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Getting Started

As is widely recognized, there are some intriguing relations between Einstein’s gravita-

tional theory and the ordinary Yang-Mills theory. The former looks somewhat similar to the

latter, — both of which rest on local symmetries, reflecting the needs of redundent degrees

of freedom in a covariant description of the dynamics. This similarity in fact constitutes the

major source of many attempts to formulate gravity as a gauge theory [1]. However, turn-

ing to quantum mechanics, an essential difference between gauge fields and gravity appears:

Yang-Mills theory is renormalizable in four dimensions, while quantum theory of gravity is

ill-behaved at the perturbative level, even when supersymmetry is taken into account [2]. In

spite of this difference, one still expects that there should exist a unified framework within

which gravity and gauge fields can be described in terms of a single theory, hoping that such

a theory will eventually provide the correct (and thus nonperturbative) definition of quantum

gravity.

A possible unified approach to gauge fields and gravity is the Kaluza-Klein formalism [3].

The starting point here consists of the “pure” gravitational theory on some 4+n-dimensional

manifold M4 ×Kn,

S =
1

16πG4+n

∫

M4×Kn

d4+nx
√

g R. (1)

By the standard compactification procedure, one ends up with a four-dimensional effective

theory whose massless sector includes Yang-Mills fields as well as gravity on M4. The gauge

symmetries are determined by isometries of the internal space Kn; the four-dimensional

Newton’s constant G4 depends linearly on the one in higher dimensions, via

G4+n = G4 · Vol(Kn). (2)
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Within this framework, we treat gravitational fields (in higher dimensions) as fundamen-

tal fields, and Yang-Mills fields are regarded as induced objects — which arise only after

compactification taking place. Thus, in the Kaluza-Klein approach we have, sketchily

(Higher-dimensional) Gravity ⊃ (4-dimensional) Gauge Theory. (3)

The above theory with extra dimensions itself does not give a useful mechanism to avoid

divergences. In fact, since the dimension of the gravitational coupling constant G4+n takes the

form l2+n
p (where lp denotes the planck length scale on M4 ×Kn), perturbative quantization

of gravity in higher dimensions will lead to even worse UV-behavior. The problem may be

resolved by incorporating superstrings [4][5]. Actually, combination of the Kaluza-Klein idea

with strings provides the most promising way to construct a unified theory with plusible

low-energy limits.

There is another (perhaps less popular) possible framework to unify gauge interactions

and gravity. This is the so called “induced gravity” theory due to Adler and Zee [6]. In such a

theory, Yang-Mills and other matter are considered as fundamental fields, while gravity is not

— it is supposed to be “induced” from those fundamental fields. In particular, the Newton’s

constant G4 should be calculated from quantum fluctuations of the gauge fields, and the

gravitational interactions should be thought of as a kind of the van der Waals force, arising

from the “unscreened” or “residual” interactions of the more fundamental forces, namely the

strong, weak and electric-magnetic interactions. Thus, sketchily, induced gravity claims that

Gravity ⊂ Gauge Theory. (4)

Adler-Zee’s induced gravity has several attractive features (at least qualitatively). First,

it provides a simple explanation of why the observed gravitational interactions are so weak

compared to the other three interactions, and why gravity is a long-range force. Second,

since the fundamental degrees of freedom in induced gravity include only gauge and matter

fields, the theory is renormalizable. (However, as indicated in [7], when we acturally try to

compute the effective Newton’s constant, the theory loses its predictibility due to a Borel

non-summable divergent series. This problem could be solved by considering supersymmetric

extensions of induced gravity.)

Now, if we take both the possible relations (3)–(4) seriously, then it is quite natural to

expect a sort of equivalence

Gravity ⇐⇒ Gauge Theory (5)

2



between gauge theory and gravity. Actually, there is a holographic principle [8] supporting

the existence of such a duality, which highlights some unsusal quantum behavior of gravity

and, in certain simple cases, it can be realized microscopically within string/M theory [9][10].

Holography

A complete explanation of the holographic principle would require many extra spaces,

so here we will keep our discussion very brief and incomplete (for an extensive review of

the holography, see [11]). Roughly speaking, this principle suggests that gravity in higher

dimensions is equivalent to a certain QFT (without gravity, e.g. pure Yang-Mills theory)

in lower dimensions. This differs from the usual Kaluza-Klein theory since after the K-

K compactification one gets, in addition to the gauge theory, a sector containing gravity in

lower dimensions, which is missing in the holographic theory. When holography is concerned,

the higher dimensional spacetime where gravity lives is called the “bulk space”, while the

lower dimensional spacetime in which the ordinary QFT is defined sometimes referes to the

“boundary space”. Holography implies the existence of a duality (5) between the bulk and

the boundary theories.

One characteristic feature of holography is the UV-IR relations. Using an IR-cutoff Lmax

in the bulk amounts to introducing a UV-cutoff Emax on the boundary, and, in its simplest

case, the relation between Lmax and Emax reads [12]

Emax ∼ Lmax/l
2 (6)

where l denotes some fundamental length scale of the theory, such as the Planck length lp

or the string length scale ls ≡
√

α′. Thus, the holographic principle predicts not only the

equivalence between the bulk and the boundary theories without cutoffs, but it also predicts

the equivalence between the regulated versions of these theories. In particular, the number

of degrees of freedom Ndof in the two (regulated) theories should be the same.

Consider, for example, a theory of gravity in some D + 1 dimensional spacetime MD+1.

