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General Relativity: Gravity = Curved Spacetime Geometry

Quantum Gravity = Quantum Spacetime Geometry

What is a Quantum Spacetime?

( In this talk, the spacetime dimension is 4 = 3+1)



Wheeler & Hawking’s Quantum Foam

J.A. Wheeler, Geometrodynamics and the issue of the final state, in Relativity, groups and
topology, C. DeWitt and B.S. DeWitt eds., Gordon and Breach, New York U.S.A. (1964).

S.W. Hawking, Space-time foam, Nucl. Phys. B 144 (1978) 349.
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Quantum Mechanics:

If we localize too much a particle in spacetime,
its energy and momentum grow.

At AE >1h/2, AxAp>h/2
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Quantum Mechanics:

If we localize too much a particle in spacetime,
its energy and momentum grow.

At AE >1h/2, AxAp>h/2

General Relativity:

If energy and momentum grow too much,
it collapses and forms a black hole.

Singularities, infinities, difficulies

Resolution:

There is a minimal scale (Planck scale Zp) In spacetime against localization.



Quantum Spacetime is Foam-like

A minimal cell of quantum spacetime



A Complementary Point of View: Emergent Gravity

Quantum Gravity as an Ocean of Entangled Qubits
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Xiao-Gang Wen, Zhenghan Wang 2018
Zheng-Cheng Gu, Xiao-Gang Wen 2009



A Complementary Point of View: Emergent Gravity

Quantum Spacetime is a Tensor Network

X ALY R XS
. ."'."..“. '
9 '.‘-.'".": ' Swingle 2009, Evenbly, Vidal, 2014

Pastawski, Yoshida, Harlow, Preskill, 2015

Hayden, Nezami, Qi, Thomas, Water, Yang 2016
Qi, Yang 2018



uestion of Emergent Gravity (Semiclassical Consistency of QG Model
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Ocean of entangled qubits

Foam-like spacetime

Quantum, Discrete, and Algebraic (fundamental)

Classical Gravity:
Smooth Spacetime Geometry
(emergent low energy excitations)

Tire

Space
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Spin Foam Model (SFM) and Emergent Gravity

® The definition of SFM as a State-Sum Model and a Tensor Network

Z(K) = Z l_l Ap(J) l—l Ac(1. D)

Jrf

® Large Spin Asymptotics and Emergent Geometry

o Continuum limit and Emergent (vacuum) Einstein Equation

Gy =0
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Spin Foam Model and Covariant Loop Quantum Gravity

Foam-like discrete spacetime: a triangulation of 4-manifold (simplicial complex)

4-simplex: minimal cell in 4d triangulation (10 triangles and 5 tetrahedra)

1 3 9
@ Spin Foam 4-simplex amplitude AO-(J, B

5 s 10 triangles f <« 10SU(2) spins Jr € Z,/2

5 tetrahedra T <«— 5 SU(2)invariant tensors

I; € Invgyp)[Vj, ®---®V;,]
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A triangulation of 4-manifold Spin Foam Model as a state-sum

4-simplex amplitude

PR #
K @ @ | @ ) A Z(K) = Z l_[ Ar(J¢) l—le'(J, 13
AN 5 o 5t T

face amplitude: Ar=2Jr+1

4-simplex amplitude: Engle, Pereira, Rovelli, Livine, 2007

Ay =tr(i; ® - - - ® 15)
= {SL(2, C) 15j symbol} x (fusion coefficients)

SL(2,C) invariant tensor: SL(2,C) Wigner D-matrix

'

= 4 (jk’yjk) mlo..m4
L= dg &, DV ()1
fSL(z,C) (lk’m )’(.]kamk)

k

4-simplex amplitude is a linear map of 5 invariant tensors:

®3
As: (InvspplV;, @@ V,]) —C
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Spin Foam Model as a Tensor Network

4-simplex amplitude is a linear map of 5 invariant tensors:

®3
As: (InvsyplV;, ®---®V;]) —C

4-simplex amplitude is a tensor state (of 5 invariant tensors)

®5
|A,) € (IIIVS U(2)[Vj1 R Vj4])

Gluing two 4-simplices = inner product with an EPR state of a pair of invariant tensors

(Ag| D el [Ag)
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Spin Foam Model as a Tensor Network

4; ‘

A‘f.

e, 46‘
«r% Vf\%

V’Av
\

VA\V
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(
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@@

spin sum (spin dependent) tensor network
Z(K) = ) U I | A D Z5) =) UA ) @ (el 8 1A
5l T J

SEDNALYS
L,

Spin Foam Model is an Ocean of Entangled Qubits (Qudits)
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Spin Foam Model (SFM) and Emergent Gravity

