Integrable Open Spin Chains of Flavored ABJM Theory

Jun-Bao Wu (Tianjin University)

Talk given at ICTS-USTC
Sep. 28, 2017

papers

- Based on
- Nan Bai, Hui-Huang Chen, Song He, Wen-Li Yang, JW, Meng-Qi Zhu, 1704.05807, JHEP08(2017)001
- JW, to appear

Motivations

- Gauge/gravity correspondence is one of the most important results in string theory the last two decades. [Maldacena 97]

Motivations

- As a kind of weak/strong duality, it allows us to study the strongly coupled gauge theories using weakly coupled gravity theories. (AdS/QCD, AdS/CMT)
- But this also makes the non-trivial check of this duality hard!
- Also it is still hard to compute quantities when coupling is intermediate($\left.{ }^{\sim} \mathrm{O}(1)\right)$.
- New tools in field theory: supersymmetric localization, integrable structure, bootstrap...

Motivations

- Rich integrable structures were found in both side of the holographic duality between 4d $N=4$ SYM and type IIB string theory on $\mathrm{AdS}_{5}{ }^{*} S^{5}$.
[Minaham, Zarembo, 02] [Bena etal, 03]
collection of reviews: [Beiserts etal, 10]
- Using this remarkable structure, people can compute non-trivial quantities like cusp anomalous dimension for a large range of the 't Hooft coupling in the planar limit.

Motivations

- Integrable structures were also found on both side of gauge-gravity duality between $3 \mathrm{~d} N=6 \mathrm{U}(\mathrm{N})_{k} * \mathrm{U}(\mathrm{M})_{-k}$ Chern-Simons-matter theory $\left(\mathrm{ABJ}(\mathrm{M})\right.$ theory) and type IIA string theory on $\mathrm{AdS}_{4}{ }^{*} \mathrm{CP}^{3}$. [Minaham, Zarembo, 08] [Bak, Rey, 08] ...
- We want to search for theories with less supersymmetries while they still have such integrable structure.

Previous attempts

- Pre-ABJM: Gaiotto and Yin (07) searched for integrable structure in general $N=3$ CSM theories. They found a non-integrable spin chain in certain sector.
- Post-ABJM: Forcella and Schulgin (09) studied $N=3$ theories based on $\mathrm{U}(\mathrm{N})_{k} * \mathrm{U}(\mathrm{N})_{-}$with unequal k and I . They had not found an integrable structure.

Three roads in 4d case

- Beta-/gamma-deformation [Roiban, 03][Berenstein, Cherkis, 04][Beisert, Roiban, 05]
- Orbifold [Wang, Y.-S. Wu, 03][Ideguchi, 04][Beisert, Roiban, 05]
- Adding flavors (+ orentifolding)

D7's+O7 [Chen, Wang, Y.-S. Wu, 04]*2
D7's[Erler, Mann, 05]

Three roads in 3d

- Beta-/gamma-deformed planar ABJM theories
two loop, scalar sector: [He, JW, 13]
all-loop and full sector (asymptotic Bethe ansatz), Y -system for finite size effects: [Chen, JW, 16]
Finite-size effects for Dyonic Gaint magnons: [Chen, JW, 16]
- Planar orbifold ABJM theories: from two-loop to all-loop [Bai, Chen, Ding, Li, JW, 16]
- Planar flavored ABJM theory: two-loop scalar sector [This talk]

Double scaling limit

- Special double scaling limit of gamma-deformed $N=4$ SYM or ABJM leads to integrable theories with only scalars and fermions.
- [Gurdogan, Kazakov, 15] [Caetano, Gurdogan, Kazakov, 16]
- Related to fishnet graphs [Zamolodchikov, 80].
- [Mamroud, Torrents, 17][Chichenin etal, 17] [Basso, Dixon, 17][Gromov etal, 17]

ABJM theory

- Aharony-Bergman-Jafferis-Maldacena theory is a three-dimensional Chern-Simons-matter theory with $N=6$ supersymmetries. The gauge group is $\mathrm{U}(\mathrm{N})^{*} \mathrm{U}(\mathrm{N})$ with Chern-Simons levels k and -k .
- The matter fields are scalars, Y^{\prime} and fermions Ψ_{1} in the bi-fundamental representation of the gauge group. Here $I=1, \ldots, 4$ and the R-symmetry group is $S U(4)$.

