ; u_{3}\right) \mathcal{H}\left(0,1,1 ; \frac{1}{v_{231}}\right)+ \\
& \frac{1}{4} H\left(0 ; u_{1}\right) \mathcal{H}\left(0,1,1 ; \frac{1}{v_{312}}\right)-\frac{1}{4} H\left(0 ; u_{2}\right) \mathcal{H}\left(0,1,1 ; \frac{1}{v_{312}}\right)-\frac{1}{4} H\left(0 ; u_{1}\right) \mathcal{H}\left(0,1,1 ; \frac{1}{v_{321}}\right)+ \\
& \frac{1}{4} H\left(0 ; u_{2}\right) \mathcal{H}\left(0,1,1 ; \frac{1}{v_{321}}\right)+\frac{1}{4} H\left(0 ; u_{3}\right) \mathcal{H}\left(1,0,1 ; \frac{1}{u_{123}}\right)+\frac{1}{4} H\left(0 ; u_{1}\right) \mathcal{H}\left(1,0,1 ; \frac{1}{u_{231}}\right)+ \\
& \frac{1}{4} H\left(0 ; u_{2}\right) \mathcal{H}\left(1,0,1 ; \frac{1}{u_{312}}\right)+\frac{1}{4} H\left(0 ; u_{2}\right) \mathcal{H}\left(1,0,1 ; \frac{1}{v_{123}}\right)-\frac{1}{4} H\left(0 ; u_{3}\right) \mathcal{H}\left(1,0,1 ; \frac{1}{v_{123}}\right)- \\
& \frac{1}{4} H\left(0 ; u_{2}\right) \mathcal{H}\left(1,0,1 ; \frac{1}{v_{132}}\right)+\frac{1}{4} H\left(0 ; u_{3}\right) \mathcal{H}\left(1,0,1 ; \frac{1}{v_{132}}\right)+\frac{1}{4} H\left(0 ; u_{1}\right) \mathcal{H}\left(1,0,1 ; \frac{1}{v_{213}}\right)- \\
& \frac{1}{4} H\left(0 ; u_{3}\right) \mathcal{H}\left(1,0,1 ; \frac{1}{v_{213}}\right)-\frac{1}{4} H\left(0 ; u_{1}\right) \mathcal{H}\left(1,0,1 ; \frac{1}{v_{231}}\right)+\frac{1}{4} H\left(0 ; u_{3}\right) \mathcal{H}\left(1,0,1 ; \frac{1}{v_{231}}\right)+ \\
& \frac{1}{4} H\left(0 ; u_{1}\right) \mathcal{H}\left(1,0,1 ; \frac{1}{v_{312}}\right)-\frac{1}{4} H\left(0 ; u_{2}\right) \mathcal{H}\left(1,0,1 ; \frac{1}{v_{312}}\right)-\frac{1}{4} H\left(0 ; u_{1}\right) \mathcal{H}\left(1,0,1 ; \frac{1}{v_{321}}\right)+ \\
& \frac{1}{4} H\left(0 ; u_{2}\right) \mathcal{H}\left(1,0,1 ; \frac{1}{v_{321}}\right)+H\left(0 ; u_{2}\right) \mathcal{H}\left(1,1,1 ; \frac{1}{v_{123}}\right)-H\left(0 ; u_{3}\right) \mathcal{H}\left(1,1,1 ; \frac{1}{v_{123}}\right)- \\
& H\left(0 ; u_{1}\right) \mathcal{H}\left(1,1,1 ; \frac{1}{v_{231}}\right)+H\left(0 ; u_{3}\right) \mathcal{H}\left(1,1,1 ; \frac{1}{v_{231}}\right)+H\left(0 ; u_{1}\right) \mathcal{H}\left(1,1,1 ; \frac{1}{v_{312}}\right)- \\
& H\left(0 ; u_{2}\right) \mathcal{H}\left(1,1,1 ; \frac{1}{v_{312}}\right)-\frac{3}{2} \mathcal{H}\left(0,0,0,1 ; \frac{1}{u_{123}}\right)-\frac{3}{2} \mathcal{H}\left(0,0,0,1 ; \frac{1}{u_{231}}\right)- \\
& \frac{3}{2} \mathcal{H}\left(0,0,0,1 ; \frac{1}{u_{312}}\right)-3 \mathcal{H}\left(0,0,0,1 ; \frac{1}{v_{132}}\right)-3 \mathcal{H}\left(0,0,0,1 ; \frac{1}{v_{213}}\right)-3 \mathcal{H}\left(0,0,0,1 ; \frac{1}{v_{321}}\right)- \\
