Rapidity Divergence in QCD and Application to Collider Physics

朱华星 (Hua Xing Zhu) 浙江大学

科大交叉中心seminar 2017年9月14日

Fantastic Standard Model measurement from LHC

A

Standa	rd Model Total Produ	ction Cros	s Section Measur	rements July 2017	∫£dt [fb ⁻¹]	Reference
nn	$\sigma = 96.07 \pm 0.18 \pm 0.91 \text{ mb} \text{ (clats)} \\ \text{COMPETE HPR1R2 (theory)}$		4	4	50×10 ⁻³	PLB 761 (2016) 158
РР	σ = 95.35 ± 0.38 ± 1.3 mb (bata) COMPETE HPR1R2 (theory)		÷		8×10 ⁻⁸	Nucl. Phys. B, 483-548 (2014
W/	$\sigma = 190.1 \pm 0.2 \pm 6.4 \text{ nb (data)}$ DYNNLD + CT14NNLO (theory)		Ċ.	0	0.061	PLB 769 (2016) 601
vv	cr = 98 71 + 0.028 + 2.191 ob (data) DYNNLO + GT14NNLO (theory)		•		4.6	EPJC 77 (2017) 367
z	cr = 58.43 ± 0.03 ± 1.66 nb (data) DYNNLO (CT14 NNLO (theory)				3.2	JHEP 02 (2017) 117
	σ = 34.24 ± 0.08 ± 0.92 nb (data) DYNNLO+CT14 NNLO (theory)		4		20.2	JHEP 02 (2017) 117
			0		4.6	JHEP 02 (2017) 117
_	$\sigma = $18 \pm 8 \pm 35 \text{ pb} (\text{data})$ top++ NNLD+NLL (theory)		ф.	4	8.2	PLB 761 (2016) 136
tī	<pre>ar = 242.9 + 1.7 + 8.6 ob (data) top++ NNLD+NNLL (theory)</pre>	4		4	20.2	EPJC 74: 3109 (2014)
	$\sigma = 182.9 \pm 3.1 \pm 6.4 \text{ pb} (\text{data})$ top (+ NNLD (NNLL (theory)	þ			4.6	EPUC 74: \$109 (\$014)
	247 ± 6 ± 45 pia (cialat) NLC+NLL (fileory)	þ			3.2	JHEP 04 (2017) 086
t _{t-chan}	$\sigma = 89.6 \pm 1.7 + 7.2 - 5.4 \text{ pb (deta)}$ NLC+NLL (theory)	4		🎄	20.3	arXiv:1702.02853 [hep-ex]
	$\sigma = 68 \pm 2 \pm 8 \text{ pb}$ (3913) NLC+NLL (theory)	•		🗖	4.6	PRD 90, 112006 (2014)
	$\sigma = 142 \pm 5 \pm 13 \text{ pb} \text{ (clata)}$ NNLO (theory)		_		3.2	arXiv: 1702.04519 [hep-ex]
ww	σ = 68.2 ± 1.2 ± 4.6 pb (data) NNLO (theory)	Δ	Theory		20.3	FLB 763, 114 (2016)
	$x = 51.9 \pm 2 \pm 4.4 \text{ pb} (\text{data})$ NNLO (theory)	0			4.6	FRD 37, 112001 (2013) FRL 113, 212001 (2014)
	$\sigma = 57 + 6 - 5.9 + 4 - 3.3 \text{ policita})$ LHC-HXSWG YH4 (theory)	Ò	LHC pp $\sqrt{s} = 7$ TeV	0	36.1	ATLAS-CONF-2017-047
	$\sigma = 27.7 \pm 3 \pm 2.3 \pm 1.9 pix(data)$ LHO+X3WG VB4 (fixeon)	<u>ک</u>	Data		20.3	EPJC 75, 6 (2015)
н	$\tau = 22.1 \pm 6.7 \pm 5.3 \pm 3.3 \pm 2.7 \text{ gb} (data)$ LHC+XSWG YB4 (theory)	b b	stat		4.5	EPJC 75, 6 (2015)
	$\sigma = 94 \pm 10 \pm 28 \pm 23 \text{ po (cata)}$ NLC-MNUL ((herry)		stat 🕀 syst		3.2	arXiv:1612.07231 [hep-ex]
Wt	$x = 23 \pm 1.3 \pm 3.4 \pm 3.4 \pm 3.7 \text{ pb} (\text{data})$ NLC-NLL (favory)	۸ ا	I HC nn √s – 8 TeV	📥	20.3	JHEP 01.064 (2016)
	$\sigma = 16.8 \pm 2.9 \pm 3.9 \text{ pb} (\text{cata})$ NLC+MLL (theory)	Ó			2.0	FLB 716, 142-169 (2012)
	$\sigma = 50.6 \pm 2.6 \pm 2.5 \text{ pb (data)}$ MATRIX (NNI O) (theory)	Ċ.	▲ Data		3.2	PLB 762 (2016) 1 PLB 761 (2016) 179
WZ	$\sigma = 24.3 \pm 0.6 \pm 0.9 \text{ pb (cate)}$	Å	stat ⊕ svst		20.3	PRD 93, 002004 (2016) PLR (2016) 129
	$\pi = 19 + 1.4 - 1.3 + 1 \mathrm{ph}(\mathrm{data})$ MATRIX (MIL 0) (harrow)	6			4.6	EPJC 72, 2173 (2012) ELB 761 (2016) 179
	$\sigma = 17.2 \pm 0.6 \pm 0.7$ pb (cdtb) Margin (MHC) (5 Element (MHC) (beauti)	- Č	LHC pp $\gamma s = 13$ IeV		36.1	ATLAS-CONF-2017-031
77	$\sigma = 7.3 \pm 0.4 \pm 0.4 = 0.3 \text{ pb (data)}$	Δ	Data		20.3	JHEP 01, 099 (2017)
~~	$\sigma = 6.7 \pm 0.7 + 0.5 - 0.4 \text{ pb (data)}$	ō	stat @ evet		4.6	JHEP 03, 128 (2010)
t _{s-chan}	$\sigma = 4.8 \pm 0.8 \pm 1.8 \pm 1.3 \text{ pb} (\text{data})$		stat ± syst		20.8	PLB 756, 228-246 (2016)
-s=cnan	$\sigma = 1.5 \pm 0.72 \pm 0.33 \text{ pb} (\text{data})$ Mathematical and Mathematical Mathematical American	ATL	AS Preliminary		3.2	EPJC 77 (2017) 40
ttW	$\sigma = 360 + 85 - 79 \pm 44 \text{ (b (data)}$	_	,		20.3	JHEP 11, 172 (2015)
	$r = 0.52 \pm 0.10b (data)$	Bun	$12\sqrt{5} = 7.8$ 13 TeV		3.2	EPJC 77 (2017) 40
ttZ	$\sigma = \frac{176 + 52 - 48 \pm 24 \text{ (b)}}{146 \text{ (deta)}}$		η, γυ = τ, υ, τυ τον		20.3	JHEP 11, 172 (2015)
tZi	σ = 620 π m ± 160 (μπατη) σ = 620 ± 170 ± 160 fb (data)	-			36.1	TOPD-2016-14
	$10^{-5} \ 10^{-4} \ 10^{-3} \ 10^{-2} \ 10^{-1}$	$1 10^1 10^2$	$10^3 \ 10^4 \ 10^5 \ 10^6 \ 10^1$	1 0.5 1 1.5 2 2.5		
			- [ab]	data/theory		
			o [hn]	uala/ineory		

