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Quantum Field theory (QFT)

SM-like Higgs 
boson discoveredStandard Model (SM) 

of Particle Physics

QFT is the foundation of modern theoretical physics: 
particle physics, condensed matter, gravity and cosmology, etc.
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New physics?!

Large Hadron Collider (LHC)

Simulated CMS event

Higher energy and luminosity  ->  increasing precision

Precise theoretical prediction — at two or higher loops — 
of the scattering processes is mandatory.  

Precise test of SM



Higgs boson @ LHC

The dominant production mechanism is the gluon 
fusion through a top quark loop.
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Higgs boson @ LHC
The dominant production mechanism is the 
gluon fusion through a top quark loop.
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Effective Field Theory (EFT)

Effective gluon-Higgs vertex:

There have been computations for inclusive Higgs production 
to N^3LO orders in the heavy quark limit.

allows us to study this effect and obtain the two-loop anomalous dimensions for the first time.

The rest of the paper is organized as follows. We first review the effective action and

divergence structures in section 2. Then we explain the strategy of computation in section 3.

The results are presented in section 4, followed by a discussion section.

2 Setup

2.1 Effective Lagrangian

Leff = C0Htr(G2) +O

(

1

m2
t

)

, (2.1)

Leff = C0O0 +
1

m2
t

4
∑

i=1

CiOi +O

(

1

m4
t

)

, (2.2)

Higgs production from gluon fusion can be computed using an effective Lagrangian

Leff = Ĉ0O0 +
1

m2
t

4
∑

i=1

ĈiOi +O

(

1

m4
t

)

, (2.3)

where O0 = Htr(G2) is the leading term, and the subleading terms contain dimension-7

operators [35–39]

O1 = Htr(DρGµνD
ρGµν) , (2.4)

O2 = Htr(G ν
µ G ρ

ν G µ
ρ ) , (2.5)

O3 = Htr(DρGρµDσG
σµ) , (2.6)

O4 = Htr(GµρD
ρDσG

σµ) . (2.7)

In this paper, we will focus on the pure gluon sector. The last two operators have zero

contribution in the sector and only contribute when there are internal quark lines. The full

results including complete quarks will be presented else where [? ].

An amplitude with a Higgs boson and n gluons is equivalent to the form factor with an

operator Oi

FOi,n =

∫

d4x e−iq·x⟨p1, . . . , pn|Oi(x)|0⟩ , (2.8)

where the operator Oi corresponds to a Higgs-gluon interaction term Oi in the effective

Lagrangian with the Higgs field stripped off, i.e. Oi = HOi, and q2 = m2
H . In the following,

we will refer Higgs amplitudes as form factors.

Using Bianchi identity one can decompose the operator O1 as (see e.g. [36])

O1 =
1

2
∂2O0 − 4 gO2 + 2O4 . (2.9)

Since O4 has no contribution in the pure gluon sector, we have the relation for the form factor

FO1 =
1

2
q2 FO0 − 4 g FO2 , (2.10)

where the partial derivatives reduce to q which is the total momentum flowing through the

O0 operator. This should serve as self-consistency check for the result.
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2. pT distribution of Higgs Bosons

At LO, the Higgs boson has no pT and a transverse momentum spectrum for the Higgs

is first generated by the process, gg ! gh, which is an NLO contribution to the gluon

fusion process[48]. As pT ! 0, the partonic cross section for Higgs plus jet production

diverges as 1/p2
T ,
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where �̂0 is the LO gg ! h cross section given in Eq. 90, and s, t and u are the partonic

Mandelstam invariants. The pT spectrum for Higgs plus jet at LO is shown in Fig. 13,

where the contributions from the gg and qg, qg initial states are shown separately. Also

shown is the mt ! 1 limit of the spectrum that is derived from the e↵ective Lagrangian of

Eq. 97 . The e↵ective Lagrangian approximation fails around pT ⇠ 2mt. In this process,

there are several distinct momentum scales (pT , mh, mt), as opposed to gluon fusion where

there is only a single scale (mh/mt) at LO. The expansion in mh
mt

for gg ! gh receives

corrections of O( s
m2

t
,

p2
T

m2
t
) and for pT

>⇠ 2mt, the EFT large top quark mass expansion

cannot be used to obtain reliable distributions.

NLO, NNLO, and N3LO radiative corrections to Higgs plus jet production have been

calculated[49–52] using the mt ! 1 approximation. The lowest order result of Eq. 117

is then reweighted by a K factor derived in the mt ! 1 limit for each kinematic bin.

The e↵ects of the higher order corrections are significant and increase the rate by a factor

of around 1.8 as shown in Fig. 14. The singularity of the LO result at pT = 0 is clearly

visible in Fig. 14 and we note that after the inclusion of the NLO corrections, the pT

spectrum no longer diverges as pT ! 0.

The terms which are singular as pT ! 0 can be isolated and the integrals performed

explicitly. Considering only the gg initial state[53],

d�

dp2
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(pp ! gh) |p2
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where z ⌘ m2
h/S, �0 = (33 � 2nlf )/6, and nlf = 5 is the number of light flavors. Clearly

when pT << mh, the terms containing the logarithms resulting from soft gluon emission

can give a large numerical contribution. The logarithms of the form ↵n
s logm(m2

h/p
2
T ) can

32

[Anastasiou, Duhr, Dulat, Furlan, Gehrmann, 
Herzog, Lazopoulos, Mistlberger 2016]
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where �̂0 is the LO gg ! h cross section given in Eq. 90, and s, t and u are the partonic

Mandelstam invariants. The pT spectrum for Higgs plus jet at LO is shown in Fig. 13,

where the contributions from the gg and qg, qg initial states are shown separately. Also

shown is the mt ! 1 limit of the spectrum that is derived from the e↵ective Lagrangian of

Eq. 97 . The e↵ective Lagrangian approximation fails around pT ⇠ 2mt. In this process,

there are several distinct momentum scales (pT , mh, mt), as opposed to gluon fusion where

there is only a single scale (mh/mt) at LO. The expansion in mh
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cannot be used to obtain reliable distributions.
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calculated[49–52] using the mt ! 1 approximation. The lowest order result of Eq. 117

is then reweighted by a K factor derived in the mt ! 1 limit for each kinematic bin.

The e↵ects of the higher order corrections are significant and increase the rate by a factor

of around 1.8 as shown in Fig. 14. The singularity of the LO result at pT = 0 is clearly

visible in Fig. 14 and we note that after the inclusion of the NLO corrections, the pT

spectrum no longer diverges as pT ! 0.
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Dimension-7 operators

allows us to study this effect and obtain the two-loop anomalous dimensions for the first time.

The rest of the paper is organized as follows. We first review the effective action and

divergence structures in section 2. Then we explain the strategy of computation in section 3.

The results are presented in section 4, followed by a discussion section.

2 Setup

2.1 Effective Lagrangian

Leff = C0Htr(G2) +O

(

1

m2
t

)

, (2.1)

Leff = C0O0 +
1

m2
t

4
∑

i=1

CiOi +O

(

1

m4
t

)

, (2.2)

Higgs production from gluon fusion can be computed using an effective Lagrangian

Leff = Ĉ0O0 +
1

m2
t

4
∑

i=1

ĈiOi +O

(

1

m4
t

)

, (2.3)

where O0 = Htr(G2) is the leading term, and the subleading terms contain dimension-7

operators [35–39]

O1 = Htr(DρGµνD
ρGµν) , (2.4)

O2 = Htr(G ν
µ G ρ

ν G µ
ρ ) , (2.5)

O3 = Htr(DρGρµDσG
σµ) , (2.6)

O4 = Htr(GµρD
ρDσG

σµ) . (2.7)

In this paper, we will focus on the pure gluon sector. The last two operators have zero

contribution in the sector and only contribute when there are internal quark lines. The full

results including complete quarks will be presented else where [? ].

An amplitude with a Higgs boson and n gluons is equivalent to the form factor with an

operator Oi

FOi,n =

∫

d4x e−iq·x⟨p1, . . . , pn|Oi(x)|0⟩ , (2.8)

where the operator Oi corresponds to a Higgs-gluon interaction term Oi in the effective

Lagrangian with the Higgs field stripped off, i.e. Oi = HOi, and q2 = m2
H . In the following,

we will refer Higgs amplitudes as form factors.

Using Bianchi identity one can decompose the operator O1 as (see e.g. [36])

O1 =
1

2
∂2O0 − 4 gO2 + 2O4 . (2.9)

Since O4 has no contribution in the pure gluon sector, we have the relation for the form factor

FO1 =
1

2
q2 FO0 − 4 g FO2 , (2.10)

where the partial derivatives reduce to q which is the total momentum flowing through the

O0 operator. This should serve as self-consistency check for the result.
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Higgs plus jet production 
is sensitive to new physics.

2

the N = 4 result. In particular, except the transcenden-
tal degree zero part, all terms having rational kinematics
coefficients are identical between two theories.
The computation of two-loop amplitudes in QCD, as

is well known, is a challenging problem. While the two-
loop four-gluon amplitudes are known analytically long
time ago [30–32], the planar two-loop five-gluon ampli-
tudes are still in progress [33–42]. The computation of
Higgs amplitudes has extra complications. The inclusion
of higher dimension operators introduces new complex
interaction vertices and also increases the powers of loop
momenta in the integral numerators. Furthermore, since
the Higgs boson is a color singlet, one encounters non-
planar integrals even for planar Higgs amplitudes, which
makes the reconstruction of full integrand via on-shell
unitarity method [43–45] highly non-trivial.
In this paper, we develop an efficient approach to com-

pute Higgs amplitudes by combinng the unitarity method
and the integration by parts (IBP) reduction [46, 47] in
an ‘unconventional’ way. In particular, we apply the IBP
reduction directly for the cut integrands, which computes
the final coefficients of master integrals, thus avoiding
reconstructing the full integrand. Besides, the IBP re-
duction, which is often the most time consuming part
of the calculation, can be simplified using the on-shell
condition. Similar strategy of combining unitarity cut
and IBP reduction has also been used in [42], see also
[41, 48–52].

Setup.—Higgs production from gluon fusion can be com-
puted using an effective Lagrangian

Leff = Ĉ1O0 +
1

m2
t

4
∑

i=1

ĈiOi +O

(

1

m4
t

)

, (1)

where O0 = HTr(G2) is the leading term, and the sub-
leading terms contain dimension-7 operators [53–57]

O1 = HTr(G ν
µ G ρ

ν G µ
ρ ) , (2)

O2 = HTr(DρGµνD
ρGµν) , (3)

O3 = HTr(DρGρµDσG
σµ) , (4)

O4 = HTr(GµρD
ρDσG

σµ) . (5)

The explicit form of the coefficients Ĉi is not important
for this study, although their renormalization is deter-
mined by the renormalization constant mentioned later.
In this paper, we will focus on the pure gluon sector. The
last two operators have zero contribution in the sector
and can contribute when there are internal quark lines,
see e.g. [57].
An amplitude with a Higgs boson and n gluons is

equivalent to a form factor with the operator Oi

FOi,n =

∫

d4x e−iq·x⟨p1, . . . , pn|Oi(x)|0⟩ , (6)

where the operator Oi corresponds to a Higgs-gluon
interaction term Oi in the EFT with the Higgs field

stripped off, i.e. Oi = HOi. q is the total momentum
flowing through the O0 operator, satisfying q2 = m2

H .
In the following, we will refer Higgs amplitudes as form
factors.
Using Bianchi identity one can decompose the operator

O2 as (see e.g. [54])

O2 =
1

2
∂2O0 − 4 gYMO1 + 2O4 . (7)

In the pure gluon sector, since the form factor of O4 is
zero, we have the relation for the form factors

FO2 =
1

2
q2 FO0 − 4 gYM FO1 , (8)

where the partial derivatives reduce to q2. This will serve
as self-consistency check for the result.
A further simplification of the computation is that for

the form factors with three gluons in the pure YM sector,
the color factor factorizes out up to two loops as

F (l)(1a1 , 2a2 , 3a3) = fa1a2a3N l
cF

(l)(1, 2, 3) (9)

for l ≤ 2, where fa1a2a3 is the structure constant of the
gauge group. This can be easily seen by examining the
color factors of various two-loop topologies. This im-
plies that the form factor has only planar contribution.
Below we consider only the color stripped form factor
F (l)(1, 2, 3), and the color factor can be easily reproduced
using (9).

Computation.—Unitarity method is a power tool to con-
struct loop amplitudes or form factors from their discon-
tinuities, i.e. by applying cuts. On the cut, the loop
integrand factorizes into a product of tree-level or lower-
loop amplitudes and form factors. The commonly used
strategy of unitarity method is to reconstruct the full in-
tegrand from the cuts. We will use a different strategy
where the IBP reduction is applied directly for the cut
integrand. In this way, there is no need to construct the
full integrand, and one obtains directly the final coeffi-
cients ci of IBP master integrals:

F (l)|cut =
∑

helicities

F tree
∏

j

Atree
j =

∑

i

ci Mi|cut , (10)

where Mi are IBP master integrals. We would like to
stress that a coefficient ci computed in a single cut chan-
nel must be the final answer. This is because the master
integrals are ‘irreducible’, and the coefficients are loop
momenta independent without ambiguity. Since the cut
integrand is simpler than the full integrand, it also sim-
plifies the IBP reduction. Below we describe our strategy
in more details.
We apply D-dimensional planar unitarity method.

Tree amplitudes and form factors valid in D dimensions
can be computed using planar Feynman diagrams, or re-
cursive techniques such as Berends-Giele method [58].

High dimension operators contribution are important.
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1
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where O0 = Htr(G2) is the leading term, and the subleading terms contain dimension-7
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O2 = Htr(G ν
µ G ρ
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O3 = Htr(DρGρµDσG
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contribution in the sector and only contribute when there are internal quark lines. The full

results including complete quarks will be presented else where [? ].
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operator Oi

FOi,n =
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d4x e−iq·x⟨p1, . . . , pn|Oi(x)|0⟩ , (2.8)

where the operator Oi corresponds to a Higgs-gluon interaction term Oi in the effective
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H . In the following,

we will refer Higgs amplitudes as form factors.

Using Bianchi identity one can decompose the operator O1 as (see e.g. [36])

O1 =
1
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∂2O0 − 4 gO2 + 2O4 . (2.9)
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FO1 =
1

2
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O0 operator. This should serve as self-consistency check for the result.
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the N = 4 result. In particular, except the transcenden-
tal degree zero part, all terms having rational kinematics
coefficients are identical between two theories.
The computation of two-loop amplitudes in QCD, as

is well known, is a challenging problem. While the two-
loop four-gluon amplitudes are known analytically long
time ago [30–32], the planar two-loop five-gluon ampli-
tudes are still in progress [33–42]. The computation of
Higgs amplitudes has extra complications. The inclusion
of higher dimension operators introduces new complex
interaction vertices and also increases the powers of loop
momenta in the integral numerators. Furthermore, since
the Higgs boson is a color singlet, one encounters non-
planar integrals even for planar Higgs amplitudes, which
makes the reconstruction of full integrand via on-shell
unitarity method [43–45] highly non-trivial.
In this paper, we develop an efficient approach to com-

pute Higgs amplitudes by combinng the unitarity method
and the integration by parts (IBP) reduction [46, 47] in
an ‘unconventional’ way. In particular, we apply the IBP
reduction directly for the cut integrands, which computes
the final coefficients of master integrals, thus avoiding
reconstructing the full integrand. Besides, the IBP re-
duction, which is often the most time consuming part
of the calculation, can be simplified using the on-shell
condition. Similar strategy of combining unitarity cut
and IBP reduction has also been used in [42], see also
[41, 48–52].