& \frac{1}{2} \mathcal{H}\left(0,0,1,1 ; \frac{1}{u_{123}}\right)-\frac{1}{2} \mathcal{H}\left(0,0,1,1 ; \frac{1}{u_{231}}\right)-\frac{1}{2} \mathcal{H}\left(0,0,1,1 ; \frac{1}{u_{312}}\right)- \\
& \frac{1}{2} \mathcal{H}\left(0,1,0,1 ; \frac{1}{u_{123}}\right)-\frac{1}{2} \mathcal{H}\left(0,1,0,1 ; \frac{1}{u_{231}}\right)-\frac{1}{2} \mathcal{H}\left(0,1,0,1 ; \frac{1}{u_{312}}\right)+ \\
& \frac{1}{4} \mathcal{H}\left(0,1,1,1 ; \frac{1}{v_{123}}\right)+\frac{1}{4} \mathcal{H}\left(0,1,1,1 ; \frac{1}{v_{132}}\right)+\zeta_{3} H\left(0 ; u_{1}\right)+\zeta_{3} H\left(0 ; u_{2}\right)+\zeta_{3} H\left(0 ; u_{3}\right)+ \\
& \frac{5}{2} \zeta_{3} H\left(1 ; u_{1}\right)+\frac{5}{2} \zeta_{3} H\left(1 ; u_{2}\right)+\frac{5}{2} \zeta_{3} H\left(1 ; u_{3}\right)+\frac{1}{2} \zeta_{3} \mathcal{H}\left(1 ; \frac{1}{u_{123}}\right)+\frac{1}{2} \zeta_{3} \mathcal{H}\left(1 ; \frac{1}{u_{231}}\right)+ \\
& \frac{1}{2} \zeta_{3} \mathcal{H}\left(1 ; \frac{1}{u_{312}}\right)-\frac{1}{2} \mathcal{H}\left(1,0,0,1 ; \frac{1}{u_{123}}\right)-\frac{1}{2} \mathcal{H}\left(1,0,0,1 ; \frac{1}{u_{231}}\right)-\frac{1}{2} \mathcal{H}\left(1,0,0,1 ; \frac{1}{u_{312}}\right)+ \\
& \frac{1}{4} \zeta_{3} \mathcal{H}\left(1 ; \frac{1}{v_{123}}\right)+\frac{1}{4} \zeta_{3} \mathcal{H}\left(1 ; \frac{1}{v_{132}}\right)+\frac{1}{4} \zeta_{3} \mathcal{H}\left(1 ; \frac{1}{v_{213}}\right)+\frac{1}{4} \zeta_{3} \mathcal{H}\left(1 ; \frac{1}{v_{231}}\right)+\frac{1}{4} \zeta_{3} \mathcal{H}\left(1 ; \frac{1}{v_{312}}\right)+ \\
& \frac{1}{4} \zeta_{3} \mathcal{H}\left(1 ; \frac{1}{v_{321}}\right)+\frac{1}{4} \mathcal{H}\left(0,1,1,1 ; \frac{1}{v_{213}}\right)+\frac{1}{4} \mathcal{H}\left(0,1,1,1 ; \frac{1}{v_{231}}\right)+\frac{1}{4} \mathcal{H}\left(0,1,1,1 ; \frac{1}{v_{312}}\right)+ \\
& \frac{1}{4} \mathcal{H}\left(0,1,1,1 ; \frac{1}{v_{321}}\right)+\frac{1}{4} \mathcal{H}\left(1,0,1,1 ; \frac{1}{v_{123}}\right)+\frac{1}{4} \mathcal{H}\left(1,0,1,1 ; \frac{1}{v_{132}}\right)+\frac{1}{4} \mathcal{H}\left(1,0,1,1 ; \frac{1}{v_{213}}\right)+ \\
& \frac{1}{4} \mathcal{H}\left(1,0,1,1 ; \frac{1}{v_{231}}\right)+\frac{1}{4} \mathcal{H}\left(1,0,1,1 ; \frac{1}{v_{312}}\right)+\frac{1}{4} \mathcal{H}\left(1,0,1,1 ; \frac{1}{v_{321}}\right)+\frac{1}{4} \mathcal{H}\left(1,1,0,1 ; \frac{1}{v_{123}}\right)+ \\
& \frac{1}{4} \mathcal{H}\left(1,1,0,1 ; \frac{1}{v_{132}}\right)+\frac{1}{4} \mathcal{H}\left(1,1,0,1 ; \frac{1}{v_{213}}\right)+\frac{1}{4} \mathcal{H}\left(1,1,0,1 ; \frac{1}{v_{231}}\right)+\frac{1}{4} \mathcal{H}\left(1,1,0,1 ; \frac{1}{v_{312}}\right)+
\end{aligned}
$$