® The definition of SFM as a State-Sum Model and a Tensor Network

2= | [Arp | | A0

Jrf

® Large Spin Asymptotics and Emergent Geometry

o Continuum limit and Emergent (vacuum) Einstein Equation

Gy =0
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Integral Representation of the Tensor Network, Spin Foam Asymptotics

2K =) | [ArTp) @ (el s 1AL
/

J

- Z HAf(Jf) [ [dX] e&r 7iFAX]
Jg f )

Integration variables X

VA\V

QS
el

VZ\V

gve € SL(2,C)  “half edge” holonomy

z,r € CP! spinors

The regime where classical spacetime geometry emerges from the model: Large-J regime

LQG area spectrum: ar = 871)/5120 \/J r(Jr+1)
Semiclassical regime: ar > 5123 S |
The “action” is linear to the spins Jf: large Jf * stationary phase analysis

Classical (discrete) spacetime geometries = solutions of EOM

Freidel, Conrady 2008
Barrett et al, 2009
MH, Zhang, 2011

EOM: Geometrical interpretation of variables, geometrical reconstruction
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Euclidean EPRL/FK:

Lorentzian EPRL/FK:

(gfe)_lgfe’

Filgi gl = 3 > 22 jrin (e

+ vef

fe’f>

<g:£ezvfa gI/eZv'f>2

Ff[gvea va] = In
eC@f <gIeZVf’ gZeva> <gZ’eZV,f’ gz'eZV’f>

<gI€ZVf7 gieva>
'yl . (10)
o necl_a[c <3I'ezv’f’ gz/ezv’f>
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The Discrete Geometry from Spin Foam Model: Regge Geometry

M3 flat interior geometry

curved geometry are made by gluing
geometrical 4-simplices of different shapes

Geometries are charactered by
discrete metric: { edge lengths

By refining the triangulation, the discrete geometries converge to smooth geometries

19



Spin Foam Asymptotics

2K =) | [ArTp) @ (el s 1AL
/

T

- Z I_[ Ar(Jy) ] [dX] e+ /1P
;g f )

Large-J asymptotics of the integral: Evaluating the action at the critical point

Z JrkplXe]l = 2 Z arey (ay = yJstp) MH, Zhang, 2011
P f

Regge action: Discrete version of Einstein-Hilbert action f d*x V=g R

Regge, 1961
Friedberg, T.D. Lee 1984

Large-J asymptotics of the integral Ly oae
at “Regge critical points™: f[dX] er JrFelX] e‘% faref
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How to Include the Sum of Spins

N

2K =) | [ArTp) @ (el s 1AL
Jof

- Z I_[ Ar(Jy) [ [dX] e+ /1P
;g f )

Fix a background and consider perturbations of all spinfoam variables

J,X) = (Jy, X,) + (67, 5X)

*

A geometrical critical point

Jo> 1 The perturbation theory is in the large J regime
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How to Include the Sum of Spins

57 =58T(£)+ Y te,

¢ . edge lengths on the triangulation
e. . constant transverse basis

l

Z(K) = Z HA r(Jr) B (el ®s |As) Poisson resummation formula

-

J ot
=> | [Asp [ [dX] s AN PIUEDD z[djf(J) et/
Jof )

2JeZ keZ

Regularize the (transverse) spin sum
de :[dfdtj(f) — de j(f)[ dre™, s«
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How to Include the Sum of Spins

Performing the Gaussian integral of t:

UK ~ J[dde] eTOFEOD LX), (T, FXO) =Y JE)FX)

“Effective action”

Regime:

f
D; o 2 (&L F00)’
1 .
Syr = 2 HOF0 +— 37 (&, FX))
f i

1
J > ry > 1 and assuming 6 real

S+ = spinfoan action + perturbative correction

OxyS = Re(S) =0 — J(©), X) critical points

0J
f
5,8 = Z — F,(X)

: f
l?’z FvAie 0 Regge EOM

23



Effect of the Regulator

Performing the Gaussian integral of t:

AH) ~ [[dde] e TOTFENDL,X), (T, FX)) =Y J(OFX)=S
/

Dy o5 L@ FOOP _ —3 X (@, rE)
Bound of deficit angles Aj —> 12
(For non-suppressed contribution): (¢, ye)| <6
oJ _,
Regge EOM: { Ly E) =0
114

* 1y e | <52

If there wasn’t the regulator, we would have the flatness.

The regularization opens a window for arbitrary curved geometries by refining the lattice.