Setup.—Higgs production from gluon fusion can be com-
puted using an effective Lagrangian

Leff = Ĉ1O0 +
1

m2
t

4
∑

i=1

ĈiOi +O

(

1

m4
t

)

, (1)

where O0 = HTr(G2) is the leading term, and the sub-
leading terms contain dimension-7 operators [53–57]

O1 = HTr(G ν
µ G ρ

ν G µ
ρ ) , (2)

O2 = HTr(DρGµνD
ρGµν) , (3)

O3 = HTr(DρGρµDσG
σµ) , (4)

O4 = HTr(GµρD
ρDσG

σµ) . (5)

The explicit form of the coefficients Ĉi is not important
for this study, although their renormalization is deter-
mined by the renormalization constant mentioned later.
In this paper, we will focus on the pure gluon sector. The
last two operators have zero contribution in the sector
and can contribute when there are internal quark lines,
see e.g. [57].
An amplitude with a Higgs boson and n gluons is

equivalent to a form factor with the operator Oi

FOi,n =

∫

d4x e−iq·x⟨p1, . . . , pn|Oi(x)|0⟩ , (6)

where the operator Oi corresponds to a Higgs-gluon
interaction term Oi in the EFT with the Higgs field

stripped off, i.e. Oi = HOi. q is the total momentum
flowing through the O0 operator, satisfying q2 = m2

H .
In the following, we will refer Higgs amplitudes as form
factors.
Using Bianchi identity one can decompose the operator

O2 as (see e.g. [54])

O2 =
1

2
∂2O0 − 4 gYMO1 + 2O4 . (7)

In the pure gluon sector, since the form factor of O4 is
zero, we have the relation for the form factors

FO2 =
1

2
q2 FO0 − 4 gYM FO1 , (8)

where the partial derivatives reduce to q2. This will serve
as self-consistency check for the result.
A further simplification of the computation is that for

the form factors with three gluons in the pure YM sector,
the color factor factorizes out up to two loops as

F (l)(1a1 , 2a2 , 3a3) = fa1a2a3N l
cF

(l)(1, 2, 3) (9)

for l ≤ 2, where fa1a2a3 is the structure constant of the
gauge group. This can be easily seen by examining the
color factors of various two-loop topologies. This im-
plies that the form factor has only planar contribution.
Below we consider only the color stripped form factor
F (l)(1, 2, 3), and the color factor can be easily reproduced
using (9).

Computation.—Unitarity method is a power tool to con-
struct loop amplitudes or form factors from their discon-
tinuities, i.e. by applying cuts. On the cut, the loop
integrand factorizes into a product of tree-level or lower-
loop amplitudes and form factors. The commonly used
strategy of unitarity method is to reconstruct the full in-
tegrand from the cuts. We will use a different strategy
where the IBP reduction is applied directly for the cut
integrand. In this way, there is no need to construct the
full integrand, and one obtains directly the final coeffi-
cients ci of IBP master integrals:

F (l)|cut =
∑

helicities

F tree
∏

j

Atree
j =

∑

i

ci Mi|cut , (10)

where Mi are IBP master integrals. We would like to
stress that a coefficient ci computed in a single cut chan-
nel must be the final answer. This is because the master
integrals are ‘irreducible’, and the coefficients are loop
momenta independent without ambiguity. Since the cut
integrand is simpler than the full integrand, it also sim-
plifies the IBP reduction. Below we describe our strategy
in more details.
We apply D-dimensional planar unitarity method.

Tree amplitudes and form factors valid in D dimensions
can be computed using planar Feynman diagrams, or re-
cursive techniques such as Berends-Giele method [58].

This provides the two-loop virtual amplitudes for the top 
mass correction in EFT.



Form factors

H

allows us to study this effect and obtain the two-loop anomalous dimensions for the first time.

The rest of the paper is organized as follows. We first review the effective action and

divergence structures in section 2. Then we explain the strategy of computation in section 3.

The results are presented in section 4, followed by a discussion section.

2 Setup

2.1 Effective Lagrangian

Leff = C0Htr(G2) +O

(

1

m2
t

)

, (2.1)

Leff = C0O0 +
1

m2
t

4
∑

i=1

CiOi +O

(

1

m4
t

)

, (2.2)

Higgs production from gluon fusion can be computed using an effective Lagrangian

Leff = Ĉ0O0 +
1

m2
t

4
∑

i=1

ĈiOi +O

(

1

m4
t

)

, (2.3)

where O0 = Htr(G2) is the leading term, and the subleading terms contain dimension-7

operators [35–39]

O1 = Htr(DρGµνD
ρGµν) , (2.4)

O2 = Htr(G ν
µ G ρ

ν G µ
ρ ) , (2.5)

O3 = Htr(DρGρµDσG
σµ) , (2.6)

O4 = Htr(GµρD
ρDσG

σµ) . (2.7)

In this paper, we will focus on the pure gluon sector. The last two operators have zero

contribution in the sector and only contribute when there are internal quark lines. The full

results including complete quarks will be presented else where [? ].

An amplitude with a Higgs boson and n gluons is equivalent to the form factor with an

operator Oi

FOi,n =

∫

d4x e−iq·x⟨p1, . . . , pn|Oi(x)|0⟩ , (2.8)

where the operator Oi corresponds to a Higgs-gluon interaction term Oi in the effective

Lagrangian with the Higgs field stripped off, i.e. Oi = HOi, and q2 = m2
H . In the following,

we will refer Higgs amplitudes as form factors.

Using Bianchi identity one can decompose the operator O1 as (see e.g. [36])

O1 =
1

2
∂2O0 − 4 gO2 + 2O4 . (2.9)

Since O4 has no contribution in the pure gluon sector, we have the relation for the form factor

FO1 =
1

2
q2 FO0 − 4 g FO2 , (2.10)

where the partial derivatives reduce to q which is the total momentum flowing through the

O0 operator. This should serve as self-consistency check for the result.
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Higgs amplitudes are equivalent to form factors:

Linear relation:

2

the N = 4 result. In particular, except the transcenden-
tal degree zero part, all terms having rational kinematics
coefficients are identical between two theories.
The computation of two-loop amplitudes in QCD, as

is well known, is a challenging problem. While the two-
loop four-gluon amplitudes are known analytically long
time ago [30–32], the planar two-loop five-gluon ampli-
tudes are still in progress [33–42]. The computation of
Higgs amplitudes has extra complications. The inclusion
of higher dimension operators introduces new complex
interaction vertices and also increases the powers of loop
momenta in the integral numerators. Furthermore, since
the Higgs boson is a color singlet, one encounters non-
planar integrals even for planar Higgs amplitudes, which
makes the reconstruction of full integrand via on-shell
unitarity method [43–45] highly non-trivial.
In this paper, we develop an efficient approach to com-

pute Higgs amplitudes by combinng the unitarity method
and the integration by parts (IBP) reduction [46, 47] in
an ‘unconventional’ way. In particular, we apply the IBP
reduction directly for the cut integrands, which computes
the final coefficients of master integrals, thus avoiding
reconstructing the full integrand. Besides, the IBP re-
duction, which is often the most time consuming part
of the calculation, can be simplified using the on-shell
condition. Similar strategy of combining unitarity cut
and IBP reduction has also been used in [42], see also
[41, 48–52].

Setup.—Higgs production from gluon fusion can be com-
puted using an effective Lagrangian

Leff = Ĉ1O0 +
1

m2
t

4
∑

i=1

ĈiOi +O

(

1

m4
t

)

, (1)

where O0 = HTr(G2) is the leading term, and the sub-
leading terms contain dimension-7 operators [53–57]

O1 = HTr(G ν
µ G ρ

ν G µ
ρ ) , (2)

O2 = HTr(DρGµνD
ρGµν) , (3)

O3 = HTr(DρGρµDσG
σµ) , (4)

O4 = HTr(GµρD
ρDσG

σµ) . (5)

The explicit form of the coefficients Ĉi is not important
for this study, although their renormalization is deter-
mined by the renormalization constant mentioned later.
In this paper, we will focus on the pure gluon sector. The
last two operators have zero contribution in the sector
and can contribute when there are internal quark lines,
see e.g. [57].
An amplitude with a Higgs boson and n gluons is

equivalent to a form factor with the operator Oi

FOi,n =

∫

d4x e−iq·x⟨p1, . . . , pn|Oi(x)|0⟩ , (6)

where the operator Oi corresponds to a Higgs-gluon
interaction term Oi in the EFT with the Higgs field

stripped off, i.e. Oi = HOi. q is the total momentum
flowing through the O0 operator, satisfying q2 = m2

H .
In the following, we will refer Higgs amplitudes as form
factors.
Using Bianchi identity one can decompose the operator

O2 as (see e.g. [54])

O2 =
1

2
∂2O0 − 4 gYMO1 + 2O4 . (7)

In the pure gluon sector, since the form factor of O4 is
zero, we have the relation for the form factors

FO2 =
1

2
q2 FO0 − 4 gYM FO1 , (8)

where the partial derivatives reduce to q2. This will serve
as self-consistency check for the result.
A further simplification of the computation is that for

the form factors with three gluons in the pure YM sector,
the color factor factorizes out up to two loops as

F (l)(1a1 , 2a2 , 3a3) = fa1a2a3N l
cF

(l)(1, 2, 3) (9)

for l ≤ 2, where fa1a2a3 is the structure constant of the
gauge group. This can be easily seen by examining the
color factors of various two-loop topologies. This im-
plies that the form factor has only planar contribution.
Below we consider only the color stripped form factor
F (l)(1, 2, 3), and the color factor can be easily reproduced
using (9).

Computation.—Unitarity method is a power tool to con-
struct loop amplitudes or form factors from their discon-
tinuities, i.e. by applying cuts. On the cut, the loop
integrand factorizes into a product of tree-level or lower-
loop amplitudes and form factors. The commonly used
strategy of unitarity method is to reconstruct the full in-
tegrand from the cuts. We will use a different strategy
where the IBP reduction is applied directly for the cut
integrand. In this way, there is no need to construct the
full integrand, and one obtains directly the final coeffi-
cients ci of IBP master integrals:

F (l)|cut =
∑

helicities

F tree
∏

j

Atree
j =

∑

i

ci Mi|cut , (10)

where Mi are IBP master integrals. We would like to
stress that a coefficient ci computed in a single cut chan-
nel must be the final answer. This is because the master
integrals are ‘irreducible’, and the coefficients are loop
momenta independent without ambiguity. Since the cut
integrand is simpler than the full integrand, it also sim-
plifies the IBP reduction. Below we describe our strategy
in more details.
We apply D-dimensional planar unitarity method.

Tree amplitudes and form factors valid in D dimensions
can be computed using planar Feynman diagrams, or re-
cursive techniques such as Berends-Giele method [58].
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momenta independent without ambiguity. Since the cut
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Tree amplitudes and form factors valid in D dimensions
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1

m2
t

4
∑

i=1
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where O0 = Htr(G2) is the leading term, and the subleading terms contain dimension-7

operators [35–39]
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In this paper, we will focus on the pure gluon sector. The last two operators have zero

contribution in the sector and only contribute when there are internal quark lines. The full

results including complete quarks will be presented else where [? ].

An amplitude with a Higgs boson and n gluons is equivalent to the form factor with an

operator Oi
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∫

d4x e−iq·x⟨p1, . . . , pn|Oi(x)|0⟩ , (2.13)
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Theoretical motivations



Feynman diagram?
Feynman diagram method works in 
principle, but the complexity grows 
extremely fast with increasing 
number of external legs / loops.

systematic analysis of their phenomenological implications. In addition to the development of these
tools for the calculation of exact matrix elements, effort has therefore also been put into finding
proper approximations which reliably simulate the exact solutions in the relevant regions of the
multi-particle phase-space and which are sufficiently simple to be handled analytically and fast to
evaluate numerically.

n 2 3 4 5 6 7 8

# of diagrams 4 25 220 2485 34300 559405 10525900

Table 1: The number of Feynman diagrams contributing to the scattering process gg → n g .

In this Report we collect and review these recent developments for the calculation of multi-parton
matrix elements in non-abelian gauge theories. For examples of how these matrix elements can be
used to obtain cross sections for processes in high energy colliders see EHLQ [29] and references
contained within.

In Section 2 we describe the helicity-amplitude technique and introduce explicit parametrizations
of the polarization vectors in terms of massless spinors. To reach a wide an audience as possible we
have chosen not to use the Weyl - van der Waarden formalism preferred by some researchers, see
for example Ref.[10].

In Section 3 we introduce an alternative to the standard Feynman diagram expansion, based
on the equivalence between the massless sector of a string theory and a Yang-Mills theory. This
expansion groups together subsets of Feynman diagrams for a given process in a gauge invariant
way. These subsets are easier to evaluate than the complete set and different gauges can be used for
each subset so as to maximize the simplifications induced by a proper choice of gauge. Furthermore,
different subsets of diagrams are related to one another through symmetry properties or algebraic
relations and can be obtained without further effort from the knowledge of a small number of building
blocks. This expansion can be extended to arbitrary processes involving particles in representations
other than the adjoint, and in this Section we construct this generalization.

Section 4 describes the use of Supersymmetry Ward identities to relate amplitudes with parti-
cles of different statistics. These relations are useful even when dealing with non-supersymmetric
theories because in many cases the additional supersymmetric degrees of freedom decouple from
the processes of interest. In addition, if the energy of the scattering process is large with respect to
the mass splittings within supersymmetry multiplets, these relations can be used to easily calculate
the matrix elements for the production of supersymmetric particles.

In Section 5 we illustrate the use of these tools with the explicit calculation of matrix elements
for processes with four and five partons, and give results for the scattering of six gluons and four
gluons plus a quark-antiquark pair. We hope this Section is useful for the reader who wants to
familiarize himself with the details of how these calculations are performed.

In Section 6 we prove various factorization properties using a string-theoretic approach, which
provides a compact way to represent multi-parton amplitudes. The results contained in this Section
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n-gluon tree amplitudes:



Surprising simplicity
MHV (Maximally-helicity-violating) amplitudes: [Parke, Taylor ’86]

1. Introduction

Quantum field theory is the pillar on which modern physics rests. It is an indispensable
tool from condensed matter physics to cosmology to particle physics and its success in de-
scribing nature has only recently again been demonstrated in the discovery of a Higgs-like
boson at the LHC [1,2]. But still, eighty years after quantum field theories have first been
studied, no four-dimensional, interacting quantum field theory has ever been solved ex-
actly. The lack of exact solutions is partly explained by that fact that standard methods for
the perturbative computation of observables using Feynman diagrams work nicely in prin-
ciple, but quickly become cumbersome beyond the simplest examples, making it difficult
to generate exact data. However, the final result is often much simpler than intermedi-
ate expressions. The prime example for this is the Parke-Taylor formula [3], describing a
colour-ordered n-gluon maximally helicity violating (MHV) scattering amplitude1 at tree
level, which, written in spinor helicity variables, is given by

Atree
n (1+, . . . , i−, . . . , j−, . . . , n+) =

⟨ij⟩4

⟨12⟩ · · · ⟨n1⟩ . (1.1)

This formula is valid for any number n of gluons. The simplicity of this one-line formula is
to be compared with the effort of calculating and summing up O(n!) Feynman diagrams,
every single one being more complicated than the final result. This formula begs for
another, simpler description.