Properties of ABJM theory

$-1 / \mathrm{k}$ is the coupling constant.

- The theory has a large N (planar or 't Hooft) limit:

$$
N \rightarrow \infty, k \rightarrow \infty, \lambda \equiv \frac{N}{k} \text { fixed }
$$

- This theory is found to be the LEFT for N M2-branes putting on the tip of the orbifold $\mathbf{C}^{4} / \mathbf{Z}_{k}$.

The gravity dual

- When $N \gg k^{5}$, this theory is dual to M-theory on $\mathrm{AdS}_{4}{ }^{*} S^{7} / Z_{k}$.
- While when $\mathrm{k} \ll \mathrm{N} \ll \mathrm{k}^{5}$, a better description is in terms of type IIA string theory on $\mathrm{AdS}_{4}{ }^{*} \mathrm{CP}^{3}$.

Adding flavors

- One can add flavor which is (anti-)fundamental representation of either U(N). [Hohenegger, Kirsch, 09][Gaiotto, Jafferis, 09][Hikida, Li, Takayanagi, 09]
- This is dual to adding D6 branes to IIA theory on $\mathrm{AdS}_{4}{ }^{*} \mathrm{CP} 3$.
- The maximal supersymmetry one can get is $3 \mathrm{~d} N=3$.

ADM

- We compute the anomalous dimension matrix(ADM) of

$$
\hat{O}=Y_{i}^{\dagger} X^{i_{1} A_{1}} X_{i_{2} A_{2}}^{\dagger} \cdots X^{i_{2 L-1} A_{2 L-1}} X_{i_{2 L} A_{2 L}}^{\dagger} Y^{i^{\prime}}
$$

- We focus the 't Hooft limit, with k, N to infinity, $\lambda=N / k$ fixed and $\mathrm{N}_{\mathrm{f}} \ll \mathrm{N}$. This is dual to probe limit of D6 brane in the gravity side.

Two loop diagrams

Two loop Hamiltonian

$$
\begin{gathered}
\mathcal{H}=\mathcal{H}_{l}+\mathcal{H}_{r}+\mathcal{H}_{\text {bulk }}+\alpha \mathbb{I}, \\
\left(\mathcal{H}_{l}\right)_{i, j_{1} B_{1}, i_{2} A_{2}}^{j, i_{1} A_{1}, j_{2} B_{2}}=\lambda^{2}\left[\left(\delta_{A_{2}}^{A_{1}} \delta_{B_{1}}^{B_{2}}-\delta_{B_{1}}^{A_{1}} \delta_{A_{2}}^{B_{2}}\right) \cdot \delta_{i}^{j_{2}} \delta_{j_{1}}^{i_{1}} \delta_{i_{2}}^{j}+\delta_{B_{1}}^{A_{1}} \delta_{A_{2}}^{B_{2}} \cdot \delta_{i}^{i_{1}} \delta_{j_{1}}^{j} \delta_{i_{2}}^{j_{2}}\right] \\
\left(\mathcal{H}_{r}\right)_{j_{2 L-1} B_{2 L-1}, i_{2 L} A_{2 L}, j^{\prime}}^{i_{2 L-1} A_{2 L-1}, j_{2 L} B_{2 L}, i^{\prime}}=\lambda^{2}\left[\left(\delta_{B_{2 L-1}}^{B_{2 L}} \delta_{A_{2 L}}^{A_{2 L-1}}-\delta_{A_{2 L}}^{B_{2 L}} \delta_{B_{2 L-1}}^{A_{2 L-1}}\right) \cdot \delta_{j^{\prime}}^{i_{2 L-1}} \delta_{i_{2 L}}^{j_{2 L}} \delta_{j_{2 L-1}}^{i^{\prime}}\right. \\
\left.+\delta_{A_{2 L}}^{B_{2 L}} \delta_{B_{2 L-1}}^{A_{2 L-1}} \cdot \delta_{j_{2 L-1}}^{i_{2 L-1}} \delta_{i_{2 L}}^{i^{\prime}} \delta_{j^{\prime}}^{j_{2 L}}\right] \\
\mathcal{H}_{\text {bulk }}=\lambda^{2} \sum_{l=1}^{2 L-2}\left(\mathbb{I}_{l, l+1}-\mathbb{P}_{l, l+2}+\frac{1}{2} \mathbb{P}_{l, l+2} \mathbb{K}_{l, l+1}+\frac{1}{2} \mathbb{K}_{l, l+1} \mathbb{P}_{l, l+2}\right)
\end{gathered}
$$

