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Outline

- Bulk Gravity as SO(2, d) Gauge theory
- Bulk boundary relation
- The boundary consequence of bulk SO(2, d) gaugesymmetry



Motivation

- A lesson from AdS/CFT:Global symmetry in the boundary field theory
⇒ Gauge symmetry in the bulk gravity theory

- For a CFT at the d-dimensional boundary, we have theconformal symmetry SO(2, d) as the global symmetry.
- Thus we would expect the local SO(2, d) gauge symmetryin the bulk theory.
- The SO(2, d) gauge theory structure will lead tonon-trivial consequence on the boundary CFT.
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Einstein Gravity

- Written in terms of vielbein, the Einstein-Hilbert action is
S[e] = ∫ εa1···aD

[Θa1a2 + (D − 2)
D `2 ea1 ∧ ea2

]
∧ ea3 ∧ · · · ∧ eaD

where the spin connection ωab is decided by the torsionfree condition
Dea = dea + ωab ∧ eb = 0

and the curvature is decided by the spin connection
Θab = dωab + ωac ∧ ωcb

- The Einstein equation is(Θ[a1a2 + `−2e[a1 ∧ ea2) ∧ ea3 ∧ · · · ∧ eaD−1] = 0



Palatini’s 1-st Order Formula
- Palatini: Treating the spin connection ωab as independentvariables
S[e, ω] = ∫ εa1···aD

[Θa1a2 + (D − 2)
D `2 ea1 ∧ ea2

]
∧ ea3 ∧ · · · ∧ eaD

- The EOM’s are(Θ[a1a2 + `−2e[a1 ∧ ea2) ∧ ea3 ∧ · · · ∧ eaD−1] = 0De[a1 ∧ ea2 ∧ · · · ∧ eaD−2] = 0
- If the vielbein ea is not degenerate, the torsion freecondition will be automatically implied by the secondEOM!
- The 1-st order formalism is equivalent to the originalsecond order formalism at least in the classical level.



Uplift to SO(2, d)
- Basic idea: Aab ∼ ωab , Aa• ∼ `−1ea
- In general, we should impose an extra matter field Y α̂which is in the fundamental representation of SO(2, d) andsatisfies the constraints Y α̂Yα̂ = −1 .
- By the SO(2, d) transformation, we can always reach thestandard guage

Ya = 0 , Y• = 1 .
- In this gaugeDY a = `−1ea , DY • = 0 ,DDY a = Fa•Y • = `−1 Dea , DDY • = F •bY b = 0 .
- Now the Palatini EOM’s can be unified in the SO(2, d)covariant way

F [α̂1α̂2 ∧DY α̂3 ∧ · · · ∧DY α̂D−1] = 0 .



SO(2, d) invariant action

- We can realize the previous uplift by a SO(2, d) gaugeinvariant action.∫
εa1···aD

[Θa1a2 + (D − 2)
D `2 ea1 ∧ ea2

]
∧ ea3 ∧ · · · ∧ eaD

∼
∫
εα̂1···α̂D+1

[
F α̂1α̂2 − 2

DDY α̂1 ∧DY α̂2
]
∧DY α̂3 ∧ · · · ∧DY α̂DY α̂D+1

- In the D = 3 C-S formalism, the Y field is implicitlyimposed when one decides the vielbein from the gaugefield ea = AaL + AaR .
- The metric is induced by the Y α̂ field

ds2 = `2DMY α̂ DNYα̂ dxMdxN .



SO(2, d) invariant action
- The EOM’s of the previous action are

F [α̂1α̂2 ∧DY α̂3 ∧ · · · ∧DY α̂D−1] = 0 ,as well as the EOM from δY
εα̂1···α̂D α̂Gα̂1···α̂D + εα̂1···α̂D β̂Gα̂1···α̂DY β̂Yα̂ = 0 ,where

Gα̂1···α̂D= (D − 2)(D − 3)F [α̂1α̂2 ∧ F α̂3
β̂Y
|β̂|Y α̂4 ∧DY α̂5 ∧ · · · ∧DY α̂D ]

−2(D − 1)F [α̂1
β̂Y
|β̂|Y α̂2 ∧DY α̂3 ∧ · · · ∧DY α̂D ]

−(D − 1)F [α̂1α̂2 ∧DY α̂3 ∧ · · · ∧DY α̂D ] + 2(D+1)
D DY α̂1 ∧ · · · ∧DY α̂D

- Providing the 1st EOM, the 2nd EOM will beautomatically satisfied.
- Thus the new EOM will not introduce any furtherconstraints, and the above system is equivalent to theoriginal Einstein gravity classically.



