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Gauge/gravity duality and condensed matter physics

What is Gauge/gravity duality?

@ A holographic duality between a weakly-coupled theory of
gravity in certain spacetime and a strongly-coupled field
theory living on the boundary of that spacetime.

@ A powerful new tool for investigating dynamics of
strongly-coupled field theories in the dual gravity side.

@ A new window towards understanding real-world physics:
QCD, CMT, etc.

@ Two complementary approaches: bottom-up and top-down.
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Gauge/gravity duality and condensed matter physics

Two complementary approaches:

Bottom-up

@ Toy-models coming from simple gravity theory;
@ Basic ingredients: g,,,, A, and/or dilaton ¢;

@ Advantage(s): simplicity and universality;

@ Disadvantage(s): the dual field theory is unclear.

| A\

Top-down
@ Configurations originated from string/M theory;
@ Exact solutions of SUGRA or Dp/Dg-branes;
@ Advantage(s): good understanding on the field theory;
@ Disadvantage(s): complexity.
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Holographic calculations of DC conductivities

Three main approaches

Retarded Green'’s function method(Son, Starinets '02)
@ General, resulting in many transport coefficients;

@ The bulk retarded Green'’s function encodes a retarded
correlator of its dual (field theory) operator;

@ Kubo’s formula = transport coefficients.

The membrane paradigm (Igbal, Liu '08)

@ Hydrodynamic behavior of boundary field theory < those
at the stretched horizon of the black hole;

@ Transport coefficients < quantities at the horizon;

@ This elegantly explains universalities of transport
coefficients. )
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Holographic calculations of DC conductivities

Three main approaches Cont'd

The real action method (Karch, O’Bannon '07)

@ DC conductivity only, not applicable to other transport
coefficients;

@ Probe D-brane systems only;
@ Non-linear current (electric field dependent conductivity).

These properties stem from the DBI action

SpelI = —Tp/dp+1f\/P[G] + F

by requiring that the on-shell action should be real.
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Holographic calculations of DC conductivities

Using open string metric

@ The open string membrane paradigm with external
electromagnetic fields, by K.Y.Kim, J.P.Shock and J.Tarrio,
arXiv: 1103.4581[hep-th]

@ a membrane paradigm method based on open string
metric;

@ DC conductivity of a D3/D7 system;
@ We will see more generalizations in the current work.
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The open string metric

Why open strings?

@ When background Kalb-Ramond fields or world-volume
gauge fields on a probe D-brane are turned on, the
fluctuations of open strings on the probe D-brane do not
feel simply the background geometry that they are probing;

@ The open string metric (OSM) describes precisely the
effective geometry felt by open strings in the presence of
external fields.

@ We may understand the dynamics of these fluctuating
fields in terms of the OSM. In some sense, the background
gauge fields are geometrized.
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The open string metric

The definitions

o DBI+WZ

L =\/—detP[G] + F + P[C] A F,

P[ ]-pull-back, F = F + f, f-fluctuations. Quantities with
tildes-those multiplied by 27a/.

@ Define the OSM as follows

Ymn = P[G]+F,
,ymn — (,Ymn)—lzsmn_i_emn’ (1)
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The open string metric

The definitions Cont'd

@ s™-the symmetric part, ™" -the anti-symmetric part.
@ The OSM sy, is defined as

Smn = Omn — (ﬁg_lﬁ)mna (2)

@ Notice that Sy;ns™ = 6h..
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Basic ideas for DC conductivity with open string metric

An overview

@ The membrane paradigm (Igbal, Liu, '08) is based on
linear response theory = linear conductivity-the
conductivity is independent of the electric field.

@ Non-linear conductivity which depends on the electric field
< the real-action condition.