Over the last decade new powerful methods were developed that allow the calculation
of scattering amplitudes without resorting to Feynman diagrams. In fact, the proof of the
Parke-Taylor formula Eq.(1.1) is by now textbook material (see, for example, [4]). This
progress is mostly due to calculations performed in a special theory, N = 4 supersym-
metric Yang-Mills theory with gauge group SU(N), which we abbreviate as N = 4SYM.
This theory is conformally invariant even at the quantum level and is currently the best
candidate for being a completely solvable quantum field theory, at least in the planar
limit N → ∞. In fact, the scaling dimension of certain operators in N = 4SYM can by
now be calculated efficiently using integrability techniques at all values of the coupling
constant [5–10] and it would be desirable to understand how this success can be lifted to
more complicated observables.

After scaling dimensions, scattering amplitudes are the simplest quantities character-
ising a theory. They are of course richer objects than operator dimensions because they
are functions of the kinematical invariants and not just numbers, but they still depend
solely on on-shell degrees of freedom. Another observable closely related to scattering
amplitudes are form factors, which are basically scattering amplitudes with operator in-
sertions and therefore mixtures between off-shell and on-shell degrees of freedom. While

1MHV amplitudes describe the scattering of n outgoing gluons with n− 2 gluons having positive helicity
and 2 gluons having negative helicity. Accordingly, amplitudes with k gluons having negative helicities
are called Nk−2MHV.

Comparing with result 
of Feynman diagrams:

so that it is desirable to choose the same reference momenta for all gluons of a
given helicity, and to take this momentum to be the momentum of one of the
opposite-helicity gluons. This will greatly reduce the number of non-vanishing εi ·εj

invariants. It also turns out that within the set of choices suggested by these
properties, it is preferable to choose a reference momentum that is cyclicly adjacent
to the momentum of the gluon.

As one simple example for the amplitude A(1−, 2+, 3+, 4+), consider reference
momenta (k4, k1, k1, k1) for the legs (1,2,3,4) respectively, leading to the simplifica-
tions

εi · εj = 0, k4 · ε1 = k1 · ε2 = k1 · ε3 = k1 · ε4 = 0

k3 · ε1 = −k2 · ε1 , k4 · ε2 = −k3 · ε2 ,

k4 · ε3 = −k2 · ε3 , k3 · ε4 = −k2 · ε4 .

(3.18)

The reason for using the spinor helicity method is now evident; many of the dot
products of polarization vectors amongst themselves and with the external momenta
simply vanish. Since an amplitude consists of sums of products of these dot prod-
ucts, with the spinor helicity method many of the terms in an amplitude will also
vanish with a judicious choice of the reference momenta.

Fig. 7: An unreadable form of the five-gluon tree amplitude in terms of dot
products of momentum and polarization vectors to illustrate its complexity.

The five-gluon tree amplitude provides a rather clear demonstration of the
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     Classical Polylogarithms
                     for
Amplitudes and Wilson Loops

A.B. Goncharov          M. Spradlin          C. Vergu          A. Volovich

[Del Duca, Duhr, Smirnov 2010]

Surprising simplicity
A more non-trivial example of two-loop amplitudes:

Six-gluon MHV amplitudes in N=4 SYM

a heroic analytical computation
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which is a single line of only classical polylogarithms!

17 pages =

require advanced mathematical tools ”Symbol”

Result can be remarkably simple



Many examples show that the final result can be put in a 
form which is far simpler than the intermediate steps !

Why so simple?

Surprising simplicity Hidden structure

“Theoretical experiment”:   
looking into the theoretical data, and try to find hidden 
structures



A toy model
N=4 SYM theory : -> QCD’s maximally supersymmetric cousin

L = � 1

g2YM

Tr(Fµ⌫F
µ⌫
) + fermions + scalars

where all fields are the in the adjoint representation of the gauge 
group SU(Nc).

Exactly solvable in planar limit!



Hierarchy of simplicity
Introduction to scattering amplitudes 8

massive
massless

sYM
N=4 sYM

planar N=4 sYM

Figure 3. Hierarchy of simplicity in scattering amplitudes for various types of
gauge theory.

in dimensional regularization.

There is a hierarchy of simplicity in the scattering amplitudes for various types of
gauge theory, as sketched in fig. 3. This hierarchy begins to be revealed at one loop. The

outer region of the diagram stands for a generic gauge theory with massive matter fields,

and perhaps massive gauge bosons, if the gauge symmetry is spontaneously broken, as

in electroweak theory. One-loop amplitudes in such a theory generically contain tadpole

integrals. One-particle cuts are nontrivial, and are particularly delicate because of

external-leg contributions [50, 24]. The cut structure of loop integrals containing massive
propagators in the loop is generically somewhat more complicated than the purely

massless case. Massive particles in the loop can be unstable, which usually necessitates

complex masses. When one enters the “massless” ring in fig. 3, corresponding to massless

gauge bosons and matter fields, most of these complications vanish, although there are

still generically rational parts to compute. The ring “sYM” stands for supersymmetric

gauge theories. Their one-loop amplitudes can be constructed from four-dimensional
unitarity cuts alone, i.e. there are no non-trivial rational parts [23].

Moving further inward in fig. 3, we arrive at N = 4 sYM. As mentioned earlier,

at one loop the coefficients of bubble and triangle integrals now vanish, as well as the

independent rational parts. (There are other gauge theories with vanishing bubble and

triangle coefficients, at least for their n-gluon amplitudes [51, 24].) The theory becomes

conformally invariant. It has been conjectured that the leading singularities — the
multi-loop analogs of the quadruple cuts — are sufficient to determine the amplitudes

at any loop order [18]. In addition, scattering amplitudes have empirically a predictable,

uniform transcendental weight [52, 53]. This weight refers to their construction out of

polylogarithms, logarithms, and Riemann ζ(n) values. For example, the finite (O(ϵ0))

terms in one-loop N = 4 sYM amplitudes are of weight two: They contain some terms

proportional to the polylogarithm Li2, and others which are products of two logarithms,
or proportional to ζ(2), but they do not contain any terms of lower transcendentality.

Lance Dixon 1105.0771



N=4 SYM

Techniques first developed by studying this toy model 
are used in general theories such as QCD, e.g.: 
BCFW recursion relations, unitarity on-shell method.

N=4 SYM QCD

Are there direct connections between the two theories?

??



Maximal Transcendentality Principle 

N=4 SYM QCD

Maximally transcendental parts are equal between two theories!?

Number Function Transcendentality 
degree

2/3,       1 rational function 0

π Log(x) 1

Riemann zeta value ζ(n) Polylog function Lin(x) n



Known examples

DµW = ∂µW − igYM[Aµ, W] . (25)

这类算符的反常量纲γ(j)在QCD中是非常重要的物理量。它决定了强子态中夸克、胶
子等部分子的分布函数f(x,Q2)（通过著名的DGLAP方程）：

γ(j) =

∫ 1

0

xj−1W (x) ,
d

d logQ2
f(x,Q2) =

∫ 1

x

dy

y
W (x/y)f(y,Q2) . (26)

d

d logQ2
f(j, Q2) = γ(j)f(j, Q2) . (27)

在Kotikov和Lipato等人的工作中，他们通过研究N = 4SYM中BFKL方程的性质以及
和DGLAP方程的关系，基于一些假设，提出了一个从QCD结果中推导N = 4中twist-
2算符反常量纲的方法。这一关系后来在文献中一般被称作“超越性原理”（“transcendentality
principle”），也就是说N = 4中的反常量纲对应于QCD中最大超越性部分。

γN=4(j) = γQCD(j)|max. trans (28)

在自旋j取无穷大极限所得到的反常量纲称为cusp反常量纲，

γ(j → ∞) = γcusp , (29)

它给出于场论中红外发散的领头阶的信息：

logFB =
∞
∑

ℓ=1

g2ℓ
(

− γ(ℓ)
cusp

(2ℓϵ)2
− G(ℓ)

0

2ℓϵ

) n
∑

i=1

(
µ2

−sii+1
)ℓϵ −

∞
∑

ℓ=1

g2ℓγ(ℓ)

2ℓϵ
+ Fin +O(ϵ) . (30)

另外，在散射振幅方面，研究发现所有的结果都具有最大超越性。具体地说，
就是在第n圈的量子修正结果中，函数所对应的权重是2n。比如单圈就只有log2,Li2函
数，以及π2出现。

7 最最最大大大超超超越越越性性性假假假说说说

两个问题：（1）为什么N = 4中的很多物理量只有最大超越性的数或函数？（2）
为什么这些量很多情形下等价于QCD中的最大超越性部分结果？

具有极大超对称应该是一个重要原因，比如具有极大超对称的引力理论N = 8
SUGRA理论中，引力散射振幅同样具有最大超越性。

8 总总总结结结和和和展展展望望望

在这个报告里我们介绍了

A 报报报告告告中中中的的的问问问题题题

6

• Anomalous dimension of twist-2 operators

• Two-loop remainder function  (kinematic dependent functions!):
[Brandhuber, Travaglini, GY 2012]

N=4 SYM 1/2 
BPS form factor

  Higgs plus 3-gluon 
amplitudes 

2. pT distribution of Higgs Bosons

At LO, the Higgs boson has no pT and a transverse momentum spectrum for the Higgs

is first generated by the process, gg ! gh, which is an NLO contribution to the gluon

fusion process[48]. As pT ! 0, the partonic cross section for Higgs plus jet production

diverges as 1/p2
T ,

d�̂

dt
(gg ! gh) = �̂0

3↵s

2⇡

⇢
1

p2
T

✓
1 � m2

h

s

◆4

+ 1 +

✓
m2

h

s

◆4�

�4

s

✓
1 � m2

h

s

◆2

+
2p2

T

s

�
, (117)

where �̂0 is the LO gg ! h cross section given in Eq. 90, and s, t and u are the partonic

Mandelstam invariants. The pT spectrum for Higgs plus jet at LO is shown in Fig. 13,

where the contributions from the gg and qg, qg initial states are shown separately. Also

shown is the mt ! 1 limit of the spectrum that is derived from the e↵ective Lagrangian of

Eq. 97 . The e↵ective Lagrangian approximation fails around pT ⇠ 2mt. In this process,

there are several distinct momentum scales (pT , mh, mt), as opposed to gluon fusion where

there is only a single scale (mh/mt) at LO. The expansion in mh
mt

for gg ! gh receives

corrections of O( s
m2

t
,

p2
T

m2
t
) and for pT

>⇠ 2mt, the EFT large top quark mass expansion

cannot be used to obtain reliable distributions.

NLO, NNLO, and N3LO radiative corrections to Higgs plus jet production have been

calculated[49–52] using the mt ! 1 approximation. The lowest order result of Eq. 117

is then reweighted by a K factor derived in the mt ! 1 limit for each kinematic bin.

The e↵ects of the higher order corrections are significant and increase the rate by a factor

of around 1.8 as shown in Fig. 14. The singularity of the LO result at pT = 0 is clearly

visible in Fig. 14 and we note that after the inclusion of the NLO corrections, the pT

spectrum no longer diverges as pT ! 0.

The terms which are singular as pT ! 0 can be isolated and the integrals performed

explicitly. Considering only the gg initial state[53],

d�

dp2
T dy

(pp ! gh) |p2
T!0⇠ �̂0

3↵s

2⇡

1

p2
T


6 log

✓
m2

h

p2
T

◆
� 2�0

�
g(zey)g(ze�y) + ... (118)

where z ⌘ m2
h/S, �0 = (33 � 2nlf )/6, and nlf = 5 is the number of light flavors. Clearly

when pT << mh, the terms containing the logarithms resulting from soft gluon emission

can give a large numerical contribution. The logarithms of the form ↵n
s logm(m2

h/p
2
T ) can
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Integration by part reduction

Solve a set of linear relations between different integrals.

�(l4 � p1)2 = �
q

p1

p2

l4
q2

2

Figure 4. Example of rational IBP relations.

[Mention Feynman parametrization here?]

A fundamental property of Feynman integrals, as those in equation (2.5), is that they

obey integration-by-parts (IBP) identities [60, 61], which follow from
Z

d

D
l

1

. . . d

D
lL

@

@l

µ
i

(integrand) = 0 . (2.6)

Working out the left-hand side gives to a linear relation between di↵erent integrals. By solving

linear systems of such equations, a generic Feynman integral can be expressed in terms of a

set of basis integrals. This is known as IBP reduction, and the set of basis integrals is also

known as the set of master integrals. The form factor was expressed in terms of set of master

integrals [28] using the Reduze code [62].2 The master integrals, however, have still evaded full

integration so far due to their overwhelming complexity. In addition, the full IBP reduction

leads generically to coe�cients that contain higher-order poles in ✏. This requires to evaluate

the master integrals to higher order of the ✏ expansion, which makes the problem harder. In

this paper a di↵erent strategy will be used by expandind the form factor in term of a set of

integrals which are each simple enough to integrate and have ✏-independent prefactors.

A particular subset of the IBP relation relations turn out to be very useful for our purpose.

These are the IBP relations in which the coe�cients in front of integrals are pure rational

numbers and independent of ✏. These ‘rational IBP’ relations have been obtained in [71] for

the form factor under study here as a subset of the full reduction. An example is shown in

Fig. 4. Note that integral relations derived from graph symmetries are a particular subset of

the rational IBP relations.

3 Uniformly transcendental basis

A key idea of the present study is to expand the form factor in a set of integrals that all

have uniform transcendentality (UT), which will be referred to as UT integrals. Such a

representation of the form factor will make manifest the expected maximal transcendentality

property of N = 4 SYM, and has been achieved at three loops in [33]. As will be shown in

next section, the UT integrals turn out to be much simpler to integrate than generic integrals,

which is crucial for the computation at hand.

There are basically three ways to show whether an integral is UT.

2
There exist various private and public implementations of IBP reduction, mainly based on Laporta’s

algorithm [63], such as AIR [64], FIRE [65–67] and Reduze [62, 68]. See LiteRed [69, 70] for an alternative

approach to IBP reduction.
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Integration by part (IBP):
[Chetyrkin, Tkachov 1981]

136 3 Loop-Level Structure

3.8 Integration by Parts and Differential Equations

In the previous sections we discussed how to introduce Feynman and Mellin-Barnes
representations for individual Feynman diagrams. In this section we discuss identi-
ties between different Feynman integrals. In a problem where many integrals need
to be computed, this allows to reduce the calculation to a smaller set of master inte-
grals. Knowing the reduction to master integrals also allows one to set up differential
equations for the latter, which can be an efficient method for computing them.

3.8.1 Integration by Parts Identities

Integration by parts identities are derived by noticing that total derivatives in Feyn-
man integrals vanish. Let us show the main idea using a simple example, and then
generalize.