Embedding gauge

- Einstein gauge
Y M̂ = 0 , Y •̂ = 1 .

In this gauge, it comes back to the Palatini action
- Another natural gauge choice which is more relevant forCFT construction is the embedding gauge:
`Y µ̂(x, z) = xµ

z , `Y d̂(x, z) = 1− xµxµ − αz22z , `Y •̂(x, z) = 1 + xµxµ + αz22z .

- In the embedding gauge, A = 0 gives rise to the pure AdSvacuum.
- Fixing in the embedding gauge, any coordinatetransformation can be mapped to a gauge transformationup to the orthogonal SO(1, d). The isometry of pure AdSis mapped to its rigid part.



Holographic dual
- The usual holographic dictionary related the bulk metric
gMN and the boundary E-M tensor T µν .

- In the SO(2, d) gauge theory formalism, the duality isbetween the bulk gauge field AM and the boundary
SO(2, d) conserved currents Jµ .

- Usually, for the flat background, the SO(2, d) conformalcurrents is given by
(Jα̂β̂ )µ = 2Y[α̂∂νYβ̂]T µν ,where the SO(2, d) null-vector Yα̂ is

Y
µ̂ = xµ , Y

d̂ = 12 (1− ηµνxµxν ) , Y
•̂ = 12 (1 + ηµνxµxν ) .

- The conservation law ∂µJµ = 0 is equivalent to
∂µT µν = 0 , T [µν] = 0 , T µµ = 0 .

- The boundary metric is consistently given by
gµν = ∂µYα̂∂νYα̂ = ηµν .



The structure of SO(2, d) currents
- The Yα̂ can be viewed as a boundary background fieldwith ∆ = −1. In the present case, its bulk dual exactreproduce the Y α̂ (x, z) in the embedding gauge

`Y α̂ (x, z) = z−10F1(; ∆ − d2 + 1;− αz24 �
)
Y
α̂ (x)

- A basis for so(2, d) algebra
(�µ)α̂β̂ = 2Y[α̂∂µYβ̂] , (�µν )α̂β̂ = 2∂µY[α̂∂νYβ̂] = −(�νµ)α̂β̂ ,(��)α̂β̂ = 2

dY
[α̂�Yβ̂] , (��µ)α̂β̂ = 2

d�Y
[α̂∂µYβ̂] .

The commutators are
[�µ , �ν ] = 0 , [�µ1µ2 , �ν ] = −2ην[µ1�µ2 ] , [��, �µ ] = −�µ , [��, ��µ ] = ��µ ,[�µ1µ2 , �ν1ν2 ] = 2(ην1 [µ2�µ1 ]ν2 − ην2 [µ2�µ1 ]ν1 ) , [�µ1µ2 , ��] = 0 , [��µ , ��ν ] = 0 ,[�µ1µ2 , ��ν ] = −2ην[µ1��µ2 ] , [��µ , �ν ] = �µν + ηµν�� .

- The previous Jµ is in the Cartan sub-algebra. In general
J
µ = T µν�ν + 12Sµν1ν2�ν1ν2 + Uµ�� + V µν��ν .



The duality between A and J

- What is the explicit relation between A and J?
- The asymptotic AdS B.C is

F ∼ O(zd−2)
We can simply choose

A =∑ znA(n) , (n ≥ d − 2).
- In general, the boundary duality relation is given by thedouble dual formalism

(Jµ)α̂β̂ = λεµµ1···µdεα̂β̂α̂1···α̂d (A(d−2)
µ1 )α̂1α̂2∂µ2Yα̂3 · · · ∂µdYα̂d .



The duality between A and J

- In terms of the components,
A(d−2)
µ = Tµρ�ρ + 12Sµρ1ρ2�ρ1ρ2 + Uµ�� + Vµρ��ρ ,we have

T µν = λd(T νµ − T ρρηµν) , Sµν1ν2 = 2λdηµ[ν1Uν2] ,
Uµ = −λdSνµν , V µν = −λd(Vνµ − Vρρηµν) .

- For d > 2, conservation equation ∂µJµ = 0 is equivalent to(dA(d−2))[α̂1α̂2 ∧ dYα̂3 ∧ · · · ∧ dYα̂d ] = 0which is the leading z0 order of the bulk EOM
F [α̂1α̂2 ∧DY α̂3 ∧ · · · ∧DY α̂D−1] = 0 .

- For d = 2, the above is still valid if A(0) is valued in thecartan sub-algebra.