Two loop Hamiltonian

$$
\left(\mathbb{I}_{l, l+1}\right)_{j B, i^{\prime} A^{\prime}}^{i A, j^{\prime} B^{\prime}}=\delta_{j}^{i} \delta_{i^{\prime}}^{j^{\prime}} \delta_{B}^{A} \delta_{A^{\prime}}^{B^{\prime}}, \quad\left(\mathbb{P}_{l, l+2}\right)_{j B, j^{\prime} B^{\prime}}^{i A, i^{\prime} A^{\prime}}=\delta_{j^{\prime}}^{i} \delta_{j}^{i^{\prime}} \delta_{B^{\prime}}^{A} \delta_{B}^{A^{\prime}}, \quad\left(\mathbb{K}_{l, l+1}\right)_{j B, i^{\prime} A^{\prime}}^{i A, j^{\prime} B^{\prime}}=\delta_{i^{\prime}}^{i} \delta_{j}^{j^{\prime}} \delta_{A^{\prime}}^{A} \delta_{B}^{B^{\prime}},
$$

- α was fixed to $2 \lambda^{2}$ (<=anomalous dimension of BPS operator is zero).

Multi-body problem

- Now we want to solve the spectrum of this multi-body Hamiltonian.
- Usually it is very hard to get the exact solution.
- However the problem will be simplified when the Hamiltonian is integrable.
- To check the integrability using coordinate Bethe ansatz, we need to compute the S-matrix of two-particle scattering and reflection matrix for one-(bulk)-particle state.

Vacuum and excitations

- Vacuum

$$
|\Omega\rangle=\left|Y_{2}^{\dagger} X^{11} X_{22}^{\dagger} \cdots X^{11} X_{22}^{\dagger} Y^{1}\right\rangle
$$

- Excitations

$$
\begin{array}{cl}
\text { bulk A type : } & Y_{2}^{\dagger}\left(A_{1} B_{2}\right) \cdots\left(A_{2} B_{2}\right) \cdots\left(A_{1} B_{2}\right) Y^{1}, \\
& Y_{2}^{\dagger}\left(A_{1} B_{2}\right) \cdots\left(B_{1}^{\dagger} B_{2}\right) \cdots\left(A_{1} B_{2}\right) Y^{1}, \\
\text { bulk B type : } & Y_{2}^{\dagger}\left(A_{1} B_{2}\right) \cdots\left(A_{1} A_{2}^{\dagger}\right) \cdots\left(A_{1} B_{2}\right) Y^{1}, \\
& Y_{2}^{\dagger}\left(A_{1} B_{2}\right) \cdots\left(A_{1} B_{1}\right) \cdots\left(A_{1} B_{2}\right) Y^{1}, \\
\text { boundary }: & Y_{1}^{\dagger}\left(A_{1} B_{2}\right) \cdots\left(A_{1} B_{2}\right) \cdots\left(A_{1} B_{2}\right) Y^{1}, \\
& Y_{2}^{\dagger}\left(A_{1} B_{2}\right) \cdots\left(A_{1} B_{2}\right) \cdots\left(A_{1} B_{2}\right) Y^{2} . \\
& X^{11}=A_{1}, \quad X^{12}=A_{2}, \quad X^{21}=B_{1}^{\dagger}, \quad X^{22}=B_{2}^{\dagger} .
\end{array}
$$

Bulk S-matrix

- The two-loop S-matrix has been computed in [Ahn, Nepomechine, 09]

$$
u_{i} \equiv \frac{1}{2} \cot \frac{k_{i}}{2}, \quad u_{i j} \equiv u_{i}-u_{j} .
$$