@ Example: D3/D5 described by a one-dimensional action

S~ - / drgdo\/ —0e0r 05« \/é 3)
MH



The Setup
(o] Ielelele)

Basic ideas for DC conductivity with open string metric

An overview Cont'd

where the general background

d
ds® = gudt® + grrdr? + gxx » _ dx? + gad Q7
i=1
andd =n = 2.
£ = —0u023 — OxE?% X = —0t05030 — OxJZ, (4

Legendre transformed action

o Vo
Sur / o Gutm Ve ®)
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Basic ideas for DC conductivity with open string metric

An overview Cont'd

@ ¢ becomes negative near the horizon.
singular shell-the location where the sign of ¢ flips.

@ by introducing and adjusting Jx to flip the sign of x at the
singular shell, we may keep the action real.

x(rs) = 0 <
W = _gttgxxgg2m|r:rs = gQQ(rS)E = U(rs)E, (6)

where rs is determined by £(rs) = 0.
@ Notice that rs = rs(ry, E), so the current is nonlinear in E.
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Basic ideas for DC conductivity with open string metric

The real-action condition and OSM

@ If we introduce only E then the geometry of sy, becomes
singular at the singular shell. It can be seen from the Ricci
scalar R near rs (¢ — 0)

(99 + 9uOxx)? @
2620y ’

@ To make the geometry regular we can introduce the
current Jx then it changes OSM and yields

R ~

~ X(gxxgt/t + gttg)/(x)2 (8)
2 2
26 gttgrrgxngQ
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Basic ideas for DC conductivity with open string metric

The real-action condition and OSM Contd

@ The regularity of the Ricci scalar yields the same result as
the real-action method.
@ Steps to compute non-linear DC conductivity:
@ compute the linear conductivity using OSM and membrane
paradigm;
@ compute the singular shell position rs from £(rs) = 0 with
finite E;
@ apply the same formula obtained in step 1 atr = rs.
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Basic ideas for DC conductivity with open string metric

Minkowski embedding

@ We cannot apply the real-action method since there is no
singular shell on the world volume;

@ From the OSM point of view, the geometry is regular
everywhere and there seems to be no reason to introduce
the current;

@ We still require regularity on the gauge field configuration;

@ This was proposed in arXiv: 1003.4965[hep-th] (Bergman,
Jokela, Lifshytz and Lippert).
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2+1 dimensions

General assumptions

@ Consider probe Dg-branes sharing t, x,y field theory
space. The induced metric and gauge field

2
ds® = gudt®+ ) gidx” + gndr? +dsf),
i=1
2ro/A = At + Bxdy + 27c/a, 9)
ds(zl)
@ There may be nontrivial background RR fields and fluxes
through the internal space in concrete examples.

-the metric of the internal space, | = q — 3.
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2+1 dimensions

the DBI term

@ Assume the matrix v = g + F is a direct sum of the
submatrix in the bulk spacetime m =t,1,2,r and the
internal space o = 4,--- ,q+ 1. dety = detyypdety,g, Wwhere

dety,s ~ ©(r) x afunction of £°.
@ The DBI action becomes
SDBI = —NfTDqV(|) /dtd%dre_¢\/§\/ —det’}/mn,

N/dtd)?drﬁDm (20)
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2+1 dimensions

the DBI term Cont'd

@ The normalization constant
N =NiTpqV(), N = (2ma/)?N, (11)

N is defined for later convenience.
@ The leading order Lagrangian

LY = —e *VOry/—gugn — AZ, (12)

K= det’YI] = éz + gXngy7 IuJ = 172 (13)
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2+1 dimensions

the DBI term Cont'd

@ The conserved quantity

. oA
. (14)
t \/_(gttgrr + A{Z)@"@
A— | fonn (15)
' jtZ +e-200%’

@ The sub-leading action

s = / dtd Xdr [—2 P S nfpg + %em PAf 1 foq Q|
(16)
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2+1 dimensions

the DBI term Cont'd

@ The effective coupling

Vs
e=¢\/—Getym V0

@ The non-vanishing components of §

95 =

%) B
A S P (17)
V. _det’Ymn\/é K

@ The OSM (recall (2))