Consider the one-loop massive bubble integral, for arbitrary integer powers of
the propagators,

J (a1, a2) :=
∫

dDk

iπD/2

1
(−k2 + m2)a1(−(k + p)2 + m2)a2

. (3.221)

The reason for considering integrals for arbitrary integer powers will become clear
shortly: it will allow us to derive relations between different integrals. Indeed, we
can derive an identity between integrals with different indices (a1, a2) by consider-
ing

0 =
∫

dDk

iπD/2

∂

∂kµ

(
kµ 1

(−k2 + m2)a1(−(k + p)2 + m2)a2

)
. (3.222)

In this way, after some algebra one obtains,

0 = (D − 2a1 − a2)J (a1, a2) − a2J (a1 − 1, a2 + 1)

+ 2m2a1J (a1 + 1, a2) +
(
2m2 − p2)a2J (a1, a2 + 1). (3.223)

A similar identity follows from the symmetry J (a1, a2) = J (a2, a1). This gives two
equations for J (a1 + 1, a2) and J (a1, a2 + 1) in terms of integrals for which the
sum of the indices equals a1 + a2. For a1 ≠ 0, a2 ≠ 0 this system is non-singular
and therefore we can always express J (b1, b2) in terms of integrals J (a1, a2) with
a1 +a2 = b1 +b2 −1. Let us discuss also the special case if one of the initial indices
is zero. For a2 = 0, Eq. (3.223) simply becomes

0 =(D − 2a1)J (a1,0) + 2m2a1J (a1 + 1,0), (3.224)

and therefore any J (a,0) can be expressed in terms of J (1,0).
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Therefore we see that any J (a1, a2) for positive a1, a2 can be expressed in terms
of J (1,0) and J (1,1) (and J (0,1) = J (1,0) by symmetry). For example, we have

J (1,2) = (D − 2)

2m2(4m2 − p2)
J (1,0) + (D − 3)

4m2 − p2 J (1,1). (3.225)

We can choose J (1,0) and J (1,1) as master integrals of this family of integrals.
Note that one can use the system of equations to define other master integrals. In
the present case, we can choose any two integrals that form a basis. For example, as
we will see later, in certain cases it may be advantageous to choose master integrals
different from the ‘canonical’ choice. For example, one may define UV finite mas-
ter integrals, such as J (3,0) and J (2,1), or, as we will see in Sect. 3.8.3, master
integrals that obey simple differential equations.

These ideas for reducing integrals to master integrals can straightforwardly be
generalized to arbitrary one-loop integrals with a higher number of external points.
We refer the interested reader to [14, 15] for more details and references regarding
the multi-loop case.

3.8.2 Differential Equations

The reduction to master integrals in the previous section can be used to set up (sys-
tems of) differential equations for the latter. The idea is to differentiate the master
integrals with respect to external parameters, such as momenta or masses. This will
in general give integrals of the same type, but with different powers of the propaga-
tors. The latter can then be reduced to master integrals using the reduction identities,
giving a system of (first-order) differential equations.

Let us illustrate this in the previous example of bubble integrals. We choose
J (3,0) and J (2,1) as master integrals, for D = 4 − 2ε. They are finite as ε → 0.

We consider the elementary tadpole integral J (3,0) to be known, see Eq. (3.4),

J (3,0) = Γ (3 − D/2)

Γ (3)

1
(m2)3−D/2 . (3.226)

Let us now determine J (2,1), which is a nontrivial function of m2 and q2. We can
differentiate it w.r.t. m2 and find the equation

∂m2J (2,1) = −2J (3,1) − J (2,2). (3.227)

Reducing the right-hand-side to master integrals works as follows. Taking the sum
and the difference of Eq. (3.223) for a1 = 1, a2 = 2 and a2 = 1, a2 = 1 one has

0 = 2(D − 5)J (2,1) − 2J (3,0) +
(
4m2 − p2)[J (2,2) + 2J (3,1)

]
, (3.228)

0 = 2J (2,1) − 2J (3,0) + p2[J (2,2) − 2J (3,1)
]
. (3.229)
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2 Master Integral

Public packages: 
Reduze 2, FIRE, 
LiteRed, etc
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Unitarity method

construct the integrand from physical singularities, 
i.e. poles or branch-cuts.

+ rational parts+ cbub+ ctri=    cbox

need D-dim cut

[Bern, Dixon, Dunbar, Kosower 1994]
[Britto, Cachazo, Feng 2004]• At one-loop:

As a replacement of Feynman diagram method:



Unitarity method

• need to further reduce the integrand, such as via 
IBP (sometimes IBP is the bottleneck)

• need D-dimensional cuts (rational term issue)

• non-trivial to reconstruct full integrand (non-planar)

Challenges for higher loop QCD:



Try new strategy

We will apply a different strategy which allow overcoming both issues. The key idea is

to apply IBP reduction directly for the cut integrand. The logic is thus outlined as:

F (l)|cut =
∑

helicities

F tree
∏

j

Atree
j =

∑

i

ci Mi|cut , (3.1)

whereMi are IBP master integrals. In this way, there is no need to contruct the full integrand,

but one reaches directly to the finally coefficients ci of IBP master integrals. Because the cut

integrand are simpler than the full integrand, there is a significant room of simplification for J: drop mas-

ter and men-

tion Zeng’s

paper

J: drop mas-

ter and men-

tion Zeng’s

paper

the IBP reduction. Furthermore, the coefficients computed by a single cut must be the final

answer, i.e. no ambiguity involved. This is because the master integrals are “unreducible”,

and the coefficients are loop momenta independent.
Y: mention

color factor

and only pla-

nar

Y: mention

color factor

and only pla-

nar

Below we illustrate our strategy in more details.

We will apply D-dimensional unitarity method. We choose to use the planar unitarity

cut. One can also carry out the non-planar unitarity cut, in which the building blocks with be

the complete amplitude(form factors) with color factors. However, as will be discussed later,

the non-planar contribution vanishes up to 2 loops, so these two methods are equivalent.

Tree amplitudes and form factors can be computed using planar Feynman diagrams, or

recursive techniques such as Berends-Giele method[42]. To sum over all helicity states for the

cut legs, we contract the internal gluon polarization vectors using the following rule:

εµi ◦ ενi ≡
∑

helicities

εµi ε
ν
i = ηµν −

qµpνi + qνpµi
q · pi

, (3.2)

where qµ is an arbitrary reference momenta.

Since the cut-integrand is gauge invariant, we can further expand the integral using a set

of gauge invariant basis Bα (see e.g. [27] and also [43, 44] for recent general discussion)

Fn(εi, pi, la)|cut =
∑

α

fα
n (pi, la)Bα . (3.3)

and fα
n (pi, la) can be computed as

fα
n (pi, la) = Bα ◦ Fn(εi, pi, la) , (3.4)

where the dual basis Bα play as projectors, which satisfies,

Bα ◦Bβ = δαβ , Bα = GαβB
β, Gαβ = Bα ◦Bβ . (3.5)

For the form factor with three gluons, the gauge invariant basis has 4 elements and we choose

the basis to be [27]

B1 = A1C23 , B2 = A2C31 , B3 = A3C12 , B4 = A1A2A3 , (3.6)

in which Ai and Cij are defined by

Ai =
εi · pj
pi · pj

−
εi · pk
pi · pk

, Cij = εi · εj −
(pi · εj)(pj · εi)

pi · pj
. (3.7)
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IBP for cut integrand

On-shell unitarity Integration by parts

• D-dimensional cuts
• no need to reconstruct full integrand
• IBP is simplified



Example

→ +c1 c2F
(0)
3 A

(0)
5

q
p1

p2

q qp1

p1

p2

p2

Figure 1. The triple cut for a two-loop form factor of tr(F 2) with two gluons.

(a) (b) (c) (d) (e)

Figure 2. The cuts needed in the 2-loop 2-point form factor calculation.

(1) (2) (3) (4) (5) (6)

Figure 3. The master integrals of the 2-loop 2-point form factor.

where the {i, j, k} in Ai are cyclic permutations of {1, 2, 3}. For form factors with only two

gluons, there is only one gauge basis B0 = C12.

After projection, the polarization vectors are contained in the basis Bα, and Fα
n contain

only scalar product of loop and external momenta, which can be reduced directly by IBP.

As a concrete example, we consider the triple cut for a two-loop form factor of tr(DFDF )

with two gluons as shown in Figure 1. Starting from the three-point tree form factor and five-

point tree amplitudes, one apply the polarization vector contraction rule (3.2), then project

to the gauge invariant basis B0, and finally apply IBP reduction. This cut allows us to fix

the coefficients of two masters integrals, the sunrise and the cross-ladder integrals, as shown

in Figure 1. To determine the coefficients of all master integrals, there are four other cuts to

consider, as shown in Figure 2.

There is an important new feature of form factor comparing to amplitudes computation.

Since the operator (or the Higgs particle) is color singlet, the leg carrying momentum q can

appear in the internal of the graph. Therefore one needs to consider the cuts (c) and (e) in

Figure 2. These two cuts can determine the coefficients of master integrals (3) and (5) in

Figure 3. Although these two master are the same integrals as (2) and (4) of Figure 3, their

have different physical origin of the planar diagrams, and their contribution must be sum

together. The full form factor F (2)
O1

can be given as

F (2)
O1

(p1, p2; q) =

( 4
∑

i=1

ciMi +
1

2

∑

i=5,6

ciMi

)

+ perms(p1, p2, p3) , (3.8)

where Mi correspond to the integrals with label (i) in Figure 3. Note the factor 1
2 is necessary
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• Project to gauge invariant basis

• Tree by Feynman rules in D dimensions
• Helicity sum via contraction rule:
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cut. One can also carry out the non-planar unitarity cut, in which the building blocks with be

the complete amplitude(form factors) with color factors. However, as will be discussed later,

the non-planar contribution vanishes up to 2 loops, so these two methods are equivalent.

Tree amplitudes and form factors can be computed using planar Feynman diagrams, or

recursive techniques such as Berends-Giele method[42]. To sum over all helicity states for the

cut legs, we contract the internal gluon polarization vectors using the following rule:

εµi ◦ ενi ≡
∑

helicities

εµi ε
ν
i = ηµν −

qµpνi + qνpµi
q · pi

, (3.2)

where qµ is an arbitrary reference momenta.

Since the cut-integrand is gauge invariant, we can further expand the integral using a set

of gauge invariant basis Bα (see e.g. [27] and also [43, 44] for recent general discussion)

Fn(εi, pi, la)|cut =
∑

α

fα
n (pi, la)Bα . (3.3)

and fα
n (pi, la) can be computed as

fα
n (pi, la) = Bα ◦ Fn(εi, pi, la) , (3.4)

where the dual basis Bα play as projectors, which satisfies,

Bα ◦Bβ = δαβ , Bα = GαβB
β, Gαβ = Bα ◦Bβ . (3.5)

For the form factor with three gluons, the gauge invariant basis has 4 elements and we choose

the basis to be [27]

B1 = A1C23 , B2 = A2C31 , B3 = A3C12 , B4 = A1A2A3 , (3.6)

in which Ai and Cij are defined by

Ai =
εi · pj
pi · pj

−
εi · pk
pi · pk

, Cij = εi · εj −
(pi · εj)(pj · εi)

pi · pj
. (3.7)
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Figure 1. The triple cut for a two-loop form factor of tr(F 2) with two gluons.
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Figure 2. The cuts needed in the 2-loop 2-point form factor calculation.
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Figure 3. The master integrals of the 2-loop 2-point form factor.

where the {i, j, k} in Ai are cyclic permutations of {1, 2, 3}. For form factors with only two

gluons, there is only one gauge basis B0 = C12.

After projection, the polarization vectors are contained in the basis Bα, and Fα
n contain

only scalar product of loop and external momenta, which can be reduced directly by IBP.

As a concrete example, we consider the triple cut for a two-loop form factor of tr(DFDF )

with two gluons as shown in Figure 1. Starting from the three-point tree form factor and five-

point tree amplitudes, one apply the polarization vector contraction rule (3.2), then project

to the gauge invariant basis B0, and finally apply IBP reduction. This cut allows us to fix

the coefficients of two masters integrals, the sunrise and the cross-ladder integrals, as shown

in Figure 1. To determine the coefficients of all master integrals, there are four other cuts to

consider, as shown in Figure 2.

There is an important new feature of form factor comparing to amplitudes computation.

Since the operator (or the Higgs particle) is color singlet, the leg carrying momentum q can

appear in the internal of the graph. Therefore one needs to consider the cuts (c) and (e) in

Figure 2. These two cuts can determine the coefficients of master integrals (3) and (5) in

Figure 3. Although these two master are the same integrals as (2) and (4) of Figure 3, their

have different physical origin of the planar diagrams, and their contribution must be sum

together. The full form factor F (2)
O1

can be given as

F (2)
O1

(p1, p2; q) =

( 4
∑

i=1

ciMi +
1

2

∑

i=5,6

ciMi

)

+ perms(p1, p2, p3) , (3.8)

where Mi correspond to the integrals with label (i) in Figure 3. Note the factor 1
2 is necessary
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2-loop 3-gluon

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. The cuts needed in the 2-loop 3-point form factor calculation. For F (2)
O2

, only the first cuts
are needed.

p1

p2p3

(1)

q

q

p3 q

q

q

p3

p3

p3
p1

p2

p1 p1 p1

p2 p2 p2

(2) (2)′ (3) (3)′

Figure 5. Master integrals of F (2)
O2

captured by the s12 triple cut.

(4) (5) (6) (7)

Figure 6. Master integrals of F (2)
O2

that are not captured by the s12 triple cut.

for integral (5) and (6), since the permutation does not alter the diagram.

The cuts needed for the three-point two-loop form factors are given in Figure 4. These

cuts are all needed for the form factor of Tr(DFDF ), while for Tr(F 3) only the first four

cuts are needed. The form factor F (2)
O2

contains seven master integrals up to permutations of

external legs, as show in Figure 5 and Figure 6. Each cut fixes the coefficients of a subset

of these master integrals. For example, triple cut (b) of Figure 4 in s12 channel is given in

terms of five master integrals in Figure 5, and the coefficients of (2)′ (or (3)′) are related to

that of (2) (or (3)) by flipping symmetry p1 ↔ p2. If a master integral appears in the result

of several different cuts, its coefficient in these cuts must be the same.

The full two-loop 3-point form factor can be given as

F (2)
O2

(p1, p2, p3; q) =
1

2

( 7
∑

i=1

ciMi +
∑

i=2,5

ciMi

)

+ perms(p1, p2, p3) , (3.9)

where Mi correspond to the integrals with label (i) in Figure 5 and Figure 6.

4 Results

The method of last section computes the bare form factors. For the Higgs and three-gluon

amplitudes considered in this paper, all master integrals have been known explicitly in terms
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Master integrals 4

l
p

FIG. 5. The master integrals of the 2-loop 3-point form factor.
The second double-box master has a numerator (l − p)2. A
propagator with a dot is a double propagator.

ter integrals have been obtained in terms of harmonic
polylogarithms [63, 64]. Thus we obtain the bare form
factors in explicit transcendental functions.