Motivation

Percent level accuracy at LHC for Drell-Yan production!

Differential distribution for Higgs production for probing new physics!

♦ Non-decoupling of UV from IR in an EFT (SCET_{II})

Uniform degree of transcendentality in a class of Wilson loop expectation value in N=4 SYM

degree of transcendentality:

 $[\pi] = 1 \qquad [\zeta_n] = n \qquad [\zeta_m \zeta_n] = m + n$ $\ln x = \int^x \frac{dt}{t} \qquad \text{Li}_2(x) = \int^x \frac{dt_1}{t_1} \int^{t_1} \frac{dt_2}{1 - t_2} \qquad [\text{Li}_n(x)] = n$

 $O_2 - O_1 = (\Delta t, 0, 0, 0)$

Y. Li, von Manteuffel, Scharbinger, HXZ, 2014

Outline

- Review factorization formalism for small pT resummation
- New regulator for rapidity divergence in TMD observable
- Three-loop anomalous dimension for rapidity evolution
- Phenomenological application to Higgs production

Transverse momentum of color neutral system

Definition of the observable (Drell-Yan case):

$$\vec{q}_{\perp} = \vec{p}_{l^+,\perp} + \vec{p}_{l^-,\perp}$$

$$\frac{d\sigma}{d\vec{q}_{\perp}^2 dY} = \sum_{i,j} \int_0^1 dx_a \, dx_b \, f_{i/h_1}(x_a,\mu_f) f_{j/h_2}(x_b,\mu_f) \frac{d\hat{\sigma}}{d\vec{q}_{\perp}^2 dY}(\hat{s},\hat{t},\hat{u},Q^2)$$

- Analytical results at NLO available for long time DY: Ellis, Martinelli, Petronzio, 1983; Higgs: Glosser, Schmidt, 2002
- Recent development: numerical calculation of V/H + jet at NNLO at large pT
 Antenna subtraction: Gehrmann et al; N-jettiness, Boughezal et al;
 STRIPPER subtraction: Boughezal et al;
- ✦ Progress towards analytical NNLO V/H+jet Dulat et al.