SndX™dX" = g G2dt2 + g G2dr? + ——dx? + ——dy?2, (18)
Oyy Oxx
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2+1 dimensions

the DBI term Cont'd

2 e_2¢ef€
Jt2 + e_2¢@ﬁ’

~ A

1 BJ
Q= —ge_¢\/ —detymn vV Oemnpg™"0PT = —Tt,

Wlth Etxyr — 1

@ The effects of density J; and magnetic field B are
geometrized through G and «.
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2+1 dimensions

the WZ term

@ The relevant WZ term
Swz = %NfTDq(ZWO/)Z / P[Cqs] AF AF,  (19)
The leading order action
s — N / dtdXdrCq_sForF12 = N / dtdxdr {0}, (20)
@ The conserved quantity

~ 9 E(O) +£(0) _ -
§o= Meom T Ewa) _ 50y ¢y 4B, (1)
oAl
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2+1 dimensions

the WZ term Cont'd

@ Notice that jt is a constant but J; is a function of r.
@ We may simply replace J; in previous expressions by

jt — J_t(r) = jt + Cq_3(r)I§.

@ Two different contributions to J;: topological charge
(Cq—3(r)) and strings. The latter—a delta-function source at
the IR end of the probe brane (say rg). Its existence is
manifested by the boundary condition of nonzero A{(rp).

@ Vanishing string source (Minkowski embedding), we
require A{(rp) = 0 = Jy = —Cq_3(ro)B.
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2+1 dimensions

the WZ term Cont'd

@ The above expression shows a typical property of a
quantum Hall state.

@ At sub-leading order, the quadratic fluctuations read

where we have explicitly shown only the terms which are
relevant to the DC condulctivity.
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2+1 dimensions

The membrane paradigm

@ The canonical momentum
jl (r) = —./g\—/;\/ —sf" — N/Q€Jlfjt + N/Cq_361|fjt, (23)
4
@ The current and conductivity tensor (Igbal and Liu, '08)
i'(k") = T'(r — o) (k") = o (kM) = oV(kM)E,  (24)

@ In the limit k# — 0, 7' and f,; are constants in r. We may
evaluate it at any IR radial position (say rg).
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2+1 dimensions

The membrane paradigm Contd

@ For a black hole embedding we evaluate it at the stretched
horizon and make use of a regularity condition at the

horizon,
Srr

frj == ftj'
@ The Ohm's law j' = 4&j leads to

1 [
92V sus
) tt Srr

ol = N7 [ s! —Qél —Cqszel|, (25)

@ This is a conductivity which is electric field independent (a
linear conductivity).
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2+1 dimensions

The membrane paradigm Contd

@ For the nonlinear conductivity, we first determine the
position of the singular shell rs,

~ ~ 2 ~ 2
det’)/uu(rs) = [Bzgtt + Ex Oyy + Ey Oxx + gttgxxgyy]r—>rs =0,
(26)

then we evaluate (25) atr =rs.

@ For the Minkowski embedding, the regularity of the gauge
fields at rg requires fi¢(ro) = A{(ro) = 0, therefore

Ji ol

o) = —N'Cq_3(ro)e! = /\// (27)
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3+1 dimensions

General assumptions

@ The logic of 3+1 dimensions is the same as that of 2+1
dimensions.

@ The induced metric and gauge fields

3
ds? = gudt® + Z giidx? + gy dr? + d3(2|)7
i=1
A = A(r)dt + Byzdx + B,xdy + Bxydz + &, (28)

where the field theory directions are t,x,y,z and | = q — 4.

