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Outline

- Bulk Gravity as SO(2, d) Gauge theory
- Bulk boundary relation

- The boundary consequence of bulk SO(2, d) gauge
symmetry
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- A lesson from AdS/CFT:
Global symmetry in the boundary field theory
= Gauge symmetry in the bulk gravity theory

- For a CFT at the d-dimensional boundary, we have the
conformal symmetry SO(2, d) as the global symmetry.

- Thus we would expect the local SO(2, d) gauge symmetry
in the bulk theory.

- The SO(2, d) gauge theory structure will lead to
non-trivial consequence on the boundary CFT.



Einstein Gravity

- Written in terms of vielbein, the Einstein-Hilbert action is

(D—-2) ; ;
Sle] = /601...5,0 I:G)am2 I Wem Ae®| Ae®B A... A e

where the spin connection w’j is decided by the torsion
free condition

De” =de? + w'y Ael =0
and the curvature is decided by the spin connection
0% =dw’y + wc A wp
- The Einstein equation is

(9["“’2 + 072elm A ec’z) AeB A Ae®l =0



Palatini’s 1-st Order Formula

- Palatini: Treating the spin connection w“, as independent
variables
D—-2
5[6‘, w] = /601--th9 [60102 + (DTZ)QCH A eclz] Ae®B A...A e

- The EOM’s are

(9[‘“ @2 4 p=2elar p e”z) AeBA ... Ae®-1 =

Del? A e® A .. A e?0-2 =

- If the vielbein e is not degenerate, the torsion free
condition will be automatically implied by the second
EOM!

- The 1-st order formalism is equivalent to the original
second order formalism at least in the classical level.



Uplift to SO(2, d)

- Basic idea: A%, ~ w9, A%® ~ ¢ 1ga

- In general, we should impose an extra matter field Y
which is in the fundamental representation of SO(2, d) and
satisfies the constraints Y%Y; = —1.

- By the SO(2, d) transformation, we can always reach the
standard guage

- In this gauge

DY? = ¢~ 1e?, DY* =0,
DDY? = Fo,Y* = ¢~ De?, DDY* = F*,YP =0.

- Now the Palatini EOM’s can be unified in the SO(2, d)
covariant way

Floda ADYB A...ADY1] =0,



SO(2, d) invariant action

- We can realize the previous uplift by a SO(2, d) gauge
invariant action.

D—-2
/Emmag I:emﬁz A ( Dgz )em A eaz] A ed3 A ooo A eaD

- /ea1..,ag+1 [F‘WZ = i DWZ] ADY® A ... ADY&ybon
- In the D = 3 C-S formalism, the Y field is implicitly
imposed when one decides the vielbein from the gauge
field e = Af + AR.
- The metric is induced by the Y field

ds? = 02Dy Y2 DN Ys dxMdxN .



SO(2, d) invariant action

- The EOM'’s of the previous action are
Flada ADY® A ... ADY%-1 =0,
as well as the EOM from oY

NN L /)
emu-aDaG A= €a1

LG eo y/§ Y, =0,

~apB
where
Gén-av
= (D — 2)(D — 3)Flté o F&BBYV?‘ Y& ADY® A-.. ADY!
—2(D — 1)Flar, YIBly® ADy® A ... A DYl
—(D —1)F@& A DY A ... ADY%l 4 280 [y o A DY
- Providing the 1st EOM, the 2nd EOM will be
automatically satisfied.
- Thus the new EOM will not introduce any further

constraints, and the above system is equivalent to the
original Einstein gravity classically.



Embedding gauge

Einstein gauge

In this gauge, it comes back to the Palatini action

Another natural gauge choice which is more relevant for
CFT construction is the embedding gauge:

N XH P 1—xtx, — az? P 1+ xHx, + az?

eyh ==, Wixz)=—L —  ¢¥ixz)= —E
(x,2) > (x,2) >, ) (x,2) o

In the embedding gauge, A = 0 gives rise to the pure AdS

vacuum.