Break down of fixed order P.T. at small pT

+ Fixed order perturbation theory exhibits large logs at small pT

 $\sigma(\vec{b}_{\perp}) \sim \exp\left(A(\alpha_s)\ln^2 \vec{b}_{\perp}^2 + B(\alpha_s)\ln \vec{b}_{\perp}^2\right) + \text{non-singular terms}$

Collins, Soper, Sterman, 1985 ...

pT resummation in Effective theory

pT resummation in the SCET rapidity RG formalism
 Chiu, Jain, Neill, Bothstein, 2012

$$\frac{d\sigma_{\rm DY}}{dQ^2 dY d^2 \vec{q}_{\perp}} = \sigma_0 \int \frac{d^2 \vec{b}_{\perp}}{(2\pi)^2} e^{i\vec{b}_{\perp} \cdot \vec{q}_{\perp}} H(Q,\mu_h) B_q(x_A,Q,\vec{b}_{\perp},\mu_b,\nu_b) B_{\bar{q}}(x_B,Q,\vec{b}_{\perp},\mu_b,\nu_b) S_{\perp}(\vec{b}_{\perp},\mu_s,\nu_s)$$
$$\cdot \exp\left\{-\int_{b_0^2/\vec{b}_{\perp}^2}^{Q^2} \frac{d\bar{\mu}^2}{\bar{\mu}^2} \left[\left(\Gamma_{\rm cusp} \left[\alpha_s(\bar{\mu})\right] + \frac{d\gamma^r \left[\alpha_s(\bar{\mu})\right]}{d\ln\bar{\mu}^2}\right) \ln \frac{Q^2}{\bar{\mu}^2} + \left(\gamma^V \left[\alpha_s(\bar{\mu})\right] - \gamma^r \left[\alpha_s(\bar{\mu})\right]\right) \right] \right\}$$

+ Hard function H: quark/gluon form factor

• Beam function B: quark/gluon correlator (unrenormlized) $W_n(x) = P \exp\left(ig \int_{-\infty}^0 ds \,\bar{n} \cdot A(x+s\bar{n})\right)$

$$B_{q/N}(z,Q,\vec{b}_{\perp}) = \int dx^{+} e^{izP^{-}x^{+}/2} \left\langle P \left| (\bar{\psi}_{n}W_{n})(x^{+},0,\vec{b}_{\perp}) \frac{\bar{n}_{\mu}\gamma^{\mu}}{2} (W_{n}^{\dagger}\psi_{n})(0) \right| P \right\rangle$$

Soft function S: VEV. of light-like Wilson loop (unrenormalized)

$$S_{\perp} = \frac{\mathrm{Tr}}{C} \langle 0 | T\{S_{\bar{n}}^{\dagger} S_n(0,0,0)\} \overline{T}\{S_n^{\dagger} S_{\bar{n}}(0,0,\vec{b}_{\perp}) | 0 \rangle$$

$$S_n(x) = \mathrm{Pexp} \left(ig \int_{-\infty}^{0} ds \, n \cdot A(x+sn) \right)$$

Anomalous dimension for resummation

Resummation formulae in the SCET formalism at canonical scale

pT distribution as a precision probe of N.P. QCD

$$\frac{d\sigma_{\mathrm{DY}}}{dQ^{2}dYd^{2}\vec{q}_{\perp}} = \sigma_{0} \int \frac{d^{2}\vec{b}_{\perp}}{(2\pi)^{2}} e^{i\vec{b}_{\perp}\cdot\vec{q}_{\perp}} H(Q,\mu_{h})B_{q}(x_{A},Q,\vec{b}_{\perp},\mu_{b},\nu_{b})B_{\bar{q}}(x_{B},Q,\vec{b}_{\perp},\mu_{b},\nu_{b})S_{\perp}(\vec{b}_{\perp},\mu_{s},\nu_{s})$$

$$\cdot \exp\left\{-\int_{b_{0}^{2}/\vec{b}_{\perp}^{2}}^{Q^{2}} \frac{d\bar{\mu}^{2}}{\bar{\mu}^{2}} \left[\left(\Gamma_{\mathrm{cusp}}\left[\alpha_{s}(\bar{\mu})\right] + \frac{d\gamma^{r}\left[\alpha_{s}(\bar{\mu})\right]}{d\ln\bar{\mu}^{2}}\right)\ln\frac{Q^{2}}{\bar{\mu}^{2}} + \left(\gamma^{V}\left[\alpha_{s}(\bar{\mu})\right] - \gamma^{r}\left[\alpha_{s}(\bar{\mu})\right]\right)\right]\right]$$

$$\cdot e^{-S_{\mathrm{np}}} \text{ (non-perturbative modification at large impact parameter)}$$

$$\ast \ \mathbf{b}^{*} \ \mathbf{prescription:} \quad b^{*} = \frac{b_{\perp}}{\sqrt{1 + b_{\perp}^{2}/b_{\mathrm{max}}^{2}}}$$

$$\leftarrow \operatorname{Commonly used N.P. \ \mathbf{modeli:} \ S_{\mathrm{N.P.}} = \exp\left[-\left(g_{1} + g_{2}\ln\frac{Q}{2Q} + g_{1}g_{3}\ln(100x_{A}x_{B})\right)b_{\perp}^{2}\right]$$

Different functional form for global fit

Landry, Brock, Nadolsky, Yuan, 2002; Konychev, Nadolsky, 2005; Qiu, Zhang, 2001; Echevarria, Idilbi, Schafer, Scimemi, 2011; Sun, Isaacson, Yuan, Yuan, 2014;

. . .