24



Spin Foam Model (SFM) and Emergent Gravity

® The definition of SFM as a State-Sum Model and a Tensor Network

2= | [Arp | | A0

Jrf

® Large Spin Asymptotics and Emergent Geometry

o Continuum limit and Emergent (vacuum) Einstein Equation

Gy =0

25



Continuum limit

7(1 7(1/2 c e 7(# s continuum limit: (4 — 0

l l l

Z(°Ky) Z(Kip) o0 Z(KD)

! l !

discrete geometries discrete geometries discrete geometries

on I, on 7(1/2 on 7(/1

Semiclassical continuum limit:  The flow of parameters: J(u), a(u), o(u)

. . . 1 dA 1 dC < tum corrections
f : Iim J(u) — —— < = quantt
satisfying lm (u) — oo o <z i i SEM
111% a(u) = 0 shrink the lattice spacing
u—
lir% o(u) =0 J(u) > 6(u)~' > 1
u—

bound of deficit angle: ler()| < S(u)''? MH, 2017

o6 MH, Zichang Huang, Antonia Zipfel, 2018
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Lattice Refinement:
Subdividing hypercubes followed by triangulation (Not Pachner moves for 4-simpices)

Spin foam continuum limit (4 = 0) V.S. Regge geometry continuum limit (£ — 0)

Define semiclassical continuum limit (SCL):

The flows of J(u), a(u), (1) such that spinfoam continuum limit contact with Regge

) u—0 = &) —0 IJ>6"'>1 = Ju) -
Combining large-j and continuum limit

° a(u) = yJ(u) (u°¢3)  u* scales 72 to zero: semiclassical limit

such thata(y) > 0asu— 0

. 2 1
i.e. u> — 0 faster than J(u) — —— < —ﬂ <0

poJdu

28



® Asymptotic expansion on the refining sequence:

Cw

A(u): typical background spin
/l(ﬂ)) A

| Z(K,) — (large-j approximation) | < (

Semi-classically converge to Regge geometries for all y if and only if quantum corrections ¢/,
are always small

Cw ) 1dA 1dC
/l(,u) (1) For all u — 0 OR }@ < E@

Theorem:

SCL is well defined because the flows satisfying the requirements always exist.

Example: )

Aw) = A, O<u< =

5
a(u) = p'? \JyA(DE

A0~ 202 < S(u) < L2
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Under the semiclassical continuum limit:

o [[dX] eszfFf[X] ~ exp

(

\

1
57

2. 4 erp)
f

\

)

9

J
J#

p<

2Ky =) | |ArTp) @ (el @ |As)

f
Af(‘]f) [ [dX] ng JiF7[X]
f N

1

57

Jd“x —gR[1 + 0(#)])

1 — 0 The low energy effective theory of spin foam model is Einstein gravity

Formally: Z(H) ~ [[dde] (T OFO)D (£, X)

o de ~ J Dg/w sum over geometries Z(K,) ~ f Dg,, e*'?

Sy [d'x V=g R [1+e(w)]

@ 4 — 0 equation of motion: Einstein equation G, =0 MH, 2013

30
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—— [d*x V=g R [1+e(u)]
Z(7<u) N f Dg,uv erlp I ¢ ” Is not rigorous because path integral is not well defined

Rigorously, on each triangulation, we obtain the Regge equation and a bound of deficit angles

daf(//t) 1/2
L — <o
Ef: oG =0 el <66

SFM semiclassical continuum limit u — 0 » continuum limit of Regge equation

| oa ()
There is no general proof Z p ; n ¢(u) =0 converges to smooth Einstein equation due to non-linearity
U
f

But there is no counter-example. All known examples of solutions demonstrate the convergence.

Every Regge convergence result » Convergence of spinfoam critical pts to smooth Einstein solution

® On the flat background, the low energy excitations SFM give linearized gravity (gravitons)

® Some highly curved Einstein solutions: e.g. cosmology solutions

MH, Zichang Huang, Antonia Zipfel 2018
MH, Hongguang Liu, to appear
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Symmetry reduction in spinfoam

Isotropic and homogeneous spin configurations ff

sum over all deviations away from symmetric configurations: tf = Jf — ff

_ 1 , _ 1 ) S€is+ 07
Ser = D TpFX) +ngf(X) - Z«'ﬁﬁngf _
f f f f J>1/6>1

couple to world-line matter

SM:—M/ds = - M) H,,

32



Evidence of singularity resolution:

U=a
0.10

T

0.08

0.06

T

0.04

T

0.02

T

0.00

3

N |

@ = arccos

J/2

J?2—16J
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Conclusion

The Spin Foam Model, as a model in Covariant Loop Quantum Gravity, can be
understood as a Tensor Network model, or an ocean of entangled qubits.

Semiclassical consistency of SFM = emergent gravity from SFM

Indeed we show that under the SFM semiclassical continuum limit

o [ dix y=g R [1+ew)]
Z(K,) ~ ngW et J v R e u—0
Convergence of SFM critical pts to smooth Einstein solutions

We find SFM is a good candidate of quantum gravity model (emergent gravity model)
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Conclusion

The Spin Foam Model, as a model in Covariant Loop Quantum Gravity, can be
understood as a Tensor Network model, or an ocean of entangled qubits.