Boundary SO(2, d) gauge field

- The bulk configuration is described by {Y , A}. It allows
A → UAU−1 − dUU−1. If U contains terms lower than zd−2, we will go beyond the choice A ∼ O(zd−2).

- Especially, one can turning on the boundary SO(2, d)gauge field A = A(0).
- From the CFT point of view, it means localizing theoriginal rigid conformal symmetry.
- The initial choice of Y can be viewed as the boundaryembedding gauge.
- Fixing in the boundary embedding gauge, any boundarydiff×weyl transformation can be mapped to a gaugetransformation up to the orthogonal ISO(1, d − 1). Theoriginal conformal symmetry is mapped to the rigid part.



Boundary SO(2, d) gauge field

- Turning on A, the boundary metric gµν = DµY
α̂DνYα̂ isnot always flat.

- Since it is pure gauge, we can turn it to be zero by
SO(2, d) transformation. Then in general Y α̂ is non-longerin the embedding gauge. We can take the coordinatesystem

xµ = Y
µ̂/Y+̂ , Y

+̂ = Y
d̂ +Y

•̂ .

Thus the corresponding metric is
DµY

α̂
DνYα̂ = (Y+̂)2ηµν .

It means that the general boundary metric allowed by the
F ∼ O(zd−2) boundary condition is conformal flat.



Boundary SO(2, d) gauge field
- We can establish the corresponding so(2, d) basis asfollowing:

(�̂µ)α̂β̂ = 2Y[α̂
D̂µY

β̂] , (�̂µν )α̂β̂ = 2∂µY[α̂
D̂νY

β̂] = −(�̂νµ)α̂β̂ ,(�̂�)α̂β̂ = 2
dY

[α̂ �̂Yβ̂] , (�̂�µ)α̂β̂ = 2
d �̂Y

[α̂∂µYβ̂] .where D̂ is the covariant derivative for diff+gauge, and
�̂Yα̂ = D̂2 + D̂

2
Y
β̂
D̂

2
Yβ̂2d

Yα̂ = (D̂2 + R2(d − 1)
)
Y
α̂ .

- The commutators are now compatible with the metric gµν

[�̂µ , �̂ν ] = 0 , [�̂µ1µ2 , �̂ν ] = −2gν[µ1 �̂µ2 ] , [�̂�, �̂µ ] = −�̂µ , [�̂�, �̂�µ ] = �̂�µ ,[�̂µ1µ2 , �̂ν1ν2 ] = 2(gν1 [µ2 �̂µ1 ]ν2 − gν2 [µ2 �̂µ1 ]ν1 ) , [�̂µ1µ2 , �̂�] = 0 , [�̂�µ , �̂�ν ] = 0 ,[�̂µ1µ2 , �̂�ν ] = −2gν[µ1 �̂�µ2 ] , [�̂�µ , �̂ν ] = �̂µν + gµν �̂� .

- The Jµ should also be written in terms of the new basis
J
µ = T µν �̂ν + 12Sµν1ν2 �̂ν1ν2 + Uµ �̂� + V µν �̂�ν .



Schwarzian derivative from SO(2, 2)
- As an explicit example, let us consider the d = 2 non-rigidconformal transformation.
- In terms of the complex coordinates {xµ} = {w, w̄} , theembedding gauge is
Y
ŵ (x) = w , Y

ˆ̄w (x) = w̄ , Y
+̂(x) = 1 , Y

−̂(x) = −ww̄ .
- After a general conformal transformation w̃ = f (w), theoriginal background primary transforms as

Ỹ
α̂ (x̃) = (f ′f̄ ′) 12Yα̂ (x)

In the new coordinate system, it is non-longer in thestandard form of Yα̂ (x̃) the embedding gauge.



Schwarzian derivative from SO(2, 2)
- We can find a SO(2, 2) transformation takes Yα̂ (x̃) to
Ỹα̂ (x̃). It is given by

(Λ(1))α̂ β̂ (w, w̄) = (Λ(L))α̂ γ̂ (w)(Λ(R))γ̂ β̂ (w̄) = (Λ(R))γ̂ β̂ (w̄)(Λ(L))α̂ γ̂ (w)

=


(ψ2 −wψ′2)ψ̄′1 (ψ1 −wψ′1)ψ̄′2 −(ψ1 −wψ′1)ψ̄′1 (ψ2 −wψ′2)ψ̄′2
ψ′2(ψ̄1 − w̄ψ̄′1) ψ′1(ψ̄2 − w̄ψ̄′2) −ψ′1(ψ̄1 − w̄ψ̄′1) ψ′2(ψ̄2 − w̄ψ̄′2)
−ψ′2ψ̄′1 −ψ′1ψ̄′2 ψ′1ψ̄′1 −ψ′2ψ̄′2(ψ2 −wψ′2)(ψ̄1 − w̄ψ̄′1) (ψ1 −wψ′1)(ψ̄2 − w̄ψ̄′2) −(ψ1 −wψ′1)(ψ̄1 − w̄ψ̄′1) (ψ2 −wψ′2)(ψ̄2 − w̄ψ̄′2)


,

where
ψ2 = (f ′)− 12 , ψ1 = ψ2f = (f ′)− 12 f .