@ We keep all the components of the magnetic field for
generality.
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3+1 dimensions

The DBI and WZ terms

@ The leading order Lagrangian is the same

~ /2
Lo = —e *VOrY —gugr — A, (29)
5. .2
Kk = detyij = OxxOyy9zz + ZgiiZBi ) (30)
i=1

withi,j =x,y,z.
@ The expression for At/ is the same (with different «).
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3+1 dimensions

The DBI and WZ terms Cont'd

@ The OSM

SmndXxMdx" = gy G2dt?+g, G2dr?+
OxxOyy Ozz

(31)
where G2 is the same as that of the 2+1 dimensional case.
@ The non-vanishing components of 6™

e¢jt
V —det’)/mn \/67

@ The sub-leading action

i} 1 . -
or = — O = —;EukBkgkh (32)
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3+1 dimensions

The DBI and WZ terms Cont'd

1
5
(33)
92 = > €txyzr = 1
> e_¢\/ —det')/mn\/é7 Y
1 BiguJ;
Q= —5e /= detymn VB emapg M6 = %. (34)

@ The WZ term can be considered in a similar way as the
2+1 dimensional case, so we omit it.
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3+1 dimensions

The membrane paradigm

@ The canonical momentum
Ji(r) = —9—2\/_—sf T N7 Qy, (35)
5

@ The conductivity

ii N S 1 ‘
g = _— _—
g§ V SwSir S TS

ol = —N'QeeM| (36)

r—rs’

@ For an off-diagonal metric in time and space
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3+1 dimensions

The membrane paradigm Contd

ds? = sydt? + sy dr? + s dx? + 2sdtdx + sy dy? + s,,dz2,

The conductivity (Kim, Shock and Tarrio, '11)

ol — /\l —S v/ Sxx |
- gz 2 Si r—rs’
5 v/Srry/ —SttSxx + S
) i
ol = —N'Qe ”‘r—ws’ (37)

which agree with the previous results when sy, = 0.

@ Advantages: matrix calculations done by Mathmatica,
without particular combinations.
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Holographic models of QHE

D3-D7’ model

@ The model was proposed in arXiv:1003.4965[hep-th]
(Bergman, Jokela, Lifshytz and Lippert).

@ The configuration

01 2 3 45 6 7 8 9
D3 e o o o

D7 e e o e o o o o

@ The configuration is non-supersymmetric and unstable.
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Holographic models of QHE

D3-D7’ model Contd

@ To ensure the stability, we assume that D7-brane wraps
S? x S? inside S° and we introduce the following magnetic
fluxes through S?'s

F = %(fldfzg” +£,dQP), fi=2ra/mi,  (38)
dQ(Zi) = sin#; A dg¢j, n; are integers.
@ The gauge field o y
A = A dt + Bxdy,
@ Assuming that the scalars z(= x3) and ¢(= xg) are
functions of r only,
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Holographic models of QHE

D3-D7’ model Contd

the induced metric and the RR 4-form

dsg; = rP(=1()d? + o + dy?) o+ (pr o+ 1P22(1)

r2f(r)
+2(r))dr2 + cos? (d 5V )2 + sin? p(dQY)?,

Cs = r4dt/\dx/\dy/\dr—|—%C(r)ngl)/\ngz), (39)

where f(r) =1 —r4/r* and

c(r) = 8—71rz /SZXSZ Cy = 1/z(r)—% sin 4¢(r)—1/1(oo)+% sin 44 (0).

(40)
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Holographic models of QHE

D3-D7’ model Contd

@ The leading DBI and WZ terms

E(DOB)| = —\/@/-@\/1 + r4z/2 4 r2fy2 — Atlz’
E\(/S)z = fifprtz’ — Zc(r)é'&t,v (41)

0= <cos4¢ + %ff) (sin“w + %f22> , k=B24r% (42)

@ For black hole embedding, the conductivity reads
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Holographic models of QHE

D3-D7’ model Contd

1y 2

x N1
_ 7 ¥

B2 4 rd

- 1 . 1 ~
\/Jtz + <cos4w + fo) <sm4w - Zf22> (B2 +r1d),

X ! BN ‘]t(rS) C(rS)
y __
g o N <B~2 —|— rS > ’ (43)

where J; = J; 4+ ¢(¢)/2 x B.
@ For Minkowski embedding,
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Holographic models of QHE

D3-D7’ model Contd

=0, oY= —%N'C(ro) =N'= (44)

@ The results obtained by OSM method agree to arXiv:
1003.4965, where the real-action method was used.