$\frac{1}{4} \mathcal{H}\left(1,1,0,1 ; \frac{1}{v_{321}}\right)+\frac{3}{2} \mathcal{H}\left(1,1,1,1 ; \frac{1}{v_{123}}\right)+\frac{3}{2} \mathcal{H}\left(1,1,1,1 ; \frac{1}{v_{231}}\right)+\frac{3}{2} \mathcal{H}\left(1,1,1,1 ; \frac{1}{v_{312}}\right)$

References

[1] C. Anastasiou, Z. Bern, L. J. Dixon and D. A. Kosower, "Planar amplitudes in maximally supersymmetric Yang-Mills theory," Phys. Rev. Lett. 91 (2003) 251602 [arXiv:hep-th/0309040].
[2] Z. Bern, J. S. Rozowsky and B. Yan, "Two-loop four-gluon amplitudes in $\mathrm{N}=4$ super-Yang-Mills," Phys. Lett. B 401 (1997) 273 [arXiv:hep-ph/9702424].
[3] Z. Bern, M. Czakon, D. A. Kosower, R. Roiban and V. A. Smirnov, "Two-loop iteration of five-point N $=4$ super-Yang-Mills amplitudes," Phys. Rev. Lett. 97 (2006) 181601 [arXiv:hep-th/0604074].
[4] F. Cachazo, M. Spradlin and A. Volovich, "Iterative structure within the five-particle two-loop amplitude," Phys. Rev. D 74, 045020 (2006) [arXiv:hep-th/0602228].
[5] V. Del Duca, C. Duhr, E. W. Nigel Glover and V. A. Smirnov, "The one-loop pentagon to higher orders in epsilon," JHEP 1001 (2010) 042 [arXiv:0905.0097 [hep-th]].
[6] V. Del Duca, C. Duhr and E. W. Nigel Glover, "The five-gluon amplitude in the high-energy limit," JHEP 0912 (2009) 023 [arXiv:0905.0100 [hep-th]].
[7] L. F. Alday, J. M. Henn, J. Plefka and T. Schuster, "Scattering into the fifth dimension of N=4 super Yang-Mills," JHEP 1001 (2010) 077 [arXiv:0908.0684 [hep-th]].
[8] J. M. Henn, S. G. Naculich, H. J. Schnitzer and M. Spradlin, "Higgs-regularized three-loop four-gluon amplitude in N=4 SYM: exponentiation and Regge limits," arXiv:1001.1358 [hep-th].
[9] Z. Bern, L. J. Dixon and V. A. Smirnov, "Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond," Phys. Rev. D 72 (2005) 085001 [arXiv:hep-th/0505205].
[10] Z. Bern, L. J. Dixon, D. A. Kosower, R. Roiban, M. Spradlin, C. Vergu and A. Volovich, "The Two-Loop Six-Gluon MHV Amplitude in Maximally Supersymmetric Yang-Mills Theory," Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465 [hep-th]].
[11] L. F. Alday and J. Maldacena, "Comments on gluon scattering amplitudes via AdS/CFT," JHEP 0711 (2007) 068 [arXiv:0710.1060 [hep-th]].
[12] J. M. Drummond, J. Henn, G. P. Korchemsky and E. Sokatchev, "The hexagon Wilson loop and the BDS ansatz for the six-gluon amplitude," Phys. Lett. B 662 (2008) 456 [arXiv:0712.4138 [hep-th]].
[13] J. Bartels, L. N. Lipatov and A. Sabio Vera, "BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes," Phys. Rev. D 80 (2009) 045002 [arXiv:0802.2065 [hep-th]].
[14] J. Bartels, L. N. Lipatov and A. Sabio Vera, "N=4 supersymmetric Yang Mills scattering amplitudes at high energies: the Regge cut contribution," arXiv:0807.0894 [hep-th].
[15] R. M. Schabinger, "The Imaginary Part of the $\mathrm{N}=4$ Super-Yang-Mills Two-Loop Six-Point MHV Amplitude in Multi-Regge Kinematics," JHEP 0911 (2009) 108 [arXiv:0910.3933 [hep-th]].

Result can be remarkably simple

$$
\sum_{i=1}^{3}\left(L_{4}\left(x_{i}^{+}, x_{i}^{-}\right)-\frac{1}{2} \operatorname{Li}_{4}\left(1-1 / u_{i}\right)\right)-\frac{1}{8}\left(\sum_{i=1}^{3} \operatorname{Li}_{2}\left(1-1 / u_{i}\right)\right)^{2}+\frac{1}{24} J^{4}+\frac{\pi^{2}}{12} J^{2}+\frac{\pi^{4}}{72}
$$

which is a single line of only classical polylogarithms!
\rightarrow require advanced mathematical tools: "Symbol"

Why so simple?

Many examples show that the final result can be put in a form which is far simpler than the intermediate steps !

"Theoretical experiment":
looking into the theoretical data, and try to find hidden structures

A toy model

N＝4 SYM theory ：－＞QCD＇s maximally supersymmetric cousin

$$
\mathcal{L}=-\frac{1}{g_{\mathrm{YM}}^{2}} \operatorname{Tr}\left(F_{\mu \nu} F^{\mu \nu}\right)+\text { fermions }+ \text { scalars }
$$

where all fields are the in the adjoint representation of the gauge group $\mathrm{SU}(\mathrm{Nc})$ ．

Exactly solvable in planar limit！

Hierarchy of simplicity

Lance Dixon 1105.0771

N=4 SYM

Techniques first developed by studying this toy model are used in general theories such as QCD, e.g.: BCFW recursion relations, unitarity on-shell method.

Are there direct connections between the two theories?

QCD

Maximal Transcendentality Principle

N=4 SYM

QCD

Maximally transcendental parts are equal between two theories!?

Known examples

N=4 SYM

QCD

- Anomalous dimension of twist-2 operators

$$
\gamma^{\mathcal{N}=4}(j)=\left.\gamma^{\mathrm{QCD}}(j)\right|_{\max . \operatorname{trans}}
$$

[Kotikov, Lipatov, Onishchenko, Velizhanin 2004]

- Two-loop remainder function (kinematic dependent functions!):
[Brandhuber, Travaglini, GY 2012]

$N=4$ SYM $1 / 2$
BPS form factor
:---:
amplitudes $m_{t} \rightarrow \infty$

- Also for certain Wilson lines [Li, Manteuffel, Schabinger: Zhu 2014]