Fixing in the embedding gauge, any coordinate
transformation can be mapped to a gauge transformation
up to the orthogonal SO(1, d). The isometry of pure AdS
is mapped to its rigid part.



Holographic dual

- The usual holographic dictionary related the bulk metric
gmn and the boundary E-M tensor THY.

- In the SO(2, d) gauge theory formalism, the duality is
between the bulk gauge field Ay and the boundary
SO(2, d) conserved currents J*.

- Usually, for the flat background, the SO(2, d) conformal
currents is given by

(Jé) = 2vlég, YA T,
where the S0(2, d) null-vector Y¢ is
Y = x#, YE’ = 15(1 — Nuxx"), Y = %(1 + Nux!'xY) .
- The conservation law d,J# = 0 is equivalent to
8,T"=0, TW=0, TH,=0.
- The boundary metric is consistently given by

= auWaVYa =



The structure of SO(2, d) currents

- The Y% can be viewed as a boundary background field
with A = —1. In the present case, its bulk dual exact
reproduce the Y9(x, z) in the embedding gauge

ev¥(x,2) = 2R ;0= § +1,-20) Yo
- A basis for so(2, d) algebra
( L/)&B = ZZY[&aLIYB]r ( Nv)aB = zaérY[&avYB] i _( vL/)&B.
() = Sylov?, ()% = S0vi,v?.

The commutators are

[ ur v]:Or [ I V]:_zrlv[m ) [ O, u]:_ I [ O Du}: Oy
[ M2 Vg Vz] = 2(’7v1[uz mlvo = Moy vy e [ Yo D] =0, [ Oy Dv] =0,
[ o Dv] = —2[]‘,[‘,1 Oy [ Oy V] = pwtnuw O

- The previous J* is in the Cartan sub-algebra. In general

JH =T IS5+ U g+ VY .



The duality between A and J

- What is the explicit relation between A and J?

- The asymptotic AdS B.C is
F ~0(z'7?)
We can simply choose
A=Y 27A", (n>2d-2)

- In general, the boundary duality relation is given by the
double dual formalism

(J”)&[a — M Hd 6&3&1'”%(/4&’61/*2))&1 &zauzyée <2 ()udyad _



The duality between A and J

- In terms of the components,
(d=2) _ 7 p 1g pi1p2 P
Al =T o+ 38 o t Uy 0+ VP e,
we have

TaC e ! )\d(Tvu = TpanIV) ; SHVIV2 — ZAC/I,’LI[V1UV2] ;
UH = _)\dsvuv . VHY — —)\d(VWJ i Vppan) :

- For d > 2, conservation equation d,J" = 0 is equivalent to
(A=) A dy B A ... AdY ) =0
which is the leading z° order of the bulk EOM
Flnéz ADY® A...ADY%-1l= 0.

- For d = 2, the above is still valid if A© is valued in the
cartan sub-algebra.



Boundary SO(2, d) gauge field

- The bulk configuration is described by {Y, A}. It allows
A — UAU™" —dUU™". If U contains terms lower than z9~2
, we will go beyond the choice A ~ O(z972).

- Especially, one can turning on the boundary SO(2, d)
gauge field A = A©),

- From the CFT point of view, it means localizing the
original rigid conformal symmetry.

- The initial choice of Y can be viewed as the boundary
embedding gauge.

- Fixing in the boundary embedding gauge, any boundary
difftxweyl transformation can be mapped to a gauge
transformation up to the orthogonal /ISO(1,d —1). The
original conformal symmetry is mapped to the rigid part.



Boundary SO(2, d) gauge field

- Turning on A, the boundary metric g,, = ]DuYa’]DVYa is
not always flat.

- Since it is pure gauge, we can turn it to be zero by
SO(2, d) transformation. Then in general Y% is non-longer
in the embedding gauge. We can take the coordinate
system

M =YPYr, YP=v?+Y*.
Thus the corresponding metric is
D, YD, Ys = (YV) 21, .

It means that the general boundary metric allowed by the
F ~ O(z97?) boundary condition is conformal flat.