Divergence subtraction and checks.—The bare form fac-
tors contrain both ultraviolet (UV) and infrared (IR) di-
vergences. Our QCD results are regularized in the CDR
scheme, and we use MS renormalization scheme [65]. To
remove the UV divergences in the form factors, both the
gauge coupling and the operator require renormalization.
For the IR divergences, we apply the subtraction formula
by Catani [66].
At two-loop, all poles in 1/ϵm,m = 4, 3, 2 are totally

fixed by the universal IR structure and the one-loop data,
which provides non-trivial consistency check of the re-
sults. From the 1/ϵ UV pole one can extract the two-loop
anomalous dimension of the operator, which is related to
the renormalization constant of the operator by

γ = µ
∂

∂µ
logZ . (14)

Our computations reproduce all known results, includ-
ing the non-trivial two-loop QCD amplitudes of Higgs
plus three gluons with the operator O0 [24] (see also
[67]). For the latter, we match not only the divergences
but also the finite remainders exactly, which provides a
non-trivial check for our computation. The N = 4 com-
putations also reproduce those in [23] and [29].
As a further consistency check of the new results of

dimension-7 operators, we find the form factor results
satisfy exactly the linear relation (8). This is true already
for the expressions in terms of IBP master integrals.

Operator mixing at two loops.—At two-loop the operator
mixing appears. Let us first consider O2. Based on (8),
we can define a new operator

Õ2 = −
3

2
(O2 + 8gYMO1) = −

3

4
∂2O0 . (15)

The new operator Õ2 has no mixing with others. The
anomalous dimension of Õ2 is identical to that of O0,

and the form factor of Õ2 is proportional to that of O0

as

FÕ2
= −

3

4
q2 FO0 . (16)

Below we only focus on the results for the operator O1.
The normalization constant − 3

4 is introduced such that

F (0)

Õ2
(1−, 2−, 3−)/F (0)

O1
(1−, 2−, 3−) = 1/(uvw), where

u =
s12
q2

, v =
s23
q2

, w =
s13
q2

, q2 = s123 . (17)

To study the operator mixing effect for O1, we
first consider the form factor with two external gluons

F (l)
O1

(1−, 2−). The tree and one-loop results are zero,
while at two-loop we obtain

F (2)
O1

(1−, 2−) =F (0)

Õ2
(1−, 2−)

(

−
1

ϵ
+ 2 log s12 −

487

72

)

+O(ϵ1) . (18)

This is completely an operator mixing effect between O1

and Õ2. Furthermore, for the three-point form factor

F (2)
O1

(1−, 2−, 3−), its Z(2) part is given as

F (2)
O1

(1−, 2−, 3−)
∣

∣

Z(2)-part
(19)

= F (0)
O1

(1−, 2−, 3−)

(

−
19

24ϵ2
+

25

12ϵ
−

1

uvw

1

ϵ

)

=

(

−
19

24ϵ2
+

25

12ϵ

)

F (0)
O1

(1−, 2−, 3−)−
F (0)

Õ2
(1−, 2−, 3−)

ϵ
.

The term 1
uvw

is precisely due to the operator mixing,
and its divergence is consistent with (18).
Similar to (15), we can define a new operator which

avoids the operator mixing as

Õ1 = O1 +
1

ϵ

1

gYM

(αs

4π

)2
Õ2 , (20)

and we have

Z(2)

Õ1
= −

19

24ϵ2
+

25

12ϵ
, γ(2)

Õ1
=

25

3
, (21)

in which the two-loop anomalous dimensions is computed
using (14). We emphasize that it is an important consis-
tency check that the 1/ϵ2 term in the two-loop renormal-
ization constant cancel exactly by the one-loop data.

Two-loop finite remainder.—After renormalization and
subtracting the IR divergences, the two-loop finite re-

mainder of F (2)
R,O1

(1−, 2−, 3−) is given in terms of har-
monic polylogarithms, which can be simplified using the
symbology technique for transcendental functions [68].
The final expression takes a remarkable simple form. It
can be decomposed as:

F (2),fin
R,O1

= F (0)
O1

4
∑

i=0

Ω(2)
O1;i

, (22)

[Gehrmann, Remiddi 2001]

All analytic results are known, given in terms of  
2d Harmonic polylogarithms.

Thus the results are given in terms of explicit functions.
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Checks
• Consistent divergence structure:

• Reproduce all known results, including the 2-loop Higgs to 3-
gluon amplitudes in the heavy top limit

• Results satisfy the linear relation:

allows us to study this effect and obtain the two-loop anomalous dimensions for the first time.

The rest of the paper is organized as follows. We first review the effective action and

divergence structures in section 2. Then we explain the strategy of computation in section 3.

The results are presented in section 4, followed by a discussion section.

2 Setup

1
ϵ4 ,

1
ϵ3 ,

1
ϵ2 ,

1
ϵ

2.1 Effective Lagrangian

Leff = C0Htr(G2) +O

(

1

m2
t

)

, (2.1)

Leff = C0O0 +
1

m2
t

4
∑

i=1

CiOi +O

(

1

m4
t

)

, (2.2)

Higgs production from gluon fusion can be computed using an effective Lagrangian

Leff = Ĉ0O0 +
1

m2
t

4
∑

i=1

ĈiOi +O

(

1

m4
t

)

, (2.3)

where O0 = Htr(G2) is the leading term, and the subleading terms contain dimension-7

operators [35–39]

O1 = Htr(DρGµνD
ρGµν) , (2.4)

O2 = Htr(G ν
µ G ρ

ν G µ
ρ ) , (2.5)

O3 = Htr(DρGρµDσG
σµ) , (2.6)

O4 = Htr(GµρD
ρDσG

σµ) . (2.7)

In this paper, we will focus on the pure gluon sector. The last two operators have zero

contribution in the sector and only contribute when there are internal quark lines. The full

results including complete quarks will be presented else where [? ].

An amplitude with a Higgs boson and n gluons is equivalent to the form factor with an

operator Oi

FOi,n =

∫

d4x e−iq·x⟨p1, . . . , pn|Oi(x)|0⟩ , (2.8)

where the operator Oi corresponds to a Higgs-gluon interaction term Oi in the effective

Lagrangian with the Higgs field stripped off, i.e. Oi = HOi, and q2 = m2
H . In the following,

we will refer Higgs amplitudes as form factors.

Using Bianchi identity one can decompose the operator O1 as (see e.g. [36])

O1 =
1

2
∂2O0 − 4 gO2 + 2O4 . (2.9)
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UV renormalisation (operator mixing) and Universal IR

2

except the transcendental degree zero part, all terms hav-
ing rational kinematics coefficients are identical between
two theories.
The computation of two-loop amplitudes in QCD, as

is well known, is a challenging problem. While the two-
loop four-gluon amplitudes are known analytically long
time ago [30–32], the planar two-loop five-gluon ampli-
tudes are still in progress [33–42]. The computation of
Higgs amplitudes has extra complications. The inclusion
of higher dimension operators introduces new complex
interaction vertices and also increases the powers of loop
momenta in the integral numerators. Furthermore, since
the Higgs boson is a color singlet, one encounters non-
planar integrals even for planar Higgs amplitudes, which
makes the reconstruction of full integrand via on-shell
unitarity method [43–45] highly non-trivial.
In this paper, we develop an efficient approach to com-

pute Higgs amplitudes by combinng the unitarity method
and the integration by parts (IBP) reduction [46, 47] in
an ‘unconventional’ way. In particular, we apply the IBP
reduction directly for the cut integrands, which computes
the final coefficients of master integrals, thus avoiding
reconstructing the full integrand. Besides, the IBP re-
duction, which is often the most time consuming part
of the calculation, can be simplified using the on-shell
condition. Similar strategy of combining unitarity cut
and IBP reduction has also been used in [42], see also
[41, 48–52].

Setup.—Higgs production from gluon fusion can be com-
puted using an effective Lagrangian

Leff = Ĉ1O0 +
1

m2
t

4
∑

i=1

ĈiOi +O

(

1

m4
t

)

, (1)

where O0 = HTr(G2) is the leading term, and the sub-
leading terms contain dimension-7 operators [53–57]

O1 = HTr(G ν
µ G ρ

ν G µ
ρ ) , (2)

O2 = HTr(DρGµνD
ρGµν) , (3)

O3 = HTr(DρGρµDσG
σµ) , (4)

O4 = HTr(GµρD
ρDσG

σµ) . (5)

The explicit form of the coefficients Ĉi is not important
for this study, although their renormalization is deter-
mined by the renormalization constant mentioned later.
In this paper, we will focus on the pure gluon sector. The
last two operators have zero contribution in the sector
and can contribute when there are internal quark lines,
see e.g. [57].
An amplitude with a Higgs boson and n gluons is

equivalent to a form factor with the operator Oi

FOi,n =

∫

d4x e−iq·x⟨p1, . . . , pn|Oi(x)|0⟩ , (6)

where the operator Oi corresponds to a Higgs-gluon
interaction term Oi in the EFT with the Higgs field

stripped off, i.e. Oi = HOi. q is the total momentum
flowing through the O0 operator, satisfying q2 = m2

H .
In the following, we will refer Higgs amplitudes as form
factors.
Using Bianchi identity one can decompose the operator

O2 as (see e.g. [54])

O2 =
1

2
∂2O0 − 4 gYMO1 + 2O4 . (7)

In the pure gluon sector, since the form factor of O4 is
zero, we have the relation for the form factors

FO2 =
1

2
q2 FO0 − 4 gYM FO1 , (8)

where the partial derivatives reduce to q2. This will serve
as self-consistency check for the result.
A further simplification of the computation is that for

the form factors with three gluons in the pure YM sector,
the color factor factorizes out up to two loops as

F (l)(1a1 , 2a2 , 3a3) = fa1a2a3N l
cF

(l)(1, 2, 3) (9)

for l ≤ 2, where fa1a2a3 is the structure constant of the
gauge group. This can be easily seen by examining the
color factors of various two-loop topologies. This im-
plies that the form factor has only planar contribution.
Below we consider only the color stripped form factor
F (l)(1, 2, 3), and the full color dependence can be easily
reproduced using (9).

Computation.—Unitarity method is a powerful tool to
construct loop amplitudes or form factors from their dis-
continuities, i.e. by applying cuts. On the cut, the loop
integrand factorizes into a product of tree-level or lower-
loop amplitudes and form factors. The commonly used
strategy of unitarity method is to reconstruct the full in-
tegrand from the cuts. We will use a different strategy
where the IBP reduction is applied directly for the cut
integrand. In this way, there is no need to construct the
full integrand, and one obtains directly the final coeffi-
cients ci of IBP master integrals:

F (l)|cut =
∑

helicities

F tree
∏

j

Atree
j =

∑

i

ci Mi|cut , (10)

where Mi are IBP master integrals. We would like to
stress that a coefficient ci computed in a single cut chan-
nel must be the final answer. This is because the master
integrals are ‘irreducible’, and the coefficients are loop
momenta independent without ambiguity. Since the cut
integrand is simpler than the full integrand, it also sim-
plifies the IBP reduction. Below we describe our strategy
in more details.
We apply D-dimensional planar unitarity method.

Tree amplitudes and form factors valid in D dimensions
can be computed using planar Feynman diagrams, or re-
cursive techniques such as Berends-Giele method [58].

(new result)

This is completely an operator mixing effect between O1 and Õ2. Furthermore, for the three-

point form factor F (2)
O1

(1−, 2−, 3−), its Z(2) part is given as

F (2)
O1

(1−, 2−, 3−)
∣

∣

Z(2)-part
= F (0)

O1
(1−, 2−, 3−)

(

−
19

24ϵ2
+

25

12ϵ
−

1

uvw

1

ϵ

)

=

(

−
19

24ϵ2
+

25

12ϵ

)

F (0)
O1

(1−, 2−, 3−)−
F (0)

Õ2
(1−, 2−, 3−)

ϵ
.

The term 1
uvw is precisely due to the operator mixing, and its divergence is consistent with

(1.4).

Similar to (1.1), we can define a new operator which avoids the operator mixing as

Õ1 = O1 +
1

ϵ

1

gYM

(αs

4π

)2
Õ2 , (1.5)

and we have

Z(2)

Õ1
= −

19

24ϵ2
+

25

12ϵ
, γ(2)

Õ1
=

25

3
, (1.6)

in which the two-loop anomalous dimensions is computed using (2.20). We emphasize that it

is an important consistency check that the 1/ϵ2 term in the two-loop renormalization constant

cancel exactly by the one-loop data.

Two-loop finite remainder.—After renormalization and subtracting the IR divergences, the

two-loop finite remainder of F (2)
R,O1

(1−, 2−, 3−) is given in terms of harmonic polylogarithms,

which can be simplified using the symbology technique for transcendental functions [47]. The

final expression takes a remarkable simple form. It can be decomposed as:

F (2),fin
R,O1

= F (0)
O1

4
∑

i=0

Ω(2)
O1;i

, (1.7)

where Ω(2)
O1;i

has uniform transcendentality weight i.

The corresponding N = 4 result was first computed in [30] which we have reproduced

using our method. To properly compare the two results, we recompute the N = 4 result in

the Catani subtraction scheme [40], denoted by Ω(2),N=4
O1;i

. This is different from the result

given in [30] which is based on BDS subtraction scheme [? ].

Below we give the explicit QCD results according the transcendentality weight, and we

comment on their relation to the corresponding N = 4 counterparts. As we will see, not

only the maximally transcendental parts are identical, the lower transcendental parts are also

closely related to each other.

Weight 4: The maximally transcendental part is give by:

Ω(2)
O1;4

=−
3

2
Li4(u) +

3

4
Li4
(

−
uv

w

)

−
3

2
log(w)Li3

(

−
u

v

)

+
ζ2
8

[

5 log2(u)− 2 log(v) log(w)
]

+
log2(u)

32

[

log2(u) + 2 log2(v)− 4 log(v) log(w)
]

−
1

4
ζ4 −

1

2
ζ3 log(−q2) + perms(u, v, w) .
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allows us to study this effect and obtain the two-loop anomalous dimensions for the first time.

The rest of the paper is organized as follows. We first review the effective action and

divergence structures in section 2. Then we explain the strategy of computation in section 3.

The results are presented in section 4, followed by a discussion section.
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O2 = Htr(G ν
µ G ρ

ν G µ
ρ ) , (2.10)
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In this paper, we will focus on the pure gluon sector. The last two operators have zero

contribution in the sector and only contribute when there are internal quark lines. The full

results including complete quarks will be presented else where [? ].

An amplitude with a Higgs boson and n gluons is equivalent to the form factor with an

operator Oi

FOi,n =

∫

d4x e−iq·x⟨p1, . . . , pn|Oi(x)|0⟩ , (2.13)
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Finite remainder

Weight-4 part:

Apply UV renormalisation and IR subtraction, the finite remainder 
function can be organized according to transcendentality degree:

which is completely an operator mixing effect and the divergence is consistent with (4.9).

We can define a new operator which diagonalize the renormalization matrix as

Õ2 = O2 +
1

g0ϵ

(α0

4π

)2
O1 , (4.11)

and we have

Z(2)

Õ2
= −

19

24ϵ2
+

25

12ϵ
, γ(2)

Õ2
=

25

3
, (4.12)

in which the two-loop anomalous dimensions is computed by the relation (2.22). It is an

important consistency check of the results that all double poles in ϵ in the two-loop renor-

malization constants exactly cancel.

F (2),fin
O2

= F (0)
O2

(

4
∑

i=0

Ω(2)
O2;i

+ Ω(2)
O2;log(q2)

)

, (4.13)

The two-loop finite remainder of F (2)
O2

(1−, 2−, 3−) can be simplified using the symbology

technique for transcendental functions [47]. The final expression takes a remarkable simple

form. It can be decomposed as:

F (2),fin
O2

= F (0)
O2

N2
c

(

4
∑

i=0

Ω(2)
O2;i

+ Ω(2)
O2;log(q2)

)

, (4.14)

where the term Ω(2)
O2;i

has uniform transcendental degree i and only depends on the ratios

{u, v, w}, and the term Ω(2)
O2;log(q2)

is proportional to log(q2).