The non-zero elements of the bulk S-matrix is

$$
S_{\phi \phi}^{\phi \phi}\left(k_{2}, k_{1}\right)=\frac{u_{21}+i}{u_{21}-i},
$$

where ϕ is one of $A_{2}, B_{1}^{\dagger}, A_{2}^{\dagger}, B_{1}$;

Bulk S-matrix (II)

$$
\begin{aligned}
& S_{A_{2} B_{1}^{\dagger}}^{A_{2} B_{1}^{\dagger}}\left(k_{2}, k_{1}\right)=S_{B_{1}^{\dagger} A_{2}}^{B_{1}^{\dagger} A_{2}}\left(k_{2}, k_{1}\right)=S_{A_{2}^{\dagger} B_{1}}^{A_{2}^{\dagger} B_{1}}\left(k_{2}, k_{1}\right)=S_{B_{1} A_{2}^{\dagger}}^{B_{1} A_{2}^{\dagger}}\left(k_{2}, k_{1}\right)=\frac{u_{21}}{u_{21}-i} ; \\
& S_{A_{2} B_{1}^{\dagger}}^{B_{1}^{\dagger} A_{2}}\left(k_{2}, k_{1}\right)=S_{B_{1}^{\dagger} A_{2}}^{A_{2} B_{1}^{\dagger}}\left(k_{2}, k_{1}\right)=S_{A_{2}^{\dagger} B_{1}}^{B_{1} A_{2}^{\dagger}}\left(k_{2}, k_{1}\right)=S_{B_{1} A_{2}^{\dagger}}^{A_{2}^{\dagger} B_{1}}\left(k_{2}, k_{1}\right)=\frac{i}{u_{21}-i} ; \\
& \quad S_{A_{2} B_{1}}^{A_{2} B_{1}}\left(k_{2}, k_{1}\right)=S_{B_{1} A_{2}}^{B_{1} A_{2}}\left(k_{2}, k_{1}\right)=S_{A_{2}^{\dagger} B_{1}^{\dagger}}^{A_{2}^{\dagger} B_{1}^{\dagger}}\left(k_{2}, k_{1}\right)=S_{B_{1}^{\dagger} A_{2}^{\dagger}}^{B_{1}^{\dagger} A_{2}^{\dagger}}\left(k_{2}, k_{1}\right)=1 ; \\
& S_{A_{2} A_{2}^{\dagger}}^{A_{2} A_{2}^{\dagger}}\left(k_{2}, k_{1}\right)=S_{B_{1}^{\dagger} B_{1}}^{B_{1}^{\dagger} B_{1}}\left(k_{2}, k_{1}\right)=S_{A_{2}^{\dagger} A_{2}}^{A_{2}^{\dagger} A_{2}}\left(k_{2}, k_{1}\right)=S_{B_{1} B_{1}^{\dagger}}^{B_{1} B_{1}^{\dagger}}\left(k_{2}, k_{1}\right)=\frac{u_{12}}{u_{12}-i} ; \\
& S_{B_{1}^{\dagger} B_{1}}^{A_{2} A_{2}^{\dagger}}\left(k_{2}, k_{1}\right)=S_{A_{2} A_{2}^{\dagger}}^{B_{1}^{\dagger} B_{1}}\left(k_{2}, k_{1}\right)=S_{B_{1} B_{1}^{\dagger}}^{A_{2}^{\dagger} A_{2}}\left(k_{2}, k_{1}\right)=S_{A_{2}^{\dagger} A_{2}}^{B_{1} B_{1}^{\dagger}}\left(k_{2}, k_{1}\right)=\frac{i}{u_{12}-i} .
\end{aligned}
$$

YBE

- The S-matrix has been computed in [Ahn, Nepomechine, 09] and we confirm that it satisfies Yang-Baxter equation.