Semiclassical consistency of SFM = emergent gravity from SFM

Indeed we show that under the SFM semiclassical continuum limit

L [d*x V=g R [1+€(w)]
Z(K,) ~ f Dguve"z‘%f Ve u—0

Convergence of SFM critical pts to smooth Einstein solutions

We find SFM is a good candidate of quantum gravity model (emergent gravity model)

Thanks for your attention !
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Singqularity Resolution in Spinfoams

UK ~ J[dde]e<T(f)’F(X)>D5(f, X), D, etLEFOP o ,-3T@ ey

- a? q? Typical lattice spacing
Bound of deficitangles: |y e | < 8!/, &~ —
P ,02 Typical curvature radius
. 2 2
Combine a“~yJ¢; andlarged
Cp<Ka<kp

Condition for non-suppressed large J amplitudes

The condition breaks down near a curvature singularity: all large J amplitude are suppressed.

The singularity corresponds to small J amplitudes in spinfoam models (well-defined objects).

MH, Mingyi Zhang, 2016
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Resolve the tension between large J and continuum limit (small area)

2 2 _
ar(u) ~yJi )ty = ar(uu u~! is alength unit
such that lim o f(,u) =0 for the continuum limit of the geometry
pu—0

40



An open issue

® There might exists disjoint “superselection sectors” in SFM other than Einstein solutions.

parameter space of SFM ron-Einstein

solutions

non-Einstein

non-Einstein solutions

solutions

Different sectors are not connected by continuous deformation of SFM solutions.

Y fh=) 2[d]f(]) g ikl

2JeZ keZ
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Conclusion

The Spin Foam Model, as a model in Covariant Loop Quantum Gravity, can be
understood as a Tensor Network model, or an ocean of entangled qubits.

Semiclassical consistency of SFM = emergent gravity from SFM

Indeed we show that under the SFM semiclassical continuum limit (IR limit)

L [d*x V=g R [1+€(w)]
Z(K,) ~ f Dguve"z‘%f Ve u—0

Convergence of solutions in the limit: spin-2 gravitons and Kasner universe
(solutions of Einstein equation)

We find SFM is a good candidate of quantum gravity model (emergent gravity model)

To do: more Einstein solutions, quantum corrections, etc......
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An open issue

® There might exists disjoint “superselection sectors” in SFM other than Einstein solutions.

parameter space of SFM ron-Einstein

solutions

non-Einstein

non-Einstein solutions

solutions

Different sectors are not connected by continuous deformation of SFM solutions.

The end

Thanks for your attention !
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Integral Representation of the Tensor Network, Spin Foam Asymptotics

2K =) | [ArTp) @ (el s 1AL
/

5 J
“(A« WA«(& _ Z [—[Af(-]f) [ [dX] (,Zr JiF7[X]
J f )
V\V." - ,
. Y Integration variables
X

«r‘(V VR

V

VA\V

%
el

gve € SL(2,C)  “half edge” holonomy

z,r € CP! spinors at vertices

The equations of motion (critical equations) from the action tell that
the integration variables have the geometrical interpretation.

gve € SL(2,C) relates to the spin connection parallel transport /

Zyf € ol relates to the tetrahedron faces normals
(tetrahedron geometry)

Critical equation: geometrical tetrahedra are parallel transported and glued.

The integration variables satisfying the critical equations can reconstruct

a 4d discrete geometry on the triangulation. Freidel, Conrady 2008
Barrett et al, 2009

MH, Zhang, 2011
44
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Mathematically Rigorous Story

- [d*x v/=g R [1+€(u)]
Z(7(,u) N ng,uv er’lr Jdx e ” is not rigorous because path integral is not well defined

Rigorously, on each triangulation, we obtain a Regge equation from variating Regge action

da(u)
Z EY: er(u) =0 discrete Einstein equation Regge, 1961
f '
bound of deficit angle: ler()| < 5(,u)1/ 2 from SFM
SFM semiclassical continuum limit ¢ — 0 * continuum limit of Regge equation
: Oa (1) L : L
There is no general proof Z (;) 7 g7(u) =0 converges to smooth Einstein equation due to non-linearity

f

But there is no counter-example. All known examples of solutions demonstrate the convergence.
The situation is similar to the Numerical Relativity, where one can obtain arbitrary spacetimes with discrete data.

Some mathematically rigorous results by using the convergence of Regge solutions (case by case study):

® On the flat background, the only low energy excitations SFM are gravitational waves (spin-2 gravitons)

® The highly curved Einstein solutions: e.g. Kasner universe

MH, Zichang Huang, Antonia Zipfel, to appear
MH, Hongguang Liu, to appear
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