Degree 4: The maximally transcendental part is give by:

Ω(2)
O2;4

=−
3

2
Li4(u) +

3

4
Li4
(

−
uv

w

)

−
3

4
log(w)

[

Li3
(

−
u

v

)

+ Li3
(

−
v

u

)]

+
log2(u)

32

[

log2(u) + log2(v) + log2(w)− 4 log(v) log(w)
]

+
ζ2
8

[

5 log2(u)− 2 log(v) log(w)
]

−
1

4
ζ4 + perms(u, v, w) . (4.15)

Up to a term .., this is identical to the remainder of form factor of a BPS operator in N = 4

[31] and later also appeared in the form factor of non-protected operators [32–34].

Degree 3: The transcendentality-3 part is give by:

Ω(2)
O2;3

=
(

1 +
u

w

)

T3 +
143

72
ζ3 −

11

24
ζ2 log(u) + perms(u, v, w) , (4.16)

where

T3 :=
[

− Li3
(

−
u

w

)

+ log(u)Li2

(

v

1− u

)

−
1

2
log(1− u) log

(

w2

1− u

)

+
1

2
Li3
(

−
uv

w

)

+
1

2
log(u) log(v) log(w) +

1

12
log3(w) + (u ↔ u)

]

+ Li3(1− v)− Li3(u) +
1

2
log2(v) log

(

1− v

u

)

− ζ2 log
(uv

w

)

. (4.17)
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p

FIG. 5. The master integrals of the 2-loop 3-point form factor.
The second double-box master has a numerator (l − p)2. A
propagator with a dot is a double propagator.

ter integrals have been obtained in terms of harmonic
polylogarithms [63, 64]. Thus we obtain the bare form
factors in explicit transcendental functions.

Divergence subtraction and checks.—The bare form fac-
tors contrain both ultraviolet (UV) and infrared (IR) di-
vergences. Our QCD results are regularized in the CDR
scheme, and we use MS renormalization scheme [65]. To
remove the UV divergences in the form factors, both the
gauge coupling and the operator require renormalization.
For the IR divergences, we apply the subtraction formula
by Catani [66].
At two-loop, all poles in 1/ϵm,m = 4, 3, 2 are totally

fixed by the universal IR structure and the one-loop data,
which provides non-trivial consistency check of the re-
sults. From the 1/ϵ UV pole one can extract the two-loop
anomalous dimension of the operator, which is related to
the renormalization constant of the operator by

γ = µ
∂

∂µ
logZ . (14)

Our computations reproduce all known results, includ-
ing the non-trivial two-loop QCD amplitudes of Higgs
plus three gluons with the operator O0 [24] (see also
[67]). For the latter, we match not only the divergences
but also the finite remainders exactly, which provides a
non-trivial check for our computation. The N = 4 com-
putations also reproduce those in [23] and [29].
As a further consistency check of the new results of

dimension-7 operators, we find the form factor results
satisfy exactly the linear relation (8). This is true already
for the expressions in terms of IBP master integrals.

Operator mixing at two loops.—At two-loop the operator
mixing appears. Let us first consider O2. Based on (8),
we can define a new operator

Õ2 = −
3

2
(O2 + 8gYMO1) = −

3

4
∂2O0 . (15)

The new operator Õ2 has no mixing with others. The
anomalous dimension of Õ2 is identical to that of O0,

and the form factor of Õ2 is proportional to that of O0

as

FÕ2
= −

3

4
q2 FO0 . (16)

Below we only focus on the results for the operator O1.
The normalization constant − 3

4 is introduced such that

F (0)

Õ2
(1−, 2−, 3−)/F (0)

O1
(1−, 2−, 3−) = 1/(uvw), where

u =
s12
q2

, v =
s23
q2

, w =
s13
q2

, q2 = s123 . (17)

To study the operator mixing effect for O1, we
first consider the form factor with two external gluons

F (l)
O1

(1−, 2−). The tree and one-loop results are zero,
while at two-loop we obtain

F (2)
O1

(1−, 2−) =F (0)

Õ2
(1−, 2−)

(

−
1

ϵ
+ 2 log s12 −

487

72

)

+O(ϵ1) . (18)

This is completely an operator mixing effect between O1

and Õ2. Furthermore, for the three-point form factor

F (2)
O1

(1−, 2−, 3−), its Z(2) part is given as

F (2)
O1

(1−, 2−, 3−)
∣

∣

Z(2)-part
(19)

= F (0)
O1

(1−, 2−, 3−)

(

−
19

24ϵ2
+

25

12ϵ
−

1

uvw

1

ϵ

)

=

(

−
19

24ϵ2
+

25

12ϵ

)

F (0)
O1

(1−, 2−, 3−)−
F (0)

Õ2
(1−, 2−, 3−)

ϵ
.

The term 1
uvw

is precisely due to the operator mixing,
and its divergence is consistent with (18).
Similar to (15), we can define a new operator which

avoids the operator mixing as

Õ1 = O1 +
1

ϵ

1

gYM

(αs

4π

)2
Õ2 , (20)

and we have

Z(2)

Õ1
= −

19

24ϵ2
+

25

12ϵ
, γ(2)

Õ1
=

25

3
, (21)

in which the two-loop anomalous dimensions is computed
using (14). We emphasize that it is an important consis-
tency check that the 1/ϵ2 term in the two-loop renormal-
ization constant cancel exactly by the one-loop data.

Two-loop finite remainder.—After renormalization and
subtracting the IR divergences, the two-loop finite re-

mainder of F (2)
R,O1

(1−, 2−, 3−) is given in terms of har-
monic polylogarithms, which can be simplified using the
symbology technique for transcendental functions [68].
The final expression takes a remarkable simple form. It
can be decomposed as:

F (2),fin
R,O1

= F (0)
O1

4
∑

i=0

Ω(2)
O1;i

, (22)



Degree 4:



Finite remainder
Simplify via “symbol” for transcendental functions

for N=4 result see:  
Brandhuber, Kostacinska, Penante, 
Travaglini 2017]

[Brandhuber, Kostacinska, Penante, Travaglini, Wen, Young 2014, 2016]

[Loebbert, Nandan, Sieg, Wilhelm, GY 2015, 2016]

It also appears as a universal function for length-3 operators.

5

where Ω(2)
O1;i

has uniform transcendentality weight i.
The corresponding N = 4 result was first computed

in [29] which we have reproduced using our method. To
properly compare the two results, we recompute the N =
4 result in the Catani subtraction scheme [66], denoted

by Ω(2),N=4
O1;i

. This is different from the result given in
[29] which is based on BDS subtraction scheme [69].
Below we give the explicit QCD results according the

transcendentality weight, and we comment on their re-
lation to the corresponding N = 4 counterparts. As we
will see, not only the maximally transcendental parts are
identical, the lower transcendental parts are also closely
related to each other.

Weight 4: The maximally transcendental part is give
by:

Ω(2)
O1;4

= −
3

2
Li4(u) +

3

4
Li4

(

−
uv

w

)

−
3

2
log(w)Li3

(

−
u

v

)

+
log2(u)

32

[

log2(u) + log2(v) + log2(w)− 4 log(v) log(w)
]

+
ζ2
8

[

5 log2(u)− 2 log(v) log(w)
]

−
1

4
ζ4 −

1

2
ζ3 log(−q2) + perms(u, v, w) . (23)

We find a precise match between QCD andN = 4 results:

Ω(2)
O1;4

= Ω(2),N=4
O1;4

, (24)

which confirms the argument made in [29]. Note that
the expression is slightly different from the result of [29],
which also appears in other form factors in N = 4 SYM

[70–73]; this is purely due to the change of scheme be-
tween Catani and BDS subtraction.
Weight 3: The transcendentality-3 part is give by:

Ω(2)
O1;3

=
(

1 +
u

w

)

T3 +
143

72
ζ3 −

11

24
ζ2 log(−u q2)

+ perms(u, v, w) , (25)

where

T3 :=
[

− Li3
(

−
u

w

)

+ log(u)Li2

(

v

1− u

)

−
1

2
log(1 − u) log(u) log

(

w2

1− u

)

+
1

2
Li3

(

−
uv

w

)

+
1

2
log(u) log(v) log(w)

+
1

12
log3(w) + (u ↔ v)

]

+ Li3(1− v)− Li3(u) +
1

2
log2(v) log

(

1− v

u

)

− ζ2 log
(uv

w

)

. (26)

Very interestingly, the corresponding N = 4 SYM result
is given by

Ω(2),N=4
O1;3

=
(

1 +
u

w

)

T3 + perms(u, v, w) . (27)

The function T3 was also given as the building block of
the corresponding N = 4 result [29] and also appeared
in the form factor in the SU(2) sector in N = 4 [71].
Weight 2: The transcendentality-2 part is give by:

Ω(2)
O1;2

=

{(

u2

w2
+

v2

w2
− 1

)

[

Li2(1 − u) +
1

2
log(u) log(v)

−
1

2
ζ2
]

−
55

48
log2(u) +

73

72
log(u) log(v) +

23

6
ζ2

+ perms(u, v, w)

}

−
19

36
log(uvw) log(−q2)

−
19

24
log2(−q2) . (28)

The first term containing the rational coefficient u2/w2+
v2/w2 is identical to the corresponding N = 4 SYM re-
sult. We note that the coefficient of log2(−q2) equals the
coefficient of double pole in the two-loop renormalization
constant (21).
Weight 1 and 0: The weight-1 part is give by:

Ω(2)
O1;1

=

(

119

18
+

v

w
+

u2

2vw

)

log(u) (29)

+

(

119

18
−

1

3uvw

)

log(−q2) + perms(u, v, w) ,

where the terms with coefficients that are rational func-
tions of {u, v, w} are identical to the N = 4 SYM result.
Finally, the weight-0 part is give by:

Ω(2)
O1;0

=
487

72

1

uvw
−

14075

216
, (30)

in which we note that the coefficient of 1
uvw

equals the
finite rational number in (18).

This is completely an operator mixing effect between O1 and Õ2. Furthermore, for the three-

point form factor F (2)
O1

(1−, 2−, 3−), its Z(2) part is given as

F (2)
O1

(1−, 2−, 3−)
∣

∣

Z(2)-part
= F (0)

O1
(1−, 2−, 3−)

(

−
19

24ϵ2
+

25

12ϵ
−

1

uvw

1

ϵ

)

=

(

−
19

24ϵ2
+

25

12ϵ

)

F (0)
O1

(1−, 2−, 3−)−
F (0)

Õ2
(1−, 2−, 3−)

ϵ
.

The term 1
uvw is precisely due to the operator mixing, and its divergence is consistent with

(1.4).

Similar to (1.1), we can define a new operator which avoids the operator mixing as

Õ1 = O1 +
1

ϵ

1

gYM

(αs

4π

)2
Õ2 , (1.5)

and we have

Z(2)

Õ1
= −

19

24ϵ2
+

25

12ϵ
, γ(2)

Õ1
=

25

3
, (1.6)

in which the two-loop anomalous dimensions is computed using (2.20). We emphasize that it

is an important consistency check that the 1/ϵ2 term in the two-loop renormalization constant

cancel exactly by the one-loop data.

Two-loop finite remainder.—After renormalization and subtracting the IR divergences, the

two-loop finite remainder of F (2)
R,O1

(1−, 2−, 3−) is given in terms of harmonic polylogarithms,

which can be simplified using the symbology technique for transcendental functions [47]. The

final expression takes a remarkable simple form. It can be decomposed as:

F (2),fin
R,O1

= F (0)
O1

4
∑

i=0

Ω(2)
O1;i

, (1.7)

where Ω(2)
O1;i

has uniform transcendentality weight i.

The corresponding N = 4 result was first computed in [30] which we have reproduced

using our method. To properly compare the two results, we recompute the N = 4 result in

the Catani subtraction scheme [40], denoted by Ω(2),N=4
O1;i

. This is different from the result

given in [30] which is based on BDS subtraction scheme [? ].

Below we give the explicit QCD results according the transcendentality weight, and we

comment on their relation to the corresponding N = 4 counterparts. As we will see, not

only the maximally transcendental parts are identical, the lower transcendental parts are also

closely related to each other.

Weight 4: The maximally transcendental part is give by:

Ω(2)
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=−
3

2
Li4(u) +

3

4
Li4
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w
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3

2
log(w)Li3
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u

v

)
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ζ2
8

[

5 log2(u)− 2 log(v) log(w)
]
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log2(u)

32

[

log2(u) + 2 log2(v)− 4 log(v) log(w)
]

−
1

4
ζ4 −

1

2
ζ3 log(−q2) + perms(u, v, w) .
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where
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Very interestingly, the corresponding N = 4 SYM result
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The first term containing the rational coefficient u2/w2+
v2/w2 is identical to the corresponding N = 4 SYM re-
sult. We note that the coefficient of log2(−q2) equals the
coefficient of double pole in the two-loop renormalization
constant (21).
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tions of {u, v, w} are identical to the N = 4 SYM result.
Finally, the weight-0 part is give by:
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O1;0

=
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72
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uvw
−
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216
, (30)
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Degree three: At transcendentality three, new interesting structures appear as we get two
types of terms: those consisting of pure transcendental functions and those multiplied by
rational prefactors taken from the list {u/v, v/u, v/w,w/v, u/w,w/u}. The terms without
any rational prefactors take the form

R(2)

O1;3

���
pure

= Li
3

(u) + Li
3

(1� u)� 1

4
log2(u) log

✓
vw

(1� u)2

◆
+

1

3
log(u) log(v) log(w)

+ ⇣
2

log(u)� 5

3
⇣
3

+ perms (u, v, w) , (3.3)

which, remarkably, is almost identical to the transcendentality-three part R(2)

non-BPS;3

of the
two-loop remainder of the operatorO

B

= Tr(X[Y, Z]) found in Eq. (4.11) of [24]. Specifically,
we have (up to a log(�q2) term)

R(2)

O1;3

���
pure

=
1

2

⇣
R(2)

non-BPS;3

+ 4⇣
2

log(uvw)� 24 ⇣
3

⌘
. (3.4)

We now move on to the terms with rational prefactors, which we label by one of the possible
ratios listed above. For concreteness we present the term with prefactor u/w:

R(2)

O1;3

���
u/w

=
h
� Li

3

⇣
� u

w

⌘
+ log(u)Li

2

✓
v

1� u

◆
� 1

2
log(1� u) log(u) log

✓
w2

1� u

◆

+
1

2
Li

3

⇣
�uv

w

⌘
+

1

2
log(u) log(v) log(w) +

1

12
log3(w) + (u $ v)

i

+ Li
3

(1� v)� Li
3

(u) +
1

2
log2(v) log

✓
1� v

u

◆
� ⇣

2

log
⇣uv
w

⌘
. (3.5)

Another surprising observation can be made at this point. Comparing (3.5) with the remain-

der density (R(2)

i )XYX
XXY

���
3

of form factors in the SU(2) sector introduced in Eq. (3.22) of [26],

we observe that these are related (up to a log(�q2) term),

R(2)

O1;3

���
u/w

= �(R(2)

i )XYX
XXY

���
3

� ⇣
2

log (u) . (3.6)

6

T3
[Loebbert, Nandan, Sieg, Wilhelm, GY 2015]

We find a precise match between QCD and N = 4 results:
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, (1.8)

which confirms the argument made in [30]. Note that the expression is slightly different from

the result of [30], which also appears in other form factors in N = 4 SYM [31–34]; this is

purely due to the change of scheme between Catani and BDS subtraction.
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Finite remainder

while the degree-0 part is give by:
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=
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1
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−
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216
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Finally, the terms containing log(q2) are give by:

Ω(2)
O2;log(q2)

= −
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log2(q2)−
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3ζ3 +
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4
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log(uvw) +

2
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−
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)
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Y: interpre-

tation of this

term

Y: interpre-

tation of this

term
5 Conclusion

In this paper, we present the first two-loop Higgs amplitudes in the effective theory with

dimension-7 operators, which have phenomenological relevance for the LHC experiments.