+ Quadratic form at small b

 \mathcal{Y}^{\perp}

Korchemsky, Sterman, 94; Scimemi, Vladimirov, 16

- No first principle prediction at large b
 - quadratic: original CSS parameterization

 $2Q_0$

- + linear: Tafat, 2002
- + constant: Collins, Rogers, 2014
- + Logarithmic: Collins, Soper, 82; SIYY, 2014
- + Need truly non-perturbative prediction. Lattice? integrability?

13

$$\frac{d\sigma_{\mathrm{DY}}}{dQ^2 dY d^2 \vec{q}_{\perp}} = \sigma_0 \int \frac{d^2 \vec{b}_{\perp}}{(2\pi)^2} e^{i \vec{b}_{\perp} \cdot \vec{q}_{\perp}} H(Q, \mu_h) B_q(x_A, Q, \vec{b}_{\perp}, \mu_b, \nu_b) B_{\bar{q}}(x_B, Q, \vec{b}_{\perp}, \mu_b, \nu_b) S_{\perp}(\vec{b}_{\perp}, \mu_s, \nu_s)$$

$$\cdot \exp\left\{-\int_{b_0^2/\vec{b}_{\perp}^2}^{Q^2} \frac{d\bar{\mu}^2}{\bar{\mu}^2} \left[\left(\Gamma_{\mathrm{cusp}} \left[\alpha_s(\bar{\mu})\right] + \frac{d\gamma^r \left[\alpha_s(\bar{\mu})\right]}{d\ln\bar{\mu}^2}\right) \ln \frac{Q^2}{\bar{\mu}^2} + \left(\gamma^V \left[\alpha_s(\bar{\mu})\right] - \frac{\gamma^r \left[\alpha_s(\bar{\mu})\right]}{B\ln\bar{b}_{\perp}^2}\right) \right] \right]$$

$$B \ln \bar{b}_{\perp}^2$$

$$\gamma_r = \gamma_0^r B_1 + \alpha_s^2 \gamma_1^r + \cdots$$

- Process dependent. Two loops known:
 - + DY: Davies, Stirling, 1984
 - + Higgs: de Florian, Grazzini, 2000

- Obey Casimir scaling to the known perturbative order. Two loops:
 - Gehrmann, Lubbert, L.L.Yang (2012,2014)
 - Echevarria, Scimemi, Vladimirov (2015)
 - Luebbert, Oredsson, Stahlhofen (2016)

Three-loop knowledge of rapidity anomalous dimension important for reduce perturbative uncertainty, and may shed light on non-perturbative large b behavior

- Hard function (form factor) free from rapidity evolution
- Consistency relation between Beam and soft function

$$\nu \frac{d}{d\nu} \Big[BBS_{\perp} \Big] = 0 \qquad \qquad \mathcal{V} \quad \text{rapidity evolution scale}$$

- Can compute either Beam function or soft function to obtain rapidity anomalous dimension
- The calculation would be simplest using soft function vev. of light-like Wilson loop.
- Problem: light-cone singularity not regularized by dimensional regularization (problem also presented in the beam function)

(un-regulated) Rapidity singularity

$$S_{\perp} = \frac{\mathrm{Tr}}{C} \langle 0 | T\{S_{\bar{n}}^{\dagger} S_n(0,0,0)\} \overline{T}\{S_n^{\dagger} S_{\bar{n}}(0,0,\vec{b}_{\perp}) | 0 \rangle$$

 $S_{n,\bar{n}}$ light-like Wilson line to - ∞

invariant under arbitrary z boost

one-loop example:

 $\sim \int dx_a \, dx_b D_+(x_{ab}^2)$ $\sim \int_0^\infty dt_1 \int_0^\infty dt_2 \, \frac{1}{(t_1 t_2 + \vec{b}_\perp^2)^{1-\epsilon}}$

rapidity divergence In momentum space:

- Several rapidity regulators have been proposed
 - Tilting the Wilson line off light cone: Ji, Ma, Yuan (2004); Collins (2011)
 - analytic regulator: Becher, Neubert (2009); Becher, Bell (2011); two-loop calculation: Gehrmann, Lubbert, Yang (2012,2014)

$$\int d^d k \to \int d^d k \, \left(\frac{\nu}{k^+}\right)^{\alpha}$$

 delta regulator (mass regulator): Echevarria, Idilbi and Scimemi (2011); twoloop calculation: Echevarria, Scimemi, Vladimirov (2015)

$$\frac{1}{k^+ + i\varepsilon} \to \frac{1}{k^+ + \delta}$$

 rapidity renormalization group: Chiu, Jain, Neill, Rothstein (2011,2012); twoloop calculation: Luebbert, Oredsson, Stahlhofen (2016)

$$\int d^d k \to \int d^d k \left(\frac{\nu}{|k_z|}\right)^\eta$$

A new regulator for rapidity divergence 1604.00392, Y. Li, Neill, HXZ

The regulator: an infinitesimal shift to in Euclidean time

- Manifestly preserve gauge symmetry and Non-Abelian exponentiation theorem.
- Logarithmic like singularity log(v). Don't need O(v) terms
- Have operator definition. Possible to put on Lattice