Two-loop Higgs to 3-gluon

$-2 G(0,0,1,0, u)+G(0,0,1-v, 1-v, u)+2 G(0,0,-v, 1-v, u)-G(0,1,0,1-v, u)+4 G(0,1,1,0, u)-G(0,1,1-v, 0, u)+G(0,1-v, 0,1-v, u)$ $+G(0,1-v, 1-v, 0, u)-G(0,1-v,-v, 1-v, u)+2 G(0,-v, 0,1-v, u)+2 G(0,-v, 1-v, 0, u)-2 G(0,-v, 1-v, 1-v, u)-2 G(1,0,0,1-v, u)$ $-2 G(1,0,1-v, 0, u)+4 G(1,1,0,0, u)-4 G(1,1,1,0, u)-2 G(1,1-v, 0,0, u)+G(1-v, 0,0,1-v, u)-G(1-v, 0,1,0, u)-2 G(-v, 1-v, 1-v, u) H(0, v)$ $-2 G(1-v, 1,0,0, u)+2 G(1-v, 1,0,1-v, u)+2 G(1-v, 1,1-v, 0, u)+G(1-v, 1-v, 0,0, u)+2 G(1-v, 1-v, 1,0, u)-(2 G(1-v, 1-v,-v, 1-v, v)$ $-G(1-v,-v, 1-v, 0, u)+4 G(1-v,-v,-v, 1-v, u)-2 G(-v, 0,1-v, 1-v, u)-2 G(-v, 1-v, 0,1-v, u)-2 G(-v, 1-v, 1-v, 0, u)+4 G(1,0,1,0, u)$ $+4 G(-v,-v, 1-v, 1-v, u)-4 G(-v,-v,-v, 1-v, u)-G(0,0,1-v, u) H(0, v)-G(0,1,0, u) H(0, v)-G(0,1-v, 0, u) H(0, v)+G(0,1-v, 1-v, u) H(\mathbb{R}, v)$ $-G(0,-v, 1-v, u) H(0, v)-2 G(1,0,0, u) H(0, v)+G(1,0,1-v, u) H(0, v)+G(1,1-v, 0, u) H(0, v)+G(1-v, 0,0, u) H(0, v)-G(1-v, 0,1-v, u) H(0, \mathbf{2}$ $-G(1-v, 1,0, u) H(0, v)-G(1-v, 1-v, 0, u) H(0, v)-G(1-v,-v, 1-v, u) H(0, v)+G(-v, 0,1-v, u) H(0, v)+G(-v, 1-v, 0, u) H(0, v)+H(1,0,0,1, v)$ $-G(0,0,1-v, u) H(1, v)-G(0,0,-v, u) H(1, v)+G(0,1,0, u) H(1, v)-G(0,1-v, 0, u) H(1, v)+G(0,1-v,-v, u) H(1, v)-2 G(0,-v, 0, u) H(1, v)$ $+2 G(0,-v, 1-v, u) H(1, v)+2 G(1,0,0, u) H(1, v)-G(1-v, 0,0, u) H(1, v)+G(1-v, 0,-v, u) H(1, v)-2 G(1-v, 1,0, u) H(1, v)-G(1-v, 0,-v, 1-v, u)$ $+G(1-v,-v, 0, u) H(1, v)-4 G(1-v,-v,-v, u) H(1, v)+2 G(-v, 0,1-v, u) H(1, v)+2 G(-v, 1-v, 0, u) H(1, v)-4 G(-v, 1-v,-v, u) H(1, v)$ $-4 G(-v,-v, 1-v, u) H(1, v)+4 G(-v,-v,-v, u) H(1 . v)+G(0.0 . u) H(0,0, v)+G(0,1-v, u) H(0,0, v)+G(1-v, 0, u) H(0,0, v)+H(1,0,1,0, v)$ $-G(0,0, u) H(0,1, v)+G(0,-v, u) H(0,1, v)-G(1 \quad \exists(1-v, 0, u) H(0,1, v)+2 G(1-v, 1-v, u) H(0,1, v)-3 G(1-v,-v, u) H(0,1, v)$
$\tilde{(}(1-v, 0, u) H(0,1, v)+2 G(1-v, 1-v, u) H(0,1, v)-3 G(1-v,-v, u) H$
$), 1, v)-G(0,0, u) H(1,0, v)+G(0,-v, u) H(1,0, v)-G(1,0, u) H(1,0, v)$
$-G(-v, 0, u) H(0,1, v)-2 G(-v, 1-v, u) H(0,1, v) \quad \square \square$
, , u) $H(1,0, v)-G(-v, 0, u) H(1,0, v)+2 G(-v, 1-v, u) H(1,0, v)+G(0,0, u)$ $-2 G(0,-v, u) H(1,1, v)-2 G(-v, 0, u) H(1,1, v)+4 G(-v,-v, u) H(1,1, v)+G(0, u) H(0,0,1, v)-3 G(1-v, u) H(0,0,1, v)+4 G(-v, u) H(0,0,1, v)$ $+G(0, u) H(0,1,0, v)+G(1-v, u) H(0,1,0, v)-G(0, u) H(0,1,1, v)+2 G(-v, u) H(0,1,1, v)+G(0, u) H(1,0,0, v)+G(1-v, u) H(1,0,0, v)+H(1,1,0,0, v)$ $-G(0, u) H(1,0,1, v)+2 G(-v, u) H(1,0,1, v)-G(0, u) H(1,1,0, v)+4 G(1-v, u) H(1,1,0, v)-2 G(-v, u) H(1,1,0, v)+H(0,0,1,1, v)+H(0,1,0,1, v)$ $+G(1-v, 1-v, u) H(0,0, v)+2 G(1-v, 1-v,-v, u) H(1, v)-G(1-v,-v, 0,1-v, u)+H(0,1,1,0, v)+G(1-v, 0,1-v, 0, u)-G(0,1-v, 1,0, u)$ $+4 G(-v, 1-v,-v, 1-v, u)$

$$
\begin{aligned}
& \text { - } 2\left[J_{4}\left(-\frac{u v}{w}\right)+J_{4}\left(-\frac{v w}{u}\right)+J_{4}\left(-\frac{w u}{v}\right)\right]-8 \sum_{i=1}^{3}\left[\operatorname{Li}_{4}\left(1-u_{i}^{-1}\right)+\frac{\log ^{4} u_{i}}{4!}\right] \\
& -2\left[\sum_{i=1}^{3} \mathrm{Li}_{2}\left(1-u_{i}\right)+\frac{\log ^{2} u_{i}}{2!}\right]^{2}+\frac{1}{2}\left[\sum_{i=1}^{3} \log ^{2} u_{i}\right]^{2}-\frac{\log ^{4}(u v w)}{4!}-\frac{23}{2} \zeta_{4}
\end{aligned}
$$

Maximal Transcendentality Principle

```
N=4 SYM
```


To which extend is this correspondence between correct?