Our computation relies on a combination of modern on-shell unitarity cut method and IBP

reduction. This strategy can be applied to problem with even higher dimension operators.

The result exhibits intriguing connection between QCD and N = 4 SYM. The maximally

transcendental part turns out to be equivalent to that of N = 4 SYM. Even more intriguingly,

the sub-leading transcendentality degree-3 part can be also expressed into N = 4 SYM.

The linear relation should have a supersymmetric extension in N = 4 SYM. This imme-

diately implies that the maximal transcendentality principle applies also to the tr(DFDF )

operator.
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Gauge invariant basis projection

We will apply a different strategy which allow overcoming both issues. The key idea is

to apply IBP reduction directly for the cut integrand. The logic is thus outlined as:

F (l)|cut =
∑

helicities

F tree
∏

j

Atree
j =

∑

i

ci Mi|cut , (3.1)

whereMi are IBP master integrals. In this way, there is no need to contruct the full integrand,

but one reaches directly to the finally coefficients ci of IBP master integrals. Because the cut

integrand are simpler than the full integrand, there is a significant room of simplification for J: drop mas-

ter and men-

tion Zeng’s

paper

J: drop mas-

ter and men-

tion Zeng’s

paper

the IBP reduction. Furthermore, the coefficients computed by a single cut must be the final

answer, i.e. no ambiguity involved. This is because the master integrals are “unreducible”,

and the coefficients are loop momenta independent.
Y: mention

color factor

and only pla-

nar

Y: mention

color factor

and only pla-

nar

Below we illustrate our strategy in more details.

We will apply D-dimensional unitarity method. We choose to use the planar unitarity

cut. One can also carry out the non-planar unitarity cut, in which the building blocks with be

the complete amplitude(form factors) with color factors. However, as will be discussed later,

the non-planar contribution vanishes up to 2 loops, so these two methods are equivalent.

Tree amplitudes and form factors can be computed using planar Feynman diagrams, or

recursive techniques such as Berends-Giele method[43]. To sum over all helicity states for the

cut legs, we contract the internal gluon polarization vectors using the following rule:

εµi ◦ ενi ≡
∑

helicities

εµi ε
ν
i = ηµν −

qµpνi + qνpµi
q · pi

, (3.2)

where qµ is an arbitrary reference momenta.

Since the cut-integrand is gauge invariant, we can further expand the integral using a set

of gauge invariant basis Bα (see e.g. [28] and also [44, 45] for recent general discussion)

Fn(εi, pi, la)|cut =
∑

α

fα
n (pi, la)Bα . (3.3)

and fα
n (pi, la) can be computed as

fα
n (pi, la) = Bα ◦ Fn(εi, pi, la) , (3.4)

where the dual basis Bα play as projectors, which satisfies,

Bα ◦Bβ = δαβ , Bα = GαβB
β, Gαβ = Bα ◦Bβ . (3.5)

For the form factor with three gluons, the gauge invariant basis has 4 elements and we choose

the basis to be [28]

B1 = A1C23 , B2 = A2C31 , B3 = A3C12 , B4 = A1A2A3 , (3.6)

in which Ai and Cij are defined by

Ai =
εi · pj
pi · pj

−
εi · pk
pi · pk

, Cij = εi · εj −
(pi · εj)(pj · εi)

pi · pj
. (3.7)
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Three gluon case:

where

Since the cut-integrand is gauge invariant, we can further expand the integral using a set

of gauge invariant basis Bα (see e.g. [27] and also [43, 44] for recent general discussion)

Fn(εi, pi, la)|cut =
∑

α

fα
n (pi, la)Bα . (3.3)

and fα
n (pi, la) can be computed as

fα
n (pi, la) = Bα ◦ Fn(εi, pi, la) , (3.4)

where the dual basis Bα play as projectors, which satisfies,

Bα ◦Bβ = δαβ , Bα = GαβB
β, Gαβ = Bα ◦Bβ . (3.5)

For the form factor with three gluons, the gauge invariant basis has 4 elements and we choose

the basis to be [27]

B1 = A1C23 , B2 = A2C31 , B3 = A3C12 , B4 = A1A2A3 , (3.6)

in which Ai and Cij are defined by

Ai =
εi · pj
pi · pj

−
εi · pk
pi · pk

, Cij = εi · εj −
(pi · εj)(pj · εi)

pi · pj
. (3.7)

where the {i, j, k} in Ai are cyclic permutations of {1, 2, 3}. For form factors with only two

gluons, there is only one gauge basis B0 = C12.

After projection, the polarization vectors are contained in the basis Bα, and Fα
n contain

only scalar product of loop and external momenta, which can be reduced directly by IBP.

[XXX add external quark cases XXX]
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Two gluon case:



UV renormalization
Coupling constant renormalisation:

2.2 Divergence structure

Form factors contrain UV and IR divergences, for which we apply dimensional regularization

(D = 4− 2ϵ) and use the MS scheme.

The bare form factor is expanded as

Fb = gx0

[

F (0)
b +

α0

4π
F (1)
b +

(α0

4π

)2
F (2)
b +O(α3

0)

]

, (2.10)

where g0 = gYM is the bare gauge coupling and α0 =
g20
4π . We pull out the coupling gx0 in the

tree form factor which depends on the number of external legs.

The renormalization for UV divergences can be implemented in two steps. First, we

express the bare gauge coupling α0 in terms of the renormalized coupling αs = αs(µ2) =
gs(µ2)2

4π , evaluated at the renormalization scale µ2, as

α0 = αsS
−1
ϵ

µ2ϵ

µ2ϵ
0

[

1−
β0
ϵ

αs

4π
+
(β2

0

ϵ2
−

β1
2ϵ

)(αs

4π

)2
+O(α3

s)
]

, (2.11)

where Sϵ = (4πe−γE)ϵ is due to the use of MS scheme, and µ2
0 is the scale introduced to

keep gauge coupling dimensionless in the bare Lagrangian. The first two coefficients of the β

function in the purely gluonic sector are

β0 =
11Nc

3
, β1 =

34N2
c

3
. (2.12)

Second, we renormalize the operator by introducing the renormalization constant Z for the

operator

Z = 1 +
∞
∑

l=1

(αs

4π

)l
Z(l) . (2.13)

The anomalous dimension can be computed from the renormalization constant using

γ = µ
∂

∂µ
logZ =

∞
∑

l=1

(αs

4π

)l
γ(l) , (2.14)

which up to two-loop gives

γ(1) = 2ϵZ(1) , (2.15)

γ(2) = 4ϵZ(2) − 2ϵ
(

Z(1)
)2

+ 2Z(1)β0 . (2.16)

Expanding the renormalized form factor as

F = gxs S
−x/2
ϵ

∞
∑

l=0

(αs

4π

)l
F (l) , (2.17)
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we have the relations between the renormalized components F (l) and the bare ones F (l)
b as

F (0) = F (0)
b , (2.18)

F (1) = S−1
ϵ F (1)

b +
(

Z(1) −
x

2

β0
ϵ

)

F (0)
b , (2.19)

F (2) = S−2
ϵ F (2)

b + S−1
ϵ

[

Z(1) −
(

1 +
x

2

)β0
ϵ

]

F (1)
b

+
[

Z(2) −
x

2

β0
ϵ
Z(1) +

x2 + 2x

8

β2
0

ϵ2
−

x

4

β1
ϵ

]

F (0)
b . (2.20)

The renormalized form factor contains IR divergences, which take a universal structure

[41, 42] (see also [28]):

F (1) = I(1)(ϵ)F (0) + F (1),fin +O(ϵ) , (2.21)

F (2) = I(2)(ϵ)F (0) + I(1)(ϵ)F (1) + F (2),fin +O(ϵ) , (2.22)

where for the form factor with n external gluons, we have

I(1)(ϵ) = −
eγEϵ

Γ(1− ϵ)

(

Nc

ϵ2
+

β0
2ϵ

) n
∑

i=1

(−si,i+1)
−ϵ , (2.23)

I(2)(ϵ) = −
1

2

[

I(1)(ϵ)
]2

−
β0
ϵ
I(1)(ϵ)

+
e−γEϵΓ(1− 2ϵ)

Γ(1− ϵ)

[

β0
ϵ

+

(

67

9
−

π2

3

)

Nc

]

I(1)(2ϵ)

+ n
eγEϵ

ϵΓ(1− ϵ)

[(

ζ3
2

+
5

12
+

11π2

144

)

N2
c

]

. (2.24)

3 Computation

Unitarity method is a power tool to construct the integrand for loop amplitudes or form factors

from their discontinuities, i.e. by applying cuts. On the cut, the loop integrand factorizes

into a product of tree-level or lower-loop amplitudes and form factors. The commonly used

strategy of unitarity method is to reconstruct the full integrand. Given the cut integrand, one

can apply reduction techniques to write the result in a form that can be identified as a sum of

all possible cut of a set of integrals, which form an ansatz for the full integrand. In general,

not all integrals may appear in a given cut, and additional cuts have to be considered. The

complete ansatz must be consistent with all possible cut.

There are two shortcomings of this strategy. First, it is not a trivial task to reconstruct

the full uncut integrand. At one-loop, a complete set of simple basis integrals are well known.

However, this is not true at two loops and beyond, and there is a significant increase of the

number and complexity of loop topologies, and a single integral may contribute several cut

terms. Second, even after reconstruct the full integrand, one still needs to perform further

reduction, such as IBP reduced to a set of master integrals which allows integral evaluations.

Often it is the IBP reduction which is a main bottle-neck of the full computation.
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anomalous dimension

allows us to study this effect and obtain the two-loop anomalous dimensions for the first time.

The rest of the paper is organized as follows. We first review the effective action and

divergence structures in section 2. Then we explain the strategy of computation in section 3.

The results are presented in section 4, followed by a discussion section.

2 Setup

Ob
I ZIJOb

I

a
1
ϵ4 ,

1
ϵ3 ,

1
ϵ2 ,

1
ϵ

O0 = tr(GµνG
µν) . (2.1)

O1 = tr(G ν
µ G ρ

ν G µ
ρ ) , (2.2)

O2 = tr(DρGµνD
ρGµν) . (2.3)

O3 = Htr(DρGρµDσG
σµ) , (2.4)

O4 = Htr(GµρD
ρDσG

σµ) . (2.5)

2.1 Effective Lagrangian

Leff = C0Htr(G2) +O

(

1

m2
t

)

, (2.6)

Leff = C0O0 +
1

m2
t

4
∑

i=1

CiOi +O

(

1

m4
t

)

, (2.7)

Higgs production from gluon fusion can be computed using an effective Lagrangian

Leff = Ĉ0O0 +
1

m2
t

4
∑

i=1

ĈiOi +O

(

1

m4
t

)

, (2.8)

where O0 = Htr(G2) is the leading term, and the subleading terms contain dimension-7

operators [35–39]

O1 = Htr(DρGµνD
ρGµν) , (2.9)

O2 = Htr(G ν
µ G ρ

ν G µ
ρ ) , (2.10)

O3 = Htr(DρGρµDσG
σµ) , (2.11)

O4 = Htr(GµρD
ρDσG

σµ) . (2.12)

In this paper, we will focus on the pure gluon sector. The last two operators have zero

contribution in the sector and only contribute when there are internal quark lines. The full

results including complete quarks will be presented else where [? ].
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The rest of the paper is organized as follows. We first review the effective action and

divergence structures in section 2. Then we explain the strategy of computation in section 3.

The results are presented in section 4, followed by a discussion section.

2 Setup

Ob
I ZIJOb

I

a
1
ϵ4 ,

1
ϵ3 ,

1
ϵ2 ,

1
ϵ

O0 = tr(GµνG
µν) . (2.1)

O1 = tr(G ν
µ G ρ

ν G µ
ρ ) , (2.2)

O2 = tr(DρGµνD
ρGµν) . (2.3)

O3 = Htr(DρGρµDσG
σµ) , (2.4)

O4 = Htr(GµρD
ρDσG

σµ) . (2.5)

2.1 Effective Lagrangian

Leff = C0Htr(G2) +O

(

1

m2
t

)

, (2.6)

Leff = C0O0 +
1

m2
t

4
∑

i=1

CiOi +O

(

1

m4
t

)

, (2.7)

Higgs production from gluon fusion can be computed using an effective Lagrangian

Leff = Ĉ0O0 +
1

m2
t

4
∑

i=1

ĈiOi +O

(

1

m4
t

)

, (2.8)

where O0 = Htr(G2) is the leading term, and the subleading terms contain dimension-7

operators [35–39]

O1 = Htr(DρGµνD
ρGµν) , (2.9)

O2 = Htr(G ν
µ G ρ

ν G µ
ρ ) , (2.10)

O3 = Htr(DρGρµDσG
σµ) , (2.11)

O4 = Htr(GµρD
ρDσG

σµ) . (2.12)

In this paper, we will focus on the pure gluon sector. The last two operators have zero

contribution in the sector and only contribute when there are internal quark lines. The full

results including complete quarks will be presented else where [? ].
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The anomalous dimension can be computed from the renormalization constant using

γ = µ
∂

∂µ
logZ =

∞
∑

l=1

(αs

4π

)l
γ(l) , (2.13)

which up to two-loop gives

γ(1) = 2ϵZ(1) , (2.14)

γ(2) = 4ϵZ(2) − 2ϵ
(

Z(1)
)2

+ 2Z(1)β0 . (2.15)

Expanding the renormalized form factor as

F = gxs S
−x/2
ϵ

∞
∑

l=0

(αs

4π

)l
F (l) , (2.16)

we have the relations between the renormalized components F (l) and the bare ones F (l)
b as

F (0) = F (0)
b , (2.17)

F (1) = S−1
ϵ F (1)

b +
(

Z(1) −
x

2

β0
ϵ

)

F (0)
b , (2.18)

F (2) = S−2
ϵ F (2)

b + S−1
ϵ

[

Z(1) −
(

1 +
x

2

)β0
ϵ

]

F (1)
b

+
[

Z(2) −
x

2

β0
ϵ
Z(1) +

x2 + 2x

8

β2
0

ϵ2
−

x

4

β1
ϵ

]

F (0)
b . (2.19)

The renormalized form factor contains IR divergences, which take a universal structure

[40, 41] (see also [27]):

F (1) = I(1)(ϵ)F (0) + F (1),fin +O(ϵ) , (2.20)

F (2) = I(2)(ϵ)F (0) + I(1)(ϵ)F (1) + F (2),fin +O(ϵ) , (2.21)

where for the form factor with n external gluons, we have

I(1)(ϵ) = −
eγEϵ

Γ(1− ϵ)