Action of left boundary Hamiltonian

$$
\begin{aligned}
& \mathcal{H}_{l}|1\rangle_{A_{2}}=\lambda^{2}|1\rangle_{B_{1}}, \\
& \mathcal{H}_{l}|1\rangle_{B_{1}^{+}}=\lambda^{2}|l\rangle_{Y_{1}^{+}}, \\
& \mathcal{H}_{l}|1\rangle_{A_{2}^{+}}=-\lambda^{2}|l\rangle_{Y_{1}^{\dagger}}, \\
& \mathcal{H}_{l}|1\rangle_{B_{1}}=\lambda^{2}|1\rangle_{A_{2}}, \\
& \mathcal{H}_{l}|l\rangle_{Y_{1}^{\dagger}}=-\lambda^{2}|1\rangle_{A_{2}^{\dagger}}+\lambda^{2}|l\rangle_{Y_{1}^{\dagger}}+\lambda^{2}|1\rangle_{B_{1}^{\dagger}}, \\
& \mathcal{H}_{l}|x\rangle=-\lambda^{2}|x\rangle, \quad x \neq 1,
\end{aligned}
$$

Closed sector I

- Ansatz

$$
\begin{gathered}
\left|\psi_{1}(k)\right\rangle=\sum_{x=1}^{L}\left(f(x)|x\rangle_{A_{2}}+g(x)|x\rangle_{B_{1}}\right), \\
f(x)=F e^{i k x}+\tilde{F} e^{-i k x}, \\
g(x)=G e^{i k x}+\tilde{G} e^{-i k x} .
\end{gathered}
$$

- Eigenvalue equation

$$
\mathcal{H}\left|\psi_{1}\right\rangle=E(k)\left|\psi_{1}\right\rangle
$$

- Bulk part of the chain gives

$$
E(k)=2 \lambda^{2}-2 \lambda^{2} \cos k .
$$

Reflection

- Left boundary

$$
F=-e^{-i k} \tilde{G}, \quad G=-e^{-i k} \tilde{F} .
$$

- Definition

$$
\begin{gathered}
\binom{F}{G} \equiv K_{l}(k)\binom{\tilde{F}}{\tilde{G}} . \\
K_{l}(k)=\left(\begin{array}{cc}
0 & -e^{-i k} \\
-e^{-i k} & 0
\end{array}\right) .
\end{gathered}
$$

- The right boundary $\quad F=-e^{-2 i k L-i k} \tilde{G}, \quad G=-e^{-2 i k L-i k} \tilde{F}$.

$$
e^{2 i k L}\binom{F}{G} \equiv K_{r}(k)\binom{\tilde{F}}{\tilde{G}} . \quad K_{r}(k)=\left(\begin{array}{cc}
0 & -e^{-i k} \\
-e^{-i k} & 0
\end{array}\right) .
$$

Closed sector II

$$
\begin{gathered}
\left|\psi_{2}(k)\right\rangle=\sum_{x=1}^{L} n(x)|x\rangle_{B_{1}^{\dagger}}+\sum_{x=1}^{L} h(x)|x\rangle_{A_{2}^{\dagger}}+\beta|l\rangle_{Y_{1}^{\dagger}}+\gamma|r\rangle_{Y^{2}}, \\
K_{l}(k)=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) . \quad K_{r}(k)=\left(\begin{array}{cc}
0 & -e^{-2 i k} \\
-e^{-2 i k} & 0
\end{array}\right),
\end{gathered}
$$

Reflection matrices

$$
\begin{gathered}
K_{l}(k)=\left(\begin{array}{cccc}
0 & 0 & 0 & -e^{-i k} \\
0 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 \\
-e^{-i k} & 0 & 0 & 0
\end{array}\right), \\
K_{r}(k)=\left(\begin{array}{cccc}
0 & 0 & 0 & -e^{-i k} \\
0 & 0 & -e^{-2 i k} & 0 \\
0 & -e^{-2 i k} & 0 & 0 \\
-e^{-i k} & 0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