Require more two-loop computations.

Two-loop QCD computation

Still a very challenging problem!

- 4-gluon amplitudes known many
[Glover, Oleari, Tejeda-Yeomans 2001]
[Bern, De Freitas, Dixon 2002] years ago
- 5-gluon results are still not fully known; numerical planar results last year

Our problem also involves high dimensional operators.

Strategy:

Content

- Motivations

- Computation
- Results

Integration by part reduction

[Chetyrkin, Tkachov 1981]

Integration by part (IBP): $\int d^{D} l_{1} \ldots d^{D} l_{L} \frac{\partial}{\partial l_{i}^{\mu}}$ (integrand) $=0$

Solve a set of linear relations between different integrals.
Example: $\quad J\left(a_{1}, a_{2}\right):=\int \frac{d^{D} k}{i \pi^{D / 2}} \frac{1}{\left(-k^{2}+m^{2}\right)^{a_{1}}\left(-(k+p)^{2}+m^{2}\right)^{a_{2}}}$

$$
\longrightarrow \quad 0=\int \frac{d^{D} k}{i \pi^{D / 2}} \frac{\partial}{\partial k^{\mu}}\left(k^{\mu} \frac{1}{\left(-k^{2}+m^{2}\right)^{a_{1}}\left(-(k+p)^{2}+m^{2}\right)^{a_{2}}}\right)
$$

$$
\longrightarrow \quad 0=\left(D-2 a_{1}-a_{2}\right) J\left(a_{1}, a_{2}\right)-a_{2} J\left(a_{1}-1, a_{2}+1\right)
$$

$$
+2 m^{2} a_{1} J\left(a_{1}+1, a_{2}\right)+\left(2 m^{2}-p^{2}\right) a_{2} J\left(a_{1}, a_{2}+1\right)
$$

Public packages:
Reduze 2, FIRE, LiteRed, etc

$$
\xrightarrow{a_{2}=0} \quad 0=\left(D-2 a_{1}\right) J\left(a_{1}, 0\right)+2 m^{2} a_{1} J\left(a_{1}+1,0\right)
$$

$$
J(1,2)=\frac{(D-2)}{2 m^{2}\left(4 m^{2}-p^{2}\right)} J(1,0)+\frac{(D-3)}{4 m^{2}-p^{2}} J(1,1)
$$

Unitarity method

As a replacement of Feynman diagram method: construct the integrand from physical singularities, i.e. poles or branch-cuts.

- At one-loop:
[Bern, Dixon, Dunbar, Kosower 1994]
[Britto, Cachazo, Feng 2004]

Unitarity method

Challenges for higher loop QCD:

- need D-dimensional cuts (rational term issue)
- non-trivial to reconstruct full integrand (non-planar)
- need to further reduce the integrand, such as via IBP (sometimes IBP is the bottleneck)

Try new strategy

IBP for cut integrand

$$
\left.F^{(l)}\right|_{\text {cut }}=\sum_{\text {helicities }} F^{\text {tree }} \prod_{j} A_{j}^{\text {tree }}=\sum_{i} c_{i} M_{i} \mid \text { cut }
$$

- D-dimensional cuts
- no need to reconstruct full integrand
- IBP is simplified

Example

- Tree by Feynman rules in D dimensions
- Helicity sum via contraction rule:

$$
\sum_{\text {helicities }} \varepsilon_{i}^{\mu} \varepsilon_{i}^{\nu}=\eta^{\mu \nu}-\frac{q^{\mu} p_{i}^{\nu}+q^{\nu} p_{i}^{\mu}}{q \cdot p_{i}}
$$

spinor helicity
\longrightarrow formalism for $\mathrm{N}=4$ SYM

- Project to gauge invariant basis
- IBP reduction

2-loop 2-gluon

Cuts:

(d)

(e)

Master integrals:

(1)

(2)

(3)

(4)

(5)

(6)

New feature (complication) of form factor: 'non-planar type' cuts appear for colour-planar part.

$$
\text { Full result }=\left(\sum_{i=1}^{4} c_{i} M_{i}+\frac{1}{2} \sum_{i=5,6} c_{i} M_{i}\right)+\operatorname{perms}\left(p_{1}, p_{2}\right)
$$

2-loop 3-gluon

All cuts that are needed:

(a)

(e)

(b)

(f)

(c)

(g)

Master integrals

All analytic results are known, given in terms of 2d Harmonic polylogarithms.

Thus the results are given in terms of explicit functions.

Content

- Motivation
- Computation
- Results
- Summary and outlook

Divergence structure

UV divergences

both gauge coupling and local operator require renormalization

IR divergences

soft and collinear singularities from massless particle; universal!

Checks

- Consistent divergence structure: $\frac{1}{\epsilon^{4}}, \frac{1}{\epsilon^{3}}, \frac{1}{\epsilon^{2}}, \frac{1}{\epsilon}$

UV renormalisation (operator mixing) and Universal IR

$$
Z_{\tilde{\mathcal{O}}_{1}}^{(2)}=-\frac{19}{24 \epsilon^{2}}+\frac{25}{12 \epsilon}, \quad \gamma_{\tilde{\mathcal{O}}_{1}}^{(2)}=\frac{25}{3} \quad \text { (new result) }
$$