(

Nc

ϵ2
+

β0
2ϵ

) n
∑

i=1

(−si,i+1)
−ϵ , (2.22)

I(2)(ϵ) = −
1

2

[

I(1)(ϵ)
]2

−
β0
ϵ
I(1)(ϵ)

+
e−γEϵΓ(1− 2ϵ)

Γ(1− ϵ)

[

β0
ϵ

+

(

67

9
−

π2

3

)

Nc

]

I(1)(2ϵ)

+ n
eγEϵ

ϵΓ(1− ϵ)

[(

ζ3
2

+
5

12
+

11π2

144

)

N2
c

]

. (2.23)

[XXX add quark contribution XXX]

Compare with BDS subtraction in N = 4 SYM

2.3 Color factor
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IR subtraction
Universal IR structure:

we have the relations between the renormalized components F (l) and the bare ones F (l)
b as

F (0) = F (0)
b , (2.18)

F (1) = S−1
ϵ F (1)

b +
(

Z(1) −
x

2

β0
ϵ

)

F (0)
b , (2.19)

F (2) = S−2
ϵ F (2)

b + S−1
ϵ

[

Z(1) −
(

1 +
x

2

)β0
ϵ

]

F (1)
b

+
[

Z(2) −
x

2

β0
ϵ
Z(1) +

x2 + 2x

8

β2
0

ϵ2
−

x

4

β1
ϵ

]

F (0)
b . (2.20)

The renormalized form factor contains IR divergences, which take a universal structure

[41, 42] (see also [28]):

F (1) = I(1)(ϵ)F (0) + F (1),fin +O(ϵ) , (2.21)

F (2) = I(2)(ϵ)F (0) + I(1)(ϵ)F (1) + F (2),fin +O(ϵ) , (2.22)

where for the form factor with n external gluons, we have

I(1)(ϵ) = −
eγEϵ

Γ(1− ϵ)

(

Nc

ϵ2
+

β0
2ϵ

) n
∑

i=1

(−si,i+1)
−ϵ , (2.23)

I(2)(ϵ) = −
1

2

[

I(1)(ϵ)
]2

−
β0
ϵ
I(1)(ϵ)

+
e−γEϵΓ(1− 2ϵ)

Γ(1− ϵ)

[

β0
ϵ

+

(

67

9
−

π2

3

)

Nc

]

I(1)(2ϵ)

+ n
eγEϵ

ϵΓ(1− ϵ)

[(

ζ3
2

+
5

12
+

11π2

144

)

N2
c

]

. (2.24)

3 Computation

Unitarity method is a power tool to construct the integrand for loop amplitudes or form factors

from their discontinuities, i.e. by applying cuts. On the cut, the loop integrand factorizes

into a product of tree-level or lower-loop amplitudes and form factors. The commonly used

strategy of unitarity method is to reconstruct the full integrand. Given the cut integrand, one

can apply reduction techniques to write the result in a form that can be identified as a sum of

all possible cut of a set of integrals, which form an ansatz for the full integrand. In general,

not all integrals may appear in a given cut, and additional cuts have to be considered. The

complete ansatz must be consistent with all possible cut.

There are two shortcomings of this strategy. First, it is not a trivial task to reconstruct

the full uncut integrand. At one-loop, a complete set of simple basis integrals are well known.

However, this is not true at two loops and beyond, and there is a significant increase of the

number and complexity of loop topologies, and a single integral may contribute several cut

terms. Second, even after reconstruct the full integrand, one still needs to perform further

reduction, such as IBP reduced to a set of master integrals which allows integral evaluations.

Often it is the IBP reduction which is a main bottle-neck of the full computation.
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where



Anomalous dimension
Operator mixing:

Anomalous dimension:

2.2 Divergence structure

Form factors contrain UV and IR divergences, for which we apply dimensional regularization

(D = 4− 2ϵ) and use the MS scheme.

The bare form factor is expanded as

Fb = gx0

[

F (0)
b +

α0

4π
F (1)
b +

(α0

4π

)2
F (2)
b +O(α3

0)

]

, (2.9)

where g0 = gYM is the bare gauge coupling and α0 =
g20
4π . We pull out the coupling gx0 in the

tree form factor which depends on the number of external legs.

The renormalization for UV divergences can be implemented in two steps. First, we

express the bare gauge coupling α0 in terms of the renormalized coupling αs = αs(µ2) =
gs(µ2)2

4π , evaluated at the renormalization scale µ2, as

α0 = αsS
−1
ϵ

µ2ϵ

µ2ϵ
0

[

1−
β0
ϵ

αs

4π
+
(β2

0

ϵ2
−

β1
2ϵ

)(αs

4π

)2
+O(α3

s)
]

, (2.10)

where Sϵ = (4πe−γE)ϵ is due to the use of MS scheme, and µ2
0 is the scale introduced to

keep gauge coupling dimensionless in the bare Lagrangian. The first two coefficients of the β

function in the purely gluonic sector are

β0 =
11Nc

3
, β1 =

34N2
c

3
. (2.11)

Second, we renormalize the operator by introducing the renormalization constant Z for the

operator

Z = 1 +
∞
∑

l=1

(αs

4π

)l
Z(l) . (2.12)

The anomalous dimension can be computed from the renormalization constant using

γ = µ
∂

∂µ
logZ =

∞
∑

l=1

(αs

4π

)l
γ(l) , (2.13)

which up to two-loop gives

γ(1) = 2ϵZ(1) , (2.14)

γ(2) = 4ϵZ(2) − 2ϵ
(

Z(1)
)2

+ 2Z(1)β0 . (2.15)

Expanding the renormalized form factor as

F = gxs S
−x/2
ϵ

∞
∑

l=0

(αs

4π

)l
F (l) , (2.16)
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This is completely an operator mixing effect between O1 and Õ2. Furthermore, for the three-

point form factor F (2)
O1

(1−, 2−, 3−), its Z(2) part is given as

F (2)
O1

(1−, 2−, 3−)
∣

∣

Z(2)-part
= F (0)

O1
(1−, 2−, 3−)

(

−
19

24ϵ2
+

25

12ϵ
−

1

uvw

1

ϵ

)

=

(

−
19

24ϵ2
+

25

12ϵ

)

F (0)
O1

(1−, 2−, 3−)−
F (0)

Õ2
(1−, 2−, 3−)

ϵ
.

The term 1
uvw is precisely due to the operator mixing, and its divergence is consistent with

(1.4).

Similar to (1.1), we can define a new operator which avoids the operator mixing as

Õ1 = O1 +
1

ϵ

1

gYM

(αs

4π

)2
Õ2 , (1.5)

and we have

Z(2)

Õ1
= −

19

24ϵ2
+

25

12ϵ
, γ(2)

Õ1
=

25

3
, (1.6)

in which the two-loop anomalous dimensions is computed using (2.20). We emphasize that it

is an important consistency check that the 1/ϵ2 term in the two-loop renormalization constant

cancel exactly by the one-loop data.

Two-loop finite remainder.—After renormalization and subtracting the IR divergences, the

two-loop finite remainder of F (2)
R,O1

(1−, 2−, 3−) is given in terms of harmonic polylogarithms,

which can be simplified using the symbology technique for transcendental functions [47]. The

final expression takes a remarkable simple form. It can be decomposed as:

F (2),fin
R,O1

= F (0)
O1

4
∑

i=0

Ω(2)
O1;i

, (1.7)

where Ω(2)
O1;i

has uniform transcendentality weight i.

The corresponding N = 4 result was first computed in [30] which we have reproduced

using our method. To properly compare the two results, we recompute the N = 4 result in

the Catani subtraction scheme [40], denoted by Ω(2),N=4
O1;i

. This is different from the result

given in [30] which is based on BDS subtraction scheme [? ].

Below we give the explicit QCD results according the transcendentality weight, and we

comment on their relation to the corresponding N = 4 counterparts. As we will see, not

only the maximally transcendental parts are identical, the lower transcendental parts are also

closely related to each other.

Weight 4: The maximally transcendental part is give by:

Ω(2)
O1;4

=−
3

2
Li4(u) +

3

4
Li4
(

−
uv

w

)

−
3

2
log(w)Li3

(

−
u

v

)

+
ζ2
8

[

5 log2(u)− 2 log(v) log(w)
]

+
log2(u)

32

[

log2(u) + 2 log2(v)− 4 log(v) log(w)
]

−
1

4
ζ4 −

1

2
ζ3 log(−q2) + perms(u, v, w) .
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1 Introduction

Operator mixing at two loops.—At two-loop the operator mixing appears. Let us first consider

O2. Based on (2.15), we can define a new operator

Õ2 = −
3

2
(O2 + 8gYMO1) = −

3

4
∂2O0 . (1.1)

The new operator Õ2 has no mixing with others. The anomalous dimension of Õ2 is identical

to that of O0, and the form factor of Õ2 is proportional to that of O0 as

F
Õ2

= −
3

4
q2 FO0 . (1.2)

Below we only focus on the results for the operator O1. The normalization constant −3
4 is

introduced such that F (0)

Õ2
(1−, 2−, 3−)/F (0)

O1
(1−, 2−, 3−) = 1/(uvw), where

u =
s12
q2

, v =
s23
q2

, w =
s13
q2

, q2 = s123 . (1.3)

To study the operator mixing effect for O1, we first consider the form factor with two

external gluons F (l)
O1

(1−, 2−). The tree and one-loop results are zero, while at two-loop we

obtain

F (2)
O1

(1−, 2−) =F (0)

Õ2
(1−, 2−)

(

−
1

ϵ
+ 2 log s12 −

487

72

)

+O(ϵ1) . (1.4)
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This is completely an operator mixing effect between O1 and Õ2. Furthermore, for the three-

point form factor F (2)
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F (2)
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uvw
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ϵ

)

=
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25

12ϵ

)

F (0)
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(1−, 2−, 3−)−
F (0)

Õ2
(1−, 2−, 3−)

ϵ
.

The term 1
uvw is precisely due to the operator mixing, and its divergence is consistent with

(1.4).

Similar to (1.1), we can define a new operator which avoids the operator mixing as

Õ1 = O1 +
1

ϵ

1

gYM

(αs

4π

)2
Õ2 , (1.5)

and we have

Z(2)

Õ1
= −

19

24ϵ2
+
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12ϵ
, γ(2)

Õ1
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25

3
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in which the two-loop anomalous dimensions is computed using (2.20). We emphasize that it

is an important consistency check that the 1/ϵ2 term in the two-loop renormalization constant

cancel exactly by the one-loop data.

Two-loop finite remainder.—After renormalization and subtracting the IR divergences, the

two-loop finite remainder of F (2)
R,O1

(1−, 2−, 3−) is given in terms of harmonic polylogarithms,

which can be simplified using the symbology technique for transcendental functions [47]. The

final expression takes a remarkable simple form. It can be decomposed as:
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O1

4
∑

i=0

Ω(2)
O1;i

, (1.7)

where Ω(2)
O1;i

has uniform transcendentality weight i.

The corresponding N = 4 result was first computed in [30] which we have reproduced

using our method. To properly compare the two results, we recompute the N = 4 result in

the Catani subtraction scheme [40], denoted by Ω(2),N=4
O1;i

. This is different from the result

given in [30] which is based on BDS subtraction scheme [? ].

Below we give the explicit QCD results according the transcendentality weight, and we

comment on their relation to the corresponding N = 4 counterparts. As we will see, not

only the maximally transcendental parts are identical, the lower transcendental parts are also

closely related to each other.

Weight 4: The maximally transcendental part is give by:

Ω(2)
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uv
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FIG. 5. Master integrals of the two-loop three-point form
factors.

Operator mixing at two loops.—At two loops the operator
mixing appears. Let us first consider O2. Based on (8),
we can define a new operator

Õ2 = −
3

2
(O2 + 8gYMO1) = −

3

4
∂2O0 , (15)

which has no mixing with others. The form factor of
Õ2 is proportional to that of O0 as FÕ2

= − 3
4 q

2 FO0 .

The normalization constant − 3
4 is introduced such that

F (0)

Õ2
(1−, 2−, 3−)/F (0)

O1
(1−, 2−, 3−) = 1/(uvw), where

u =
s12
q2

, v =
s23
q2

, w =
s13
q2

, q2 = s123 . (16)

To study the operator mixing effect for O1, we
first consider the form factor with two external gluons

F (l)
O1

(1−, 2−). The tree and one-loop results are zero,
while at two loops we obtain

F (2)
O1

(1, 2) = F (0)

Õ2
(1, 2)

(

−
1

ϵ
+ 2 log s12 −

487

72

)

+O(ϵ) .

(17)
This is completely an operator mixing effect between O1

and Õ2. For the three-point case F (2)
O1

(1−, 2−, 3−), the

part related to renormalization constant Z(2) is given as

F (2)
O1

(1−, 2−, 3−)
∣

∣

Z(2)-part
(18)

= F (0)
O1

(1−, 2−, 3−)

(

−
19

24ϵ2
+

25

12ϵ
−

1

uvw

1

ϵ

)

.

The term 1
uvw

is precisely due to the operator mixing,
and its divergence is consistent with (17).
We can define a new operator to avoid the operator

mixing as

Õ1 = O1 +
1

ϵ

1

gYM

(αs

4π

)2
Õ2 , (19)

and from (18) we have

Z(2)

Õ1
= −

19

24ϵ2
+

25

12ϵ
, γ(2)

Õ1
=

25

3
, (20)

where γ(2)

Õ1
is computed using (14).

Two-loop finite remainder.—After renormalization and
subtracting the IR divergences, the two-loop finite re-

mainder of F (2)
R,O1

(1−, 2−, 3−) is given in terms of two-
dimensional harmonic polylogarithms [66, 71], which can
be simplified using the symbology technique [72]. The fi-
nal expression takes a remarkable simple form. It consists
of functions of transcendentality weight ranging from 4
to 0 and can be decomposed as:

F (2),fin
R,O1

= F (0)
O1

4
∑

i=0

Ω(2)
O1;i

, (21)

where Ω(2)
O1;i

has uniform transcendentality weight i. To
properly compare with the N = 4 form factor, we com-
pute the latter in the Catani subtraction scheme [69],

denoted by Ω(2),N=4
O1;i

. This is different from the result in
[30] based on the BDS subtraction scheme [73].

Below we give the explicit QCD results according the
transcendentality weight and comment on their relation
to the correspondingN = 4 counterparts. As we will see,
not only the maximally transcendental parts are identi-
cal, the lower transcendental parts are also closely related
to each other.

Weight 4: The maximally transcendental part is given
by:

Ω(2)
O1;4

=−
3

2
Li4(u) +

3

4
Li4

(

−
uv

w

)

−
3

2
log(w)Li3

(

−
u

v

)

+
log2(u)

32

[

log2(u) + log2(v)

+ log2(w) − 4 log(v) log(w)
]

+
ζ2
8

[

5 log2(u)− 2 log(v) log(w)
]

−
1

4
ζ4

−
1

2
ζ3 log(−q2) + perms(u, v, w) . (22)

We find a precise match between QCD andN = 4 results:
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[30]. Note that the expression is slightly different from
the result of [30], which also appears in other form factors
in N = 4 SYM [74–77]; this is purely due to the change
of scheme between Catani and BDS subtraction.
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Õ1
= −

19

24ϵ2
+

25

12ϵ
, γ(2)

Õ1
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