Boundary SO(2, d) gauge field

- We can establish the corresponding so(2, d) basis as
following:
(Au)aB o ZY[[X]]A)UYE] , (Auv)afg = ZOUY[[X]]A)VYB] = 7(/\‘/“)5(3’
(o’ = 2vbend, (g, = Zovie,vA

where D is the covariant derivative for diff+gauge, and

DYDY, =
ave = (D2e—— B yeo (pry R |y
( U 2d ( T 3d—1)

- The commutators are now compatible with the metric g,,,

[AIJ'AV]:O' [ALHUZ'AV]: _ng[mAuz]' [AD'AU]: _AN' [ADIADu]: Al:lur
[Auﬂlz' AV1 Vz] = 2(gv1[uz Am]vz = gvz[uzAm]m ) [Auﬂ.lz' AD] =0, [ADur ADV] =0,
[Amuzr ADV] = _2gv[u1 ADLQ] ’ [ADUI Av] = Auv + guv,\D .

- The J*# should also be written in terms of the new basis

W =THr, + 15w, o+ U g+ VPV,



Schwarzian derivative from SO(2, 2)

- As an explicit example, let us consider the d = 2 non-rigid
conformal transformation.

- In terms of the complex coordinates {x*} = {w, w} , the
embedding gauge is

YY) =w, YY) =w, Yrx)=1, Y (x)=—-ww.

- After a general conformal transformation w = f(w), the
original background primary transforms as

V(%) = (FF)2Y%(x)

In the new coordinate system, it is non-longer in the
standard form of Y“(X) the embedding gauge.



Schwarzian derivative from SO(2, 2)

- We can find a SO(2, 2) transformation takes Y%(%) to

Yé(x). It is given by

(A 5w, w) = (A (W) AR () = (ARYY 2 (@) (AL 5 (w)

(th2 = W) (¢ = wi) g —(1 = wip)
= Yo — wipy) Wi (2 — wipy) =i = wihy)
—L/lé L?I; —L/l% L]Ié L/l% L?I;

(o = W)y = wih) (P —wi) (2 = wily) = (g = wi) (g — wipy)

where
Ya= ()72, gn = gof = (F)721.

Its left and right movers are respectively

A aw) = (ANl (AR a(w) = (AT p)en

(2 = wipy)
Wl — wih)
A

(2 = wi)(hy — wip)



Schwarzian derivative from SO(2, 2)

- The vacuum |Q) defined in {%} frame is decided by
(Q Taw (W)|Q) = 0.
After the double dual, the corresponding gauge field is

also vanishing A(x) = 0.

- Now going back to the {x} frame, the corresponding gauge
field becomes non-zero due to the gauge transformation

A(x) = (AN dAMPY = —§ Ldw —F ,dw.

where 8 is the Schwarzian derivative

2'(/// f/ o 3(fll)2

$={f.ws= =775

- The A(x) is valued in the cartan sub-algebra. Thus we
have ", = "=



Schwarzian derivative from SO(2, 2)
- The double dual gives the corresponding SO(2, d) current
Jy=T,"p = =28 wdw + 37 dw).
- Thus measured by the E-M tensor defined in {x} frame
(O T (WIQ) = 0
the state |Q) gives rise to
Q) Tuw|Q) = =148
- Comparing with the conformal transformation rule

Taa(®) = (1172 (Tuww) = 558 .

we can fix A = —¢.



Schwarzian derivative from SO(2, 2)

- By acting the same SO(2, 2) transformation (/\(1))al§(w, W)
on the bulk field Y¥, it will induce the bulk coordinate
transformation

B N (i
Af'fr 4 022 ¢’ Affr 4 022 (" Af'fr 4 022 ¢

w=f
- The corresponding metric is

(Q]ds*|Q)

DY%(x, )DYa(x, 2) = dY4(%, 2)dYa(%, 2) = 12 [adzz + c|v~vc|6v]
V4

1 :
= [Ezclzz +(dw — 102228 dw)(dw — 102°S clw)] ‘

This is the most general bulk solution for Brown-Heneaux
boundary condition.