Relation to other soft function: threshold

Light-like Wilson loop separated in Euclidean time only

$$S_{\text{thr.}} = \frac{\text{Tr}}{C} \langle 0 | T\{S_{\bar{n}}^{\dagger}S_{n}(0,0,0)\} \overline{T}\{S_{n}^{\dagger}S_{\bar{n}}(i\tau,i\tau,0)|0\rangle$$
$$\sigma = \tau \int \frac{dx}{x} \frac{dz}{z} f_{1}(x) f_{2}(\tau/x/z) \hat{\sigma}(z)$$
$$\hat{\sigma}(z) \sim \delta(1-z) + \alpha_{s} \left[\frac{\ln(1-z)}{1-z}\right]_{+} + \cdots$$
$$1-z = 1 - \frac{Q^{2}}{\hat{s}} \simeq 2\frac{k_{s}^{0}}{Q} + \cdots$$

 Useful for resummation of large logarithms of (1-z) in partonic cross section of Drell-Yan and Higgs production

> Korchemsky, Marchesini, 1993 Becher, Neubert, Xu, 2007

All three-loop integrals for threshold soft function known

Anastasiou et al, 2015; Y. Li et al, 2014

Building block for Higgs production at N3LO

Anastasiou et al, 2015

Relation to other soft function: fully differential

 Light-like Wilson loop separated both in time and transverse spatial direction Laenen, Sterman, Vogelsang, 2000; Mantry, Petriello, 2009

$$S_{\rm F.D.} = \frac{\mathrm{Tr}}{C} \langle 0 | T\{S_{\bar{n}}^{\dagger} S_n(0,0,0)\} \overline{T}\{S_n^{\dagger} S_{\bar{n}}(i\tau,i\tau,\vec{b}_{\perp}) | 0 \rangle$$

- Fully differential soft function free from rapidity divergence
- Useful for joint resummation
 H.-n Li,98; Laenen, Sterman, Vogelsang, 2000;
 Lustermans, Waalewijn, Zeune, 05
- Non-trivial dependence on dimensionless ratio

$$x = \frac{\vec{b}_{\perp}^2}{(i\tau)^2}$$

✦ Known to two loops Y. Li, Mantry, Petriello, 2011

Relation between different soft functions

An almost triangular relations

Fully Differential soft function in N=4 SYM

$$S_{\text{F.D.}} = \exp\left\{\sum_{i=0}^{\infty} \left(\frac{\alpha_s}{4\pi}\right)^{i+1} \left[\frac{\Gamma_i^{\text{cusp}}}{2}L_{\tau}^2 - \gamma_i^s L_{\tau} + c_{i+1}^{\text{F.D.}}(x)\right]\right\} \qquad L_{\tau} = \ln\frac{\tau^2}{b_0^2\mu^2}$$
$$x = \frac{\vec{b}_{\perp}^2}{(i\tau)^2}$$

The µ dependent part fixed by RG equation

$$c_{1}^{\text{F.D.}} = 4N_{c}H_{0,1}(x) + c_{1,\mathcal{N}=4}^{s}$$

$$c_{2}^{\text{F.D.}} = N_{c}^{2} \left[-8\zeta_{2}H_{0,1}(x) - 8H_{0,0,0,1}(x) - 8H_{0,1,0,1}(x) - 16H_{0,0,1,1}(x) - 16H_{0,1,1,1}(x) \right] + c_{2,\mathcal{N}=4}^{s}$$

- Maximal transcendental weight at each order
- HPLs with 0 first entry, 1 last entry. Suggest a simple ansatz on three loops
- Constraint from single logarithmic rapidity divergence at each order

$$x \to -\infty$$

- Based on the pattern observed at one and two loops, we will make an ansatz at three loops
- The ansatz is linear combination of Harmonic Polylogarithms with rational or Zeta-value coefficients
- We will do the calculation in N=4 Supersymmetric Yang-Mills theory first

$$Nc^{3} \left(\frac{1}{90} \pi^{4} c_{23} H_{0,1}[\mathbf{x}] + c_{21} Zeta[3] H_{0,0,1}[\mathbf{x}] + c_{22} Zeta[3] H_{0,1,1}[\mathbf{x}] + \frac{1}{6} \pi^{2} c_{17} H_{0,0,0,1}[\mathbf{x}] + \frac{1}{6} \pi^{2} c_{18} H_{0,0,1,1}[\mathbf{x}] + \frac{1}{6} \pi^{2} c_{19} H_{0,1,0,1}[\mathbf{x}] + \frac{1}{6} \pi^{2} c_{20} H_{0,1,1,1}[\mathbf{x}] + c_{1} H_{0,0,0,0,0,1}[\mathbf{x}] + c_{2} H_{0,0,0,0,1,1}[\mathbf{x}] + c_{3} H_{0,0,1,0,1}[\mathbf{x}] + c_{4} H_{0,0,0,1,1,1}[\mathbf{x}] + c_{5} H_{0,0,1,0,0,1}[\mathbf{x}] + c_{6} H_{0,0,1,0,1,1}[\mathbf{x}] + c_{7} H_{0,0,1,0,1}[\mathbf{x}] + c_{8} H_{0,0,1,1,1,1}[\mathbf{x}] + c_{9} H_{0,1,0,0,0,1}[\mathbf{x}] + c_{10} H_{0,1,0,0,1,1}[\mathbf{x}] + c_{11} H_{0,1,0,1,0,1}[\mathbf{x}] + c_{12} H_{0,1,1,0,1,1}[\mathbf{x}] + c_{13} H_{0,1,1,0,0,1}[\mathbf{x}] + c_{14} H_{0,1,1,0,1,1}[\mathbf{x}] + c_{15} H_{0,1,1,1,0,1}[\mathbf{x}] + c_{16} H_{0,1,1,1,1,1}[\mathbf{x}] \right)$$