- Reproduce all known results, including the 2-loop Higgs to 3gluon amplitudes in the heavy top limit $\mathcal{O}_{0}=\operatorname{tr}\left(G_{\mu \nu} G^{\mu \nu}\right)$
- Results satisfy the linear relation:

$$
F_{\mathcal{O}_{2}}=\frac{1}{2} q^{2} F_{\mathcal{O}_{0}}-4 g_{\mathrm{YM}} F_{\mathcal{O}_{1}}
$$

$$
\begin{aligned}
\mathcal{O}_{0} & =\operatorname{tr}\left(G_{\mu \nu} G^{\mu \nu}\right) \\
\mathcal{O}_{1} & =\operatorname{tr}\left(G_{\mu}^{\nu} G_{\nu}{ }^{\rho} G_{\rho}{ }^{\mu}\right), \\
\mathcal{O}_{2} & =\operatorname{tr}\left(D_{\rho} G_{\mu \nu} D^{\rho} G^{\mu \nu}\right) .
\end{aligned}
$$

Finite remainder

Apply UV renormalisation and IR subtraction, the finite remainder function can be organized according to transcendentality degree:

$$
F_{\mathrm{R}, \mathcal{O}_{1}}^{(2), \text { fin }}=F_{\mathcal{O}_{1}}^{(0)} \sum_{i=0}^{4} \Omega_{\mathcal{O}_{1} ; i}^{(2)}
$$

Weight-4 part:
$\Omega_{\mathcal{O}_{2} ; 4}^{(2)}=$

Degree 4:

Finite remainder

Simplify via "symbol" for transcendental functions

$$
\begin{aligned}
\Omega_{\mathcal{O}_{1 ; 4}}^{(2)}= & -\frac{3}{2} \operatorname{Li}_{4}(u)+\frac{3}{4} \operatorname{Li}_{4}\left(-\frac{u v}{w}\right)-\frac{3}{2} \log (w) \operatorname{Li}_{3}\left(-\frac{u}{v}\right)+\frac{\zeta_{2}}{8}\left[5 \log ^{2}(u)-2 \log (v) \log (w)\right] \\
& +\frac{\log ^{2}(u)}{32}\left[\log ^{2}(u)+2 \log ^{2}(v)-4 \log (v) \log (w)\right]-\frac{1}{4} \zeta_{4}-\frac{1}{2} \zeta_{3} \log \left(-q^{2}\right)+\operatorname{perms}(u, v, w)
\end{aligned}
$$

for $\mathrm{N}=4$ result see:
Brandhuber, Kostacinska, Penante, Travaglini 2017]

It also appears as a universal function for length-3 operators.
[Brandhuber, Kostacinska, Penante, Travaglini, Wen, Young 2014, 2016]
[Loebbert, Nandan, Sieg, Wilhelm, GY 2015, 2016]

Finite remainder

Weight-3 part:

$$
\begin{aligned}
& \Omega_{\mathcal{O}_{1} ; 3}^{(2)}=\left(1+\frac{u}{w}\right) T_{3}+\frac{143}{72} \zeta_{3}-\frac{11}{24} \zeta_{2} \log \left(-u q^{2}\right)+\operatorname{perms}(u, v, w) \\
& \Omega_{\mathcal{O}_{1} ; 3}^{(2), \mathcal{N}=4}=\left(1+\frac{u}{w}\right) T_{3}+\operatorname{perms}(u, v, w) \\
& T_{3}:=\left[-\operatorname{Li}_{3}\left(-\frac{u}{w}\right)+\log (u) \operatorname{Li}_{2}\left(\frac{v}{1-u}\right)-\frac{1}{2} \log (1-u) \log (u) \log \left(\frac{w^{2}}{1-u}\right)+\frac{1}{2} \operatorname{Li}_{3}\left(-\frac{u v}{w}\right)+\frac{1}{12} \log ^{3}(w)\right. \\
& \left.+\frac{1}{2} \log (u) \log (v) \log (w)+(u \leftrightarrow v)\right]+\operatorname{Li}_{3}(1-v)-\operatorname{Li}_{3}(u)+\frac{1}{2} \log ^{2}(v) \log \left(\frac{1-v}{u}\right)-\zeta_{2} \log \left(\frac{u v}{w}\right) .
\end{aligned}
$$

T_3 function is also a building block appearing in many form factors in N=4 SYM: $\quad T_{3}=-\left(R_{i}^{(2)}\left|\begin{array}{l}X X X \\ X Y\end{array}\right|_{3}-\zeta_{2} \log (u)\right.$

Finite remainder

Degree 2 to 0:

$$
\begin{aligned}
\Omega_{\mathcal{O}_{1} ; 2}^{(2)}= & \left\{\frac{\left(\frac{u^{2}}{w^{2}}+\frac{v^{2}}{w^{2}}-1\right)\left[\operatorname{Li}_{2}(1-u)+\frac{1}{2} \log (u) \log (v)-\frac{1}{2} \zeta_{2}\right]-\frac{55}{48} \log ^{2}(u)+\frac{73}{72} \log (u) \log (v)}{}\right. \\
& \left.+\frac{23}{6} \zeta_{2}+\operatorname{perms}(u, v, w)\right\}-\frac{19}{36} \log (u v w) \log \left(-q^{2}\right)-\frac{19}{24} \log ^{2}\left(-q^{2}\right) . \\
\Omega_{\mathcal{O}_{1} ; 1}^{(2)}= & \left(\frac{119}{18}+\frac{\left.\frac{v}{w}+\frac{u^{2}}{2 v w}\right) \log (u)+\left(\frac{119}{18}-\frac{1}{3 u v w}\right) \log \left(-q^{2}\right)+\operatorname{perms}(u, v, w)}{\Omega_{\mathcal{O}_{2} ; 0}^{(2)}=}=\frac{487}{72} \frac{1}{u v w}-\frac{14075}{216} .\right.
\end{aligned}
$$

Lower transcendental terms with rational kinematic coefficients are also identical to the $\mathrm{N}=4$ results.