Boundary Yang-Baxter equation

$$
\begin{aligned}
& {\left[S\left(k_{1}, k_{2}\right)\right]_{l_{1} l_{2}}^{m_{1} m_{2}}\left[K_{l}\left(k_{2}\right)\right]_{j_{2}}^{l_{2}}\left[S\left(-k_{2}, k_{1}\right)\right]_{j_{1} i_{2}}^{l_{1} j_{2}}\left[K_{l}\left(k_{1}\right)\right]_{i_{1}}^{j_{1}} } \\
= & {\left[K_{l}\left(k_{1}\right)\right]_{l_{1}}^{m_{1}}\left[S\left(-k_{1}, k_{2}\right)\right]_{j_{1} l_{2}}^{l_{1} m_{2}}\left[K_{l}\left(k_{2}\right)\right]_{j_{2}}^{l_{2}}\left[S\left(-k_{2},-k_{1}\right)\right]_{i_{1} i_{2}}^{j_{1} j_{2}}, } \\
{[} & {\left[S\left(-k_{1},-k_{2}\right)\right]_{l_{1} l_{2}}^{m_{1} m_{2}}\left[K_{r}\left(-k_{1}\right)\right]_{j_{1}}^{l_{1}}\left[S\left(-k_{2}, k_{1}\right)\right]_{i_{1} j_{2}}^{j_{1} l_{2}}\left[K_{r}\left(-k_{2}\right)\right]_{j_{2}}^{j_{2}} } \\
= & {\left[K_{r}\left(-k_{2}\right)\right]_{l_{2}}^{m_{2}}\left[S\left(-k_{1}, k_{2}\right)\right]_{l_{1} j_{2}}^{m_{1} l_{2}}\left[K_{r}\left(-k_{1}\right)\right]_{j_{1}}^{l_{1}}\left[S\left(k_{2}, k_{1}\right)\right]_{i_{1} i_{2}}^{j_{1}}, }
\end{aligned}
$$

BYBE

Nonintegrability in the Veneziano limit

- Flavor-backreacted background was found in [Conde, Ramallo, 11]. The backreacted of D6 branes are taken into account. This is dual to field theory in the Veneziano limit: N_{f}, N, k to infinity, $N_{f} / N, N / k$ fixed. (unquenched flavors).
- Very recently, [Giataganas, Zoubos, 17] showed that the classical string motion in this background is chaotic! This gave strong evidence that the field theory in the Veneziano limit is nonintegrable.

More general integrable boundary interactions?

- Let us consider boundary interactions with general coefficients,

$$
\begin{aligned}
& \left(\mathcal{H}_{l}\right)_{i, j_{1} B_{1}, i_{2} A_{2}}^{j_{1} A_{1}, j_{2} B_{2}}=\left(-a \delta_{B_{1}}^{A_{1}} \delta_{A_{2}}^{B_{2}}+b \delta_{A_{2}}^{A_{1}} \delta_{B_{1}}^{B_{2}}\right) \cdot \delta_{i}^{j_{2}} \delta_{j_{1}}^{i_{1}} \delta_{i_{2}}^{j}+c \delta_{B_{1}}^{A_{1}} \delta_{A_{2}}^{B_{2}} \cdot \delta_{i}^{i_{1}} \delta_{j_{1}}^{j} \delta_{i_{2}}^{j_{2}},
\end{aligned}
$$

$$
\begin{aligned}
& +c^{\prime} \delta_{A_{2 L}}^{B_{2 L}} \delta_{B_{2 L-1}}^{A 2 L-1} \cdot \delta_{j_{2 L-1}}^{i L L-1} \delta_{i_{2 L}}^{\prime} \delta_{j^{\prime}}^{j_{2 L}},
\end{aligned}
$$

More general integrable boundary interactions?

- Among these boundary interactions, only two are integrable. [JW, to appear]
-1. $a=b=c=a^{\prime}=b^{\prime}=c^{\prime}=\lambda^{2}$, this is the one from flavored ABJM theory.
-2. $a=b=c=a^{\prime}=b^{\prime}=c^{\prime}=0$.

Conclusion and Discussions

- We proved that the planar flavored ABJM theory is integrable at two loop in the scalar sector.
- We used the coordinate Bethe ansatz, notice that the reflection matrix is non-diagonal!
- If we consider more general coefficients of the boundary interaction, only two cases are intergrable!

To do list

- Find the spectrum: using off-diagonal Bethe ansatz [Cao, Shi, Wang, Yang].
- Generalization to full sector and/or high loop.
- Integrability of the theories with both D6's and O6-planes added?
- Integrable open spin chain from Wilson loops or giant gravitons?

Thank you very much!