Need to determine the coefficients c_i

Constraint from single logarithmic rapidity divergence

one-loop ansatz:
$$S(\vec{b}_{\perp}, \tau, \mu) = C_a \left[2\ln^2(\mu^2\tau^2) + 2\zeta_2 + r_1H_2 \right]$$

Using $\lim_{\tau \to 0} H_2(x) = \lim_{\tau \to 0} \operatorname{Li}_2\left(-\frac{\vec{b}_{\perp}^2}{b_0^2 \tau^2}\right) = -\frac{1}{2}\ln^2\left(\frac{\vec{b}_{\perp}^2}{b_0^2 \tau^2}\right) - \zeta_2 + \mathcal{O}(\tau)$

$$r_1 = 4$$
 One-loop "almost" for free!

- 12 undetermined coefficients after applying constraints
- Need further data to fully fix the ansatz
- The only available three loop data: threshold soft function (b=0)

Using threshold soft function as boundary data

Expanding around the zero-impact parameter limit (b=0)

$$\begin{split} S_{\text{F.D.}} &= \frac{\text{Tr}}{C} \langle 0 | T\{S_{\bar{n}}^{\dagger} S_n(0,0,0)\} \overline{T}\{S_n^{\dagger} S_{\bar{n}}(i\tau,i\tau,\vec{b}_{\perp}) | 0 \rangle \\ &= \frac{\text{Tr}}{C} \langle 0 | T\{S_{\bar{n}}^{\dagger} S_n(0,0,0)\} \int d^{d_{\perp}} y_{\perp} \delta^{(d_{\perp})}(y_{\perp}) \sum_{n=0}^{\infty} \frac{1}{n!} \left(b_{\perp}^{\mu} \cdot \frac{\partial}{\partial y_{\perp}^{\mu}} \right)^n \overline{T}\{S_n^{\dagger} S_{\bar{n}}(i\tau,i\tau,\vec{y}_{\perp}) | 0 \rangle \end{split}$$

Implement the expansion in momentum space

$$-i\frac{\partial}{\partial y_{\perp}^{\mu}} \to k_{\perp}^{\mu} = \sum_{i \in \text{on-shell parton}} k_{i,\perp}^{\mu}$$

Rotational invariance in the transverse plane

 $(-i\vec{b}_{\perp}\cdot\vec{k}_{\perp})^{2m} = f(2m)(\vec{b}_{\perp}^2)^m(k^+k^--k^2)^m; \quad f(2m) = (-1)^m \frac{1\cdot 3\cdot 5\dots(2m-1)}{d_{\perp}\cdot(d_{\perp}+2)\cdot(d_{\perp}+4)\dots(d_{\perp}+2m-2)}$

+ IBP reduction to known 3-loop integral. Obtain data up to

$$x^{17} = \left(\frac{\vec{b}_{\perp}^2}{(i\tau)^2}\right)^{17}$$

F.D. soft function at three loops in N=4 SYM

Y. Li, HXZ, 1604.01404

$$S_{\text{F.D.}} = \exp\left\{\sum_{i=0}^{\infty} \left(\frac{\alpha_s}{4\pi}\right)^{i+1} \left[\frac{\Gamma_i^{\text{cusp}}}{2}L_{\tau}^2 - \gamma_i^s L_{\tau} + c_{i+1}^{\text{F.D.}}(x)\right]\right\}$$

$$\begin{split} c_{1}^{\text{F.D.}} =& 4N_{c}H_{0,1}(x) + c_{1,\mathcal{N}=4}^{s} & \text{one and two loops} \\ c_{2}^{\text{F.D.}} =& N_{c}^{2} \bigg[-8\zeta_{2}H_{0,1}(x) - 8H_{0,0,0,1}(x) - 8H_{0,1,0,1}(x) - 16H_{0,0,1,1}(x) - 16H_{0,1,1,1}(x) \bigg] + c_{2,\mathcal{N}=4}^{s} \\ & \frac{\text{three-loop scale independent part}}{\varepsilon_{3,\mathcal{N}=4}^{s} + N_{c}^{3} \Big(16\zeta_{2}H_{4} + 48\zeta_{2}H_{2,2} + 64\zeta_{2}H_{3,1} + 96\zeta_{2}H_{2,1,1} + 120\zeta_{4}H_{2} + 48H_{6} + 24H_{2,4} + 40H_{3,3} \\ &+ 72H_{4,2} + 128H_{5,1} + 16H_{2,1,3} + 56H_{2,2,2} + 80H_{2,3,1} + 80H_{3,1,2} + 144H_{3,2,1} + 224H_{4,1,1} \\ &+ 64H_{2,1,1,2} + 96H_{2,1,2,1} + 160H_{2,2,1,1} + 256H_{3,1,1,1} + 192H_{2,1,1,1} \Big) \end{split}$$