@ Black hole embedding-metal phase, Minkowski
embedding-fractional QHE phase.
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Holographic models of QHE

D2-D8’ model

@ Holographic integer QHE model proposed in
arXiv:1101.3329[hep-th] by Jokela, Jarvinen and Lippert.

@ The configuration

0 1 2 3 45 6 7 8 9
D2 e o o (45)

D8 o e o e o o o o o

@ Here the D8 brane wraps S? x S? inside S° and this
configuration is also nonsupersymmetric and unstable.

@ We have to introduce the following magnetic field on the
internal S? to ensure the stability
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Holographic models of QHE

D2-D8’ model Contd

F =hsingdd Adg, (46)

@ The world volume gauge field
A = Adt + Bxdy.

@ With an assumption that the scalar ¢(= xg) is a function of
only the radial coordinate r, the pull-back of the metric and
the RR 4-from field

dsd; = r2(—f(r)dt? + dx? + dy )+r‘3(% +124)/2)

4172 sin? Yd Q3 + r~2 cos?d 3, (“47)
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Holographic models of QHE

D2-D8 Contd

Cs = c(y(r))dQ2; AdQs,

5/ . 1 . 1 .
c(y(r)) = 3 (smw % sin 3y — 10 sin 5w> (48)
f(ry=1-r3/r>,e ¢ = s
@ The leading order DBI and WZ terms
»C(DOE),| _ ’@n\/1+r2f¢’2 _ANtlz,

) = —c(nA/B, (49)
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Holographic models of QHE

D2-D8 Contd

© = (rtsin*y + F]Z)r_% cosby, Kk =B2+r5.

@ Conductivity for black hole embedding,

5
Nr2 — - ] -
o = ¥ +Sr5 \/Jtz + cos6 s(h2rs + sin® ) (B2 + r2),
S
JiB
o = N/<|§2t+r5 +C(rs)), (50)
S

where J; = J; + c(¢)B.
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Holographic models of QHE

D2-D8 Contd

@ For Minkowski embedding,
* =0, ¥ =-Nc(rg) = N/i = —. (51)
’ B 2n
@ The above results agree to those obtained in
arXiv:1101.3329[hep-th], where the real-action method
was adopted.

@ It was argued that the black hole embedding described the
metal phase while the Minkowski embedding described
integer QHE state with the filling fraction A/ = 3N /(4x).
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Light-cone AdS black hole

AdS space in light-cone frame

Such a metric can be obtained by the transformation
xt =b(t+x),x~ =1/(2b)(t — x).

ds?> = gy dx™2+2g,_dxTdx™ +g__dx 2
+0yydy? + g7,d2? + grrdr?
+R?%cos? 9d Q2 + R? sin? §d ¢?, (52)

(A —Af(r)r? _ 14f(nyr? (1 —f(r))b?r?
O++ = 4b2R2 y 04— = 2R2 y —— = R2 )
r2 2

R ra
Oy = gzz:@a grr:ma f(r)zl_r_47 (53)

where R is AdSs radius and b is the parameter related to the
rapidity.



Applications
O@000000000

Light-cone AdS black hole

Probe D7-branes

@ The world-volume gauge field
A =h,(r)dx* +h_(r)dx~ + Bpydz,

@ The DBI action

SD? = —NfTD7/d8§\/—det(gD7+27TCM/F)
= N / do¢L, (54)

where N = 272Nt Tp7 and
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Light-cone AdS black hole

Probe D7-brane Contd

ﬁz_\/(éz‘i'gyygzz)g?m Gpm, (55)
v D7 ~ /2
Gpm = —§97" —9g-—gyhy
~ 12 ~ )~
~g4++0yh_" +2g, gy h (56)

oY’ =gn+R?0'(r),  dao=R%cos?d, §=0°_-gii0_ .
(57)

@ Two conserved currents conjugate to two cyclic
coordinates h and h_:



Applications
0O00@0000000

Light-cone AdS black hole

The OSM

~ 0L 9z293q - ;

= = = — P h/ - — h,
Ji 8h; I (g OyyNy —04+-0Qyy —) )

or . (58)
~ g g ~ ~
== = (g++gwh’_ - g+-gyyh’+) :
@ The OSM
ds? = s, dx*t?4+2s  _dxTdx™ +s__dx?