Its left and right movers are respectively
(Λ(L))α̂ β̂ (w) = (Λ(1))α̂ β̂ |f̄=w̄ , (Λ(R))α̂ β̂ (w̄) = (Λ(1))α̂ β̂ |f=w .



Schwarzian derivative from SO(2, 2)
- The vacuum |Ω̃〉 defined in {x̃} frame is decided by

〈Ω̃|T̃w̃w̃ (w̃)|Ω̃〉 = 0 .
After the double dual, the corresponding gauge field isalso vanishing A(x̃) = 0.

- Now going back to the {x} frame, the corresponding gaugefield becomes non-zero due to the gauge transformation
A(x) = (Λ(1))α̂ γ̂d(Λ(1))β̂γ̂ = −S�w̄dw − S̄�wdw̄ .

where S is the Schwarzian derivative
S = {f, w}S = 2f ′′′f ′ − 3(f ′′)22(f ′)2 .

- The A(x) is valued in the cartan sub-algebra. Thus wehave �̂µ = �µ .



Schwarzian derivative from SO(2, 2)
- The double dual gives the corresponding SO(2, d) current

Jµ = Tµρ�̂ρ = −λ2(S�̂w̄dw + S̄�̂wdw̄) .
- Thus measured by the E-M tensor defined in {x} frame

〈Ω|Tww (w)|Ω〉 = 0
the state |Ω̃〉 gives rise to

〈Ω̃|Tww |Ω̃〉 = −12λ2S .
- Comparing with the conformal transformation rule

T̃w̃w̃ (w̃) = (f ′)−2 (Tww (w)− c12S) ,we can fix λ2 = − c6 .



Schwarzian derivative from SO(2, 2)
- By acting the same SO(2, 2) transformation (Λ(1))α̂ β̂(w, w̄)on the bulk field Y α̂ , it will induce the bulk coordinatetransformation
w̃ = f − 2`2z2(f ′)2 f̄ ′′4f ′ f̄ ′ + `2z2f ′′ f̄ ′′ , ˜̄w = f̄ − 2`2z2f ′′(f̄ ′)24f ′ f̄ ′ + `2z2f ′′ f̄ ′′ , z̃ = 4z(f ′) 32 (f̄ ′) 324f ′ f̄ ′ + `2z2f ′′ f̄ ′′ .

- The corresponding metric is
〈Ω̃|ds2|Ω̃〉 = DY α̂ (x, z)DYα̂ (x, z) = dY α̂ (x̃, z̃)dYα̂ (x̃, z̃) = 1̃

z2
[
α̂dz̃2 + dw̃d ˜̄w]

= 1
z2
[
`2dz2 + (dw − 12 `2z2

S̄ dw̄)(dw̄ − 12 `2z2
S dw)] .

This is the most general bulk solution for Brown-Heneauxboundary condition.



General SO(2, 2) transformation
- A general SO(2, 2) transformation is Λ = Λ(0)Λ(W )Λ(L)Λ(R).
- The Λ(W ) corresponds to the Weyl transformation. The Λ(L)and Λ(R) are the generalized left and right mover.

Λ(W )(w, w̄) =


1 0 (eσ − 1)w 0
0 1 (eσ − 1)w̄ 0
0 0 e−σ 0

(e−σ − 1)w̄ (e−σ − 1)w −(eσ − e−σ )2ww̄ eσ


,

Λ(L)(w, w̄) =


ψ2 −w∂wψ2 0 −(ψ1 −w∂wψ1) 0
0 ∂wψ1 0 ∂wψ2

−∂wψ2 0 ∂wψ1 0
0 ψ1 −w∂wψ1 0 ψ2 −w∂wψ2


,

Λ(R)(w, w̄) =


∂w̄ ψ̄1 0 0 ∂w̄ ψ̄2
0 ψ̄2 − w̄∂w̄ ψ̄2 −(ψ̄1 − w̄∂w̄ ψ̄1) 0
0 −∂w̄ ψ̄2 ∂w̄ ψ̄1 0

ψ̄1 − w̄∂w̄ ψ̄1 0 0 ψ̄2 − w̄∂w̄ ψ̄2





General SO(2, 2) transformation
- ψ1 and ψ2 are decide by the general coordinatetransformation w → w̃ = f (w, w̄) instead of theholomorphic one.