Content

- Motivation
- Computation
- Results
- Summary and outlook

Summary

- Two-loop Higgs amplitudes with dim-7 operators
- Efficient method based on on-shell unitarity and IBP
- Simple analytic result which provide further evidence of transcendentality principle

Outlook

- Form factors with more general operators and more gluons
- Understand better the maximal transcendentality principle (more examples)
- Origin of the simplicity?

Is there a way to understand it directly? Bootstraps??

Thank you for your attention!

Recursion definition of "Symbol":

$$
\mathrm{d} f_{k}=\sum_{i} f_{k-1}^{i} \operatorname{dLog}\left(R_{i}\right), \quad \operatorname{Symbol}\left(f_{k}\right)=\sum_{i} \operatorname{Symbol}\left(f_{k-1}^{i}\right) \otimes R_{i}
$$

Some examples:

Function	Differential	symbol
R	$d R$	0
$\log (R)$	$d \log (R)$	R
$\log (R 1) \log (R 2)$	$\log R 1 \operatorname{dlogR2+logR2} \operatorname{dog} R 1$	$R 1 \otimes R 2+R 2 \otimes R 1$
$L i_{2}(R)$	$L i_{1}(R) d \log R$	$-(1-R) \otimes R$

Symbol contains analytics properties of functions, e.g. branch cuts.

Symbol

Properties:

$$
\begin{aligned}
& R_{1} \otimes \ldots \otimes\left(c R_{i}\right) \otimes \ldots \otimes R_{n}=R_{1} \otimes \ldots \otimes R_{i} \otimes \ldots \otimes R_{n} \quad \text { c }=\text { const } \\
& R_{1} \otimes \ldots \otimes\left(R_{i} R_{j}\right) \otimes \ldots \otimes R_{n}=R_{1} \otimes \ldots \otimes R_{i} \otimes \ldots \otimes R_{n}+R_{1} \otimes \ldots \otimes R_{j} \otimes \ldots \otimes R_{n}
\end{aligned}
$$

Make it easy to prove non-trivial identities, e.g.:

$$
\begin{aligned}
& \operatorname{Li}_{2}\left(\frac{x}{1-y}\right)+\mathrm{Li}_{2}\left(\frac{y}{1-x}\right)-\mathrm{Li}_{2}(x)-\mathrm{Li}_{2}(y)-\mathrm{Li}_{2}\left(\frac{x y}{(1-x)(1-y)}\right)=\log (1-x) \log (1-y) \\
& \text { Symbol }(\mathrm{LHS})=(1-x) \otimes(1-y)+(1-y) \otimes(1-x) \quad(x<1 \text { and } y<1)
\end{aligned}
$$

应用

复杂结果 \longrightarrow symbol \longrightarrow 简单结果

```
更进一步：
```

从一些基本约束出发，
直接求解symbol
\longrightarrow 简单结果
（这类方法称为Bootstrap）

Gauge invariant basis projection

$$
\begin{aligned}
& \left.F_{n}\left(\varepsilon_{i}, p_{i}, l_{a}\right)\right|_{\mathrm{cut}}=\sum_{\alpha} f_{n}^{\alpha}\left(p_{i}, l_{a}\right) B_{\alpha} \\
& f_{n}^{\alpha}\left(p_{i}, l_{a}\right)=B^{\alpha} \circ F_{n}\left(\varepsilon_{i}, p_{i}, l_{a}\right) \\
& B^{\alpha} \circ B_{\beta}=\delta_{\beta}^{\alpha}, B_{\alpha}=G_{\alpha \beta} B^{\beta}, G_{\alpha \beta}=B_{\alpha} \circ B_{\beta}
\end{aligned}
$$

Three gluon case:
$B_{1}=A_{1} C_{23}, \quad B_{2}=A_{2} C_{31}, \quad B_{3}=A_{3} C_{12}, \quad B_{4}=A_{1} A_{2} A_{3}$
where $A_{i}=\frac{\varepsilon_{i} \cdot p_{j}}{p_{i} \cdot p_{j}}-\frac{\varepsilon_{i} \cdot p_{k}}{p_{i} \cdot p_{k}}, \quad C_{i j}=\varepsilon_{i} \cdot \varepsilon_{j}-\frac{\left(p_{i} \cdot \varepsilon_{j}\right)\left(p_{j} \cdot \varepsilon_{i}\right)}{p_{i} \cdot p_{j}}$

Two gluon case:

$$
B_{0}=C_{12}
$$

UV renormalization

Coupling constant renormalisation:

$$
\alpha_{0}=\alpha_{s} S_{\epsilon}^{-1} \frac{\mu^{2 \epsilon}}{\mu_{0}^{2 \epsilon}}\left[1-\frac{\beta_{0}}{\epsilon} \frac{\alpha_{s}}{4 \pi}+\left(\frac{\beta_{0}^{2}}{\epsilon^{2}}-\frac{\beta_{1}}{2 \epsilon}\right)\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}+\mathcal{O}\left(\alpha_{s}^{3}\right)\right]
$$

Renormalisation constant Z for the operators:

$$
\mathcal{O}_{I}^{b} \rightarrow Z_{I J} \mathcal{O}_{I}^{b} \quad Z=1+\sum_{l=1}^{\infty}\left(\frac{\alpha_{s}}{4 \pi}\right)^{l} Z^{(l)}
$$