General SO(2,2) transformation

- A general SO(2,2) transformation is A = ADAMIALAR),
- The AM) corresponds to the Weyl transformation. The A()

and AR) are the generalized left and right mover.

[ 0 (€% — )w 0
0 1 e? —1)w )
AW, ) (e —1)
0 0 e 0
(e 7—Nw (e —1Nw —(e7—e%Pwiw e
Uy — Wiy ¢ 0 ) Q
A (w, w) 0 Owin 0 Ow
—Ow 0 e 0
0 U — wowin 0 Wy — wdw
O 0 0 Aol
AR (w, w) = . b2 = Wiyt —(dn = WOy ) 0
d —Ow 9y Un 0
P — W0y g 0 0 Tl




General SO(2,2) transformation

- Uy and ¢ are decide by the general coordinate
transformation w — w = f(w, W) instead of the
holomorphic one.

1

Wy = (Owh)"Z,  ¢n = of = (0wf)”
Jo = @ul)"2, @1 = dof = (@af)”

i
o

Ni= Nl

- A9 is the /ISO(1, 1) which leaves Y intact.

1 0 0 w e 0 fi 0 10 -w 0

0 1 0 W 0 e=? fH 0 0 1 -w 0
AO(w, w) =

0 0 0 1 0 0 1 0 woow —ww 1

-w w1 —ww —e%h  —e%H  —hHfH 1 0 0 1 0

- The resulting metric is

ds? = DYDY, = e 20 [(awfawi + awfawi) dwdw + 8, fa, Fdw? + awfaw?dwz]

- _y—1 _
= e 20fdf = e (awfawf) dfdf



Weyl anomaly

- For simplicity, we take f to be holomorphic again, and
fi = —e?t%0, fhr=—e%9,0.
- Then after the double dual, we get

W _2C 405 5 oa o 2C a5 BRGS0, ]
I = ; e'9,,050 %, + 3 e 0,0 + (0w0o)” + 4(5Wf)2 W
+§EZU(0W¢+0W0) e %eZU(T —e ) 1,
272 _29.FB F
3G =201, 2 0 o o4
4017 .

—%ez" (Owd — 0w 0) 200 + %eza (1= e**7) 40,

W= %e” [B‘Z;VU + (0w 0)* +

- The corresponding E-M tensor is
Tuw=7¢ [020+(0 o) + S] T = % [aéa+(0wa)2+%$] ,
Uiy = ey = —gawé)wa.

- It gives rise to the correct Weyl anomaly

2c c
T, = _?ez"awawg — i



Weyl anomaly

- For d > 2, let us look at the components of the
conservation equation directly

HADL,J“ = (Vu THP _ %fuvsuvn .- %fﬂpuu) s (%VUS""" + Tlvel _ %fu[v v/ulel P

1
+ (VUU“ + T, + EE‘“’ V“V) "o+ (Ve + S = UY) "oy,

Whel‘e ﬂ‘uv = % (Ruv o ﬁRguv) -
- If S =0 and U* = 0, we get

1 1
v, T =0, TWl= Efu[v Viklel e = _Eﬂ‘uv VY, V,VHY =0,

- In the embedding gauge, to get the non-flat metric, we
must have V*¥ £ 0.

- For d =2k, V¥, = oU02 0k, 2 - - - £, V¥ satisfies the above
constraints, and f,, V#¥ is proportion to the Euler class.
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Summary & Overlook

- The SO(2, d) gauge theory description of gravity is more
suitable for studying holography.

- The leading order of Einstein equation is equivalent to the
conservation of boundary SO(2, d) currents.

- Turing on the boundary SO(2, d) background gauge field,
the boundary metric is conformal flat.

- The Weyl anomaly is obtained consistently in the dual
language.

- A final Conjecture:

|

Taking a hyper-plane inside the bulk=CFT with position
dependent renormalization scale

The bulk Einstein equation=The conservation law of J on
any given hyper-plane.