Uniform and maximal degree of transcendentality

Anomalous dimension, form factor, momentum space Wilson loop

- Coefficients are integers
- Alternating/uniform sign and each loop order

also see cusp anomalous dimension, Henn, Huber, 2013

QCD = ([N=4]) + (QCD - [N=4])

- N=4 SYM Also "predict" maximal transcendental part of QCD Kotikov, Lipatov, Velizhanin, 2003
- Knowing the maximal transcendental part significantly reduce the undetermined coefficient to be fixed

[N=4 SYM] = 1 gluon + 4 majorana fermion + 3 complex scalar

Directly integrating Nf matter part

 New functions appear in the double cut and triple cut contribution

$$H_1(x) - \frac{H_1(x)}{x} \qquad H_{11}(x) - \frac{H_{11}(x)}{x} \qquad \frac{H_{01}(x)}{x} \qquad \zeta_2 H_1(x) - H_{101}(x)$$

 Cancel in the sum of different cuts. Only one additional term survive in the final result

The QCD results to three loops

Transition between different soft functions

 At each order in α_s, the fully differential soft function interpolate between threshold and TMD soft function smoothly

An almost triangular relations

Rapidity anomalous dimension @ 3 loop

$$\gamma_{0}^{r} = 0$$

$$\gamma_{1}^{r} = C_{a}C_{A}\left(28\zeta_{3} - \frac{808}{27}\right) + \frac{112C_{a}n_{f}}{27}$$

$$\gamma_{2}^{r} = C_{a}C_{A}^{2}\left(-\frac{176}{3}\zeta_{3}\zeta_{2} + \frac{6392\zeta_{2}}{81} + \frac{12328\zeta_{3}}{27} + \frac{154\zeta_{4}}{3}\right)$$

$$- 192\zeta_{5} - \frac{297029}{729}\right) + C_{a}C_{A}n_{f}\left(-\frac{824\zeta_{2}}{81} - \frac{904\zeta_{3}}{27}\right)$$

$$+ \frac{20\zeta_{4}}{3} + \frac{62626}{729}\right) + C_{a}n_{f}^{2}\left(-\frac{32\zeta_{3}}{9} - \frac{1856}{729}\right)$$

$$+ C_{a}C_{F}n_{f}\left(-\frac{304\zeta_{3}}{9} - 16\zeta_{4} + \frac{1711}{27}\right) \qquad (9)$$

one and two loops known. Direct calculation:

Luebbert, Oredsson, Stahlhofen (2016) also extractable from:

- Davies, Webber, Stirling (1985)
- * Grazzini, de Florian (2000)
- Gehrmann, Lubbert, Yang (2012,2014)
- Echevarria, Scimemi, Vladimirov (2015)

New three loop results!

Intriguing relation between rapidity anomalous dimension and threshold anomalous dimension

Small pT cross section for Higgs production

 There are many different ways to perform pT resummation for Higgs production. We follow Neill, Rothstein, Vaidya (2015)

$$\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}^{2}\vec{Q}_{T}} = \int x_{a} \int x_{b} \,\delta\Big(x_{a}x_{b} - \frac{m_{H}^{2}}{S}\Big)\sigma_{0} \int \frac{\mathrm{d}^{2}\vec{b}}{(2\pi)^{2}} e^{i\vec{b}\cdot\vec{Q}_{T}} W\big(x_{a}, x_{b}, m_{H}, \vec{b}, \mu, \nu\big) + \frac{\mathrm{d}^{2}\sigma}{\mathrm{d}^{2}\vec{Q}_{T}}\Big|_{\mathrm{n.s.}}$$
$$W(x_{a}, x_{b}, m_{H}, \vec{b}, \mu, \nu) = \Big|C_{V}\Big(m_{t}, m_{H}, \mu\Big)\Big|^{2} S(\vec{b}, \mu, \nu) B_{g/N_{1}}^{\alpha\beta}(x_{a}, Q, \vec{b}, \mu, \nu) B_{g/N_{2}}^{\alpha\beta}(x_{b}, Q, \vec{b}, \mu, \nu)$$