ψ2 = (∂w f )− 12 , ψ1 = ψ2f = (∂w f )− 12 f ,
ψ̄2 = (∂w̄ f̄ )− 12 , ψ̄1 = ψ̄2 f̄ = (∂w̄ f̄ )− 12 f̄ .

- Λ(0) is the ISO(1, 1) which leaves Y intact.
Λ(0)(w, w̄) =



1 0 0 w

0 1 0 w̄

0 0 0 1
−w̄ −w 1 −ww̄





eφ 0 f1 0
0 e−φ f2 0
0 0 1 0

−eφf2 −e−φf1 −f1f2 1





1 0 −w 0
0 1 −w̄ 0
w̄ w −ww̄ 1
0 0 1 0


- The resulting metric is

ds2 = DY
α̂
DYα̂ = e−2Ω [(∂w f∂w̄ f̄ + ∂w̄ f∂w f̄)dwdw̄ + ∂w f∂w f̄dw2 + ∂w̄ f∂w̄ f̄dw̄2]

= e−2Ωdfdf̄ = e−2σ (∂w f∂w̄ f̄)−1 dfdf̄



Weyl anomaly
- For simplicity, we take f to be holomorphic again, and

f1 = −eφ+σ∂w̄σ , f2 = −e−φ+σ∂wσ .
- Then after the double dual, we get

Jw̄ = − 2c3 e4σ∂w∂w̄σ τ̂w + 2c3 e4σ [∂2
wσ + (∂wσ )2 + 2∂w f ∂3

w f − 3(∂2
w f )24(∂w f )2

]
τ̂w̄

+ c3 e2σ (∂wφ + ∂wσ ) τ̂� − c3 e2σ (1− e−φ+σ ) τ̂�w ,

Jw = 2c3 e4σ [∂2̄
wσ + (∂w̄σ )2 + 3(∂2̄

w f̄ )2 − 2∂w̄ f̄ ∂3̄
w f̄4(∂w̄ f̄ )2
]
τ̂w −

2c3 e4σ∂w̄∂wσ τ̂w̄
−c3 e2σ (∂w̄φ − ∂w̄σ ) τ̂� + c3 e2σ (1− eφ+σ ) τ̂�w̄ .

- The corresponding E-M tensor is
Tww= c6

[
∂2
wσ + (∂wσ )2 + 12S

]
, Tw̄w̄ = c6

[
∂2̄
wσ + (∂w̄σ )2 + 12 S̄

]
,

Tww̄=Tw̄w = −c6∂w∂w̄σ .
- It gives rise to the correct Weyl anomaly

T µµ = −2c3 e2σ∂w∂w̄σ = − c12R .



Weyl anomaly

- For d > 2, let us look at the components of theconservation equation directly
D̂µJ

µ = (
∇µT µρ −

1
d fµνS

µνρ − 1
d fµ

ρUµ
)
�̂ρ +(12∇µSµνρ + T [νρ] − 1

d fµ
[νV |µ|ρ]) �̂νρ

+(∇µUµ + Tµµ + 1
d fµνV

µν
)
�̂� + (∇µV µν + Sµµν −Uν) �̂�ν ,

where fµν = d
d−2 (Rµν − 12(d−1)Rgµν

)
.

- If Sµνρ = 0 and Uµ = 0, we get
∇µT µρ = 0 , T [νρ] = 1

d fµ
[νV |µ|ρ] , Tµµ = − 1

d fµνV
µν , ∇µV µν = 0 .

- In the embedding gauge, to get the non-flat metric, wemust have V µν 6= 0.
- For d = 2k , V µν = δµµ2···µkνν2···νk fµ2ν2 · · · fµk νk satisfies the aboveconstraints, and fµνV µν is proportion to the Euler class.



Summary & Overlook

- The SO(2, d) gauge theory description of gravity is moresuitable for studying holography.

- The leading order of Einstein equation is equivalent to theconservation of boundary SO(2, d) currents.
- Turing on the boundary SO(2, d) background gauge field,the boundary metric is conformal flat.
- The Weyl anomaly is obtained consistently in the duallanguage.
- A final Conjecture:

I Taking a hyper-plane inside the bulk=CFT with positiondependent renormalization scale
I The bulk Einstein equation=The conservation law of J onany given hyper-plane.
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