+8yydy? 4 s,,dz?% + spdr?, (59)
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Light-cone AdS black hole

The OSM Contd

) .. "
91 9192 g
S++:g+++—7 S+—:g+—+ y, S—— =0+ —,
X X Y
: B -
Syy:gyy-i-g:, SZZ:gZZ"i_@a Srrzglngrr,
(60)

o _ 81908 — 62" +§3%

g , & =0(B*+0y0zz), (61)
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Light-cone AdS black hole

The OSM Contd

= 95 -09-041, G1=0:J +0944J5,
9__J_ +gs ds. 62)

(r\?( Qc
I

@ Note that the background gauge field information is
geometrized in x, x1, 91, 9> and the effective coupling

gyygszg
gs = | 232X (63)
93,
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Light-cone AdS black hole

The conductivity

@ Consider an electric field along y direction, Fy, = Ep, and
find the singular shell position by

£(rs) = dety,, = Iszg_-(rs)gzz(rs) —&1(rs) =0, (64)

which yields
.2 1/4
rs = <2b2Eb R4 <t4 — B2\ /tA+ (B2 + t4)2>> ’
(65)
where )
{ = TRbT B BN ' (66)
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Light-cone AdS black hole

The conductivity Cont'd

@ Substituting the above data into (37), we obtain

) VI 2 +t4 T F,

O'yy = 0
s (67)
Uyz = 50f_+ )
where
F (B2 +t4)2 4-t4 £ B2 4-t4
+ = 5
J+
- ) (68)

R3b cos3 0(rs)(2bE)3/2”
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Light-cone AdS black hole

The conductivity Cont'd

and

- +
o0 :/\/’R3\/2b300569(r5)Eb, 5o :J\//bE : (69)

@ This agrees to Kim, Kiritsis and Panagopoulos’10 obtained
by real-action method.

o AtB=0
t2 + V1 +t4
.F+:.F_:t2A7 A:%7 (70)
and the Ohmic conductivity is simplified as
2 3
o = o9 J— + ! (71)

2A " VA
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Light-cone AdS black hole

The conductivity Cont'd

@ AtB =0, in the regimet < JY/3 and 1 <« J,

o J+ It tx1
tVe+rvirtr |3t/ t>1

where t can be tuned by changing b at fixed E, and RT.

@ Att <« 1 we obtained the resistivity linear in temperature.
Interpreting b as a doping parameter we see a typical
cross over behavior of the strange metal.

@ AtB # 0, in the regime, t < VB, t < %, and B> 1, the
conductivity (67) is approximated as

(72)
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Light-cone AdS black hole

The conductivity Cont'd

J+t2 J+ oW 2

~ Vo o
B2’ B’ o¥z B’

where the Ohmic conductivity is dominated by the first term.

@ The temperature dependence (~ t?) of the inverse Hall
angle is the typical property of the strange metal. Note
that, if B> J (t < 1), the ohmic conductivity is 1/T, and, if
J > B (t < ), it is possible to cross overto 1/T?2.

loadd (73)



Summary and discussion

Summary and discussion

@ We studied the holographic DC conductivities of various
systems using the OSM method.

@ We proposed a new method to compute the DC
conductivity based on OSM. We showed that all results
obtained by the OSM method agreed to the results
obtained by the real-action method.

@ OSM can be used to study other transport coefficients and
effective temperature induced by the effective world
volume horizon, contrary to the real-action method.
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Thank you!
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