$$\begin{split} C_{V}(m_{t},m_{H},\mu) &= C_{V}(m_{t},m_{H},\mu_{H}) \exp\left[\frac{1}{2}\int_{\mu_{H}^{2}}^{\mu^{2}} \frac{d\bar{\mu}^{2}}{\bar{\mu}^{2}} \left(\Gamma_{\mathrm{cusp}}\left[\alpha_{s}(\bar{\mu})\right] \ln \frac{M_{H}^{2}}{\bar{\mu}^{2}} + \gamma^{V}\left[\alpha_{s}(\bar{\mu})\right]\right)\right] \\ B_{g/N}^{\alpha\beta}(x,\vec{b},Q,\mu,\nu) &= \left[\frac{g_{\perp}^{\alpha\beta}}{d-2}B_{g/N}(x,b,Q,\mu,\nu) + \left(\frac{g_{\perp}^{\alpha\beta}}{d-2} + \frac{b^{\alpha}b^{\beta}}{b^{2}}\right)B_{g/N}'(x,b,Q,\mu,\nu)\right] \\ B_{g/N}(x,b,Q,\mu,\nu) &= \sum_{j}\int_{x}^{1}\frac{\mathrm{d}z}{z}I_{gj}(z,b,Q,\mu,\nu)f_{j/N}(x/z,\mu) + \dots \\ S_{\perp}(b,\mu,\nu) &= S_{\perp}(b,\mu_{s},\nu_{s})\exp\left[\int_{\mu_{s}^{2}}^{\mu^{2}}\frac{d\bar{\mu}^{2}}{\bar{\mu}^{2}}\left(\Gamma_{\mathrm{cusp}}[\alpha_{s}(\bar{\mu})]\ln\frac{b^{2}\bar{\mu}^{2}}{b_{0}^{2}} + \gamma^{s}[\alpha_{s}(\bar{\mu})]\right) \\ &\quad + \ln\frac{\nu^{2}}{\nu_{s}^{2}}\left(-\int_{b_{0}^{\mu^{2}}}^{\mu^{2}}\frac{d\bar{\mu}^{2}}{\bar{\mu}^{2}}\Gamma_{\mathrm{cusp}}[\alpha_{s}(\bar{\mu})] + \gamma^{r}[\alpha_{s}(b_{0}/b)]\right) \end{split}$$

pT resummation for Higgs production at N3LL

X. Chen, Gehrmann, Glover, Huss, Y. Li, Neill, Schulze, Stewart, HXZ, work in progress

- **Perturbative order of various ingredients:** *
 - Two-loop hard function, beam function, soft function *
 - Three-loop normal anomalous dimension *
 - Three-loop splitting amplitude *
 - Three-loop rapidity anomalous dimension (new) *
 - Four-loop cusp anomalous dimension (Pade approximation)
 - Higgs + jet production at NNLO *
- **Resummation performed in b space** \checkmark
- Simple b* scheme for non-perturbative effects $b^* = \frac{b}{\sqrt{1 + b^2/b_{max}^2}}$ *
- Light quark mass effects included at fixed order

Higgs + jet production at NNLO

X. Chen, Cruz-Martinez, Gehrmann, Glover, Jaquier, 2016 see also Boughezal et al 2015; Melnikov et al 2015

LO	$gg ightarrow Hg, qg ightarrow Hq, q \bar{q} ightarrow Hg$	tree level
NLO	$gg \to Hg, qg \to Hq, q\bar{q} \to Hg$	one loop
	$gg \rightarrow Hgg, gg \rightarrow Hq\bar{q}, qg \rightarrow Hqg,$	tree level
	$qq ightarrow Hqq, q \bar{q} ightarrow Hgg, q \bar{q} ightarrow Hq \bar{q}$	
NNLO	$gg \rightarrow Hg, qg \rightarrow Hq, q\bar{q} \rightarrow Hg$	two loop
	gg ightarrow Hgg, gg ightarrow Hq ar q, qg ightarrow Hqg,	one loop
	$qq ightarrow Hqq, q \overline{q} ightarrow Hgg, q \overline{q} ightarrow Hq \overline{q}$	
	$gg ightarrow Hggg, \ gg ightarrow Hq ar q g, \ qg ightarrow Hq gg,$	tree level
	qg ightarrow Hqq ar q, qq ightarrow Hqq g, qar q ightarrow Hgg g,	
	q ar q o H q ar q g	

Comparison of SCET and fixed-order Pert. Theory

Scale setting in the resumed regime

- * Three independent scale variation:
 - * hard μ scale, beam and soft μ scale, soft v (rapidity) scale

Hard and soft scale variation

 Order-by-order reduction of scale uncertainties shows good convergence of perturbative series

Non-Perturbative uncertainties

Total scale uncertainties

Conclusion

- Introduce a new regulator for rapidity divergence in SCET description of transverse-momentum distribution.
- Analytic calculation of the resulting three-loop soft function through threeloops for the first time, extracting the rapidity anomalous dimension (also known as collinear anomaly d2)
 - Lifting the rapidity regulator as an dynamical variable: double differential soft function
 - Compute the double differential soft function (the N=4 part) by making an ansatz, and then fixing the coefficient using expansion around b=0. Two different method for the remaining QCD part.
 - Intriguing relation between rapidity anomalous dimension and soft anomalous dimension.

N3LL pT resummation for Higgs production (except for four-loop cusp)

 Significant reduction of uncertainties. About 10% total uncertainties in the resumed region.