Renormalized form factor: $F=g_{s}^{?} S_{c}^{-x / 2} \sum_{i=0}^{\infty}\left(\frac{\alpha_{s}}{4 \pi}\right)^{l} F^{(t)}$

$$
\begin{aligned}
F^{(0)} & =F_{\mathrm{b}}^{(0)}, \\
F^{(1)} & =S_{\epsilon}^{-1} F_{\mathrm{b}}^{(1)}+\left(Z^{(1)}-\frac{x}{2} \frac{\beta_{0}}{\epsilon}\right) F_{\mathrm{b}}^{(0)}, \\
F^{(2)} & =S_{\epsilon}^{-2} F_{\mathrm{b}}^{(2)}+S_{\epsilon}^{-1}\left[Z^{(1)}-\left(1+\frac{x}{2}\right) \frac{\beta_{0}}{\epsilon}\right] F_{\mathrm{b}}^{(1)} \\
& +\left[Z^{(2)}-\frac{x}{2} \frac{\beta_{0}}{\epsilon} Z^{(1)}+\frac{x^{2}+2 x}{8} \frac{\beta_{0}^{2}}{\epsilon^{2}}-\frac{x}{4} \frac{\beta_{1}}{\epsilon}\right] F_{\mathrm{b}}^{(0)}
\end{aligned}
$$

IR subtraction

Universal IR structure:

[Catani 1998]

$$
\begin{aligned}
& F^{(1)}=I^{(1)}(\epsilon) F^{(0)}+F^{(1), \mathrm{fin}}+\mathcal{O}(\epsilon) \\
& F^{(2)}=I^{(2)}(\epsilon) F^{(0)}+I^{(1)}(\epsilon) F^{(1)}+F^{(2), \mathrm{fin}}+\mathcal{O}(\epsilon)
\end{aligned}
$$

Where $I^{(1)}(\epsilon)=-\frac{e^{\gamma_{E} \epsilon}}{\Gamma(1-\epsilon)}\left(\frac{N_{c}}{\epsilon^{2}}+\frac{\beta_{0}}{2 \epsilon}\right) \sum_{i=1}^{n}\left(-s_{i, i+1}\right)^{-\epsilon}$,

$$
\begin{aligned}
I^{(2)}(\epsilon) & =-\frac{1}{2}\left[I^{(1)}(\epsilon)\right]^{2}-\frac{\beta_{0}}{\epsilon} I^{(1)}(\epsilon) \\
& +\frac{e^{-\gamma_{E} \epsilon} \Gamma(1-2 \epsilon)}{\Gamma(1-\epsilon)}\left[\frac{\beta_{0}}{\epsilon}+\left(\frac{67}{9}-\frac{\pi^{2}}{3}\right) N_{c}\right] I^{(1)}(2 \epsilon) \\
& +n \frac{e^{\gamma_{E} \epsilon}}{\epsilon \Gamma(1-\epsilon)}\left[\left(\frac{\zeta_{3}}{2}+\frac{5}{12}+\frac{11 \pi^{2}}{144}\right) N_{c}^{2}\right] .
\end{aligned}
$$

Anomalous dimension

Operator mixing:

$$
\begin{aligned}
&\left.F_{\mathcal{O}_{1}}^{(2)}\left(1^{-}, 2^{-}, 3^{-}\right)\right|_{Z^{(2)} \text {-part }}=F_{\mathcal{O}_{1}}^{(0)}\left(1^{-}, 2^{-}, 3^{-}\right)\left(-\frac{19}{24 \epsilon^{2}}+\frac{25}{12 \epsilon}-\frac{1}{u v w} \frac{1}{\epsilon}\right) \\
&=\left(-\frac{19}{24 \epsilon^{2}}+\frac{25}{12 \epsilon}\right) F_{\mathcal{O}_{1}}^{(0)}\left(1^{-}, 2^{-}, 3^{-}\right)-\frac{F_{\tilde{\mathcal{O}}_{2}}^{(0)}\left(1^{-}, 2^{-}, 3^{-}\right)}{\epsilon} \\
& F_{\mathcal{O}_{1}}^{(2)}\left(1^{-}, 2^{-}\right)=F_{\tilde{\mathcal{O}}_{2}}^{(0)}\left(1^{-}, 2^{-}\right)\left(-\frac{1}{\epsilon}+2 \log s_{12}-\frac{487}{72}\right)+\mathcal{O}\left(\epsilon^{1}\right)
\end{aligned}
$$

Eigen-operators:

$$
\begin{aligned}
& \tilde{\mathcal{O}}_{2}=-\frac{3}{2}\left(\mathcal{O}_{2}+8 g_{\mathrm{YM}} \mathcal{O}_{1}\right)=-\frac{3}{4} \partial^{2} \mathcal{O}_{0} \\
& \tilde{\mathcal{O}}_{1}=\mathcal{O}_{1}+\frac{1}{\epsilon} \frac{1}{g_{\mathrm{YM}}}\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} \tilde{\mathcal{O}}_{2}
\end{aligned}
$$

Anomalous dimension: $\gamma=\mu \frac{\partial}{\partial \mu} \log Z$

$$
Z_{\tilde{O}_{1}}^{(2)}=-\frac{19}{24 \epsilon^{2}}+\frac{25}{12 \epsilon}, \quad \underline{\gamma_{\tilde{O}_{1}}^{(2)}=\frac{25}{3}}
$$

2-loop 3-gluon

$\operatorname{Tr}\left(F^{3}\right) \quad$ cut (b):

Other MIs:

(4)

(2)

(6)

$(3)^{\prime}$

Full result $=\frac{1}{2}\left(\sum_{i=1}^{7} c_{i} M_{i}+\sum_{i=2,5} c_{i} M_{i}\right)+\operatorname{perms}\left(p_{1}, p_{2}, p_{3}\right)$