The spacelike part of MD+1 constitutes a codimension one subspace VD ⊂ MD+1. If this

theory could be quantized following the ordinary procedure as in any QFT, then the total

number of degrees of freedom would be counted by Ndof ∼ VD/lDp ∼ (L/lp)
D, where L is the

(regulated) size of the gravitational system. But this is a wrong answer, since according to

the Bekenstein-Hawking formula, Ndof cannot exceed the entropy of a black hole with the
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horizon area AD−1 ∼ LD−1:

Ndof ≤ SBH =
AD−1

4GD+1

∼ (L/lp)
D−1. (7)

The above formula shows that the quantum theory of gravity, if it exists, is indeed very

different from any other QFT, and its degrees of freedom are apparently localized on some

surface AD−1 of codimension 2 in the spacetime, much less than the naively expected result.

If we compare (7) with the entropy of the ordinary quantum field system living in some D-

dimensional spacetime MD ∼ AD−1×R, we find that the number of degrees of freedom in the

bulk theory and that in the boundary theory match perfectly, upto an order of one numeric

factor. Hence, it is plusible to make the holographic assumption that quantum theory of

gravity can be described by an ordinary QFT in lower dimensions. The UV-IR relation (6)

may then be roughly understood as follows: On the bulk side, the more stable a black hole

is — and thus the larger its gravitational radius L becomes, the more precisely a point can

be localized on the horizon, since for L large we can neglect the fuzziness of the horizon due

to backreaction of the Hawking radiation. For an observer in the boundary theory, however,

localizing a point more precisely requires higher energy. Thus we must have a certain UV-IR

relation like (6).

As another simple consequence of (7), notice that each degree of freedom can store a single

bit of information, so the information density is at most given by Ndof/AD−1 ∼ 1/GD+1, and

hence it cannot exceed one bit per Planck area. If we keep the number of degrees of freedom

fixed, then there will exist a lower bound on the size L of the gravitational system:

L ≥ const. N
1

D−1 · lp. (8)

For example, in eleven dimensional supergravity we have D + 1 = 11, so that (8) becomes

L ≥ N
1
9 · lp, where lp is the Planck length in eleven dimensions.

Given a higher dimensional gravity system, the holographic principle itself does not tell

us how to construct a concrete model of the corresponding boundary theory. Explicit con-

struction of such a boundary theory calls for the details of bulk dynamics at the microscopic

level. Since the bulk involves gravity, its microscopic description should be a closed string

theory. The non-gravitational boundary theory, on the other hand, should come from the

low-energy limit of open strings. So to get a microscopic understanding of the holographic

principle, we have to compare closed string theory with open string theory carefully, hoping

that they are somehow equivalent or at least can be used to describe some common objects.
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Perturbatively, the theory of closed strings differs from open string theory in many ways.

They have a different spectrum and a different low-energy limit — closed strings reduce to

(super) gravity in the low-energy approximation, while the effective theory of open strings

contains (super) Yang-Mills fields. In addition to these differences, the perturbative structures

of the two kinds of strings look quite asymmetric: for topological reasons, one can have a

perturbative theory that consists of closed strings only, but any consistent open string theory

must also include a closed string sector. This asymmetry manifests even at the massless level.

In fact, while pure gravity can exist without gauge or other matter fields, Yang-Mills theory

will necessalily couple to gravity at a sufficiently high energy scale. Thus, perturbatively,

closed string theory looks far from equivalent to open string theory.

One may ask whether the above asymmetry will disappear if nonperturbative effects are

taken into account. In other words, can the nonperturbative sector of closed strings contain

open string excitations? To see nonperturbative effects of closed strings, one must increase

the string coupling constant gs. This amounts to increasing the ten-dimensioanl Newton’s

constant

G10 = 8π6g2
sα

′4 (9)

in the low-energy effective theory. Evidently, when G10 is taken to be very large, gravitational

interactions become so strong that horizons will appear. If there is some object crossing such

a horizon, one cannot observe that object as a whole, but only its part outside the horizon.

In this case a closed string crossing the horizon looks just like an open string whose ends

are at the horizon, — there are no observable meanings to talk about the hidden part of

closed strings within a horizon! Of course, in order that such a configuration may happen,

one requires that at least some of the horizons should be preserved when going from the

effective gravitational theory to the original closed string theory. Technically this problem

can be simplified by considering BPS solutions in supergravity [13], which have the physical

interpretation as certain extremal black holes. The resulting spacetime structure do not

totally break down supersymmetry, so they are preserved at the stringy level, constituting

D(irichlet) p-branes [14]. In other words, D branes provide a natural microscopic description

of extremal black holes [15]. These are solitonic objects in string theory carrying the Ramond-

Ramond charges.

This suggests that closed string theory contains a nonperturbative sector consisting of

open strings which end at some Dirichlet p-branes. The presence of such D branes makes

the structures of open and closed strings quite symmetric. Consequently, we have two ways

to see the low-energy behavior of D branes, one from closed strings and the other from open
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strings. In the closed string description, the low-energy limit of D branes is considered as the

charged sources of extremal black holes. This description is valid only for observers far from

D branes (i.e. L À ls), since at that scale open strings are too heavy (M ∼ L/l2s À 1/ls) to

be excited, and the resulting “bulk” theory contains only gravitational excitations. From the

open string point of view, we have another effective description of D p-branes, which is based

on ten-dimensional supersymmetric Yang-Mills theory dimensionally reduced to the brane

worldvolume [16]. The latter (or roughly the “boundary theory”) is valid only for observers

very close to the branes (i.e. L ¿ ls), so that he can find the light modes (M ∼ L/l2s ¿ 1/ls)

of open strings propagating as the worldvolume gauge fields.

Of course, either the bulk gravity or the boundary gauge theory so obtained only describes

a simplified D brane system where some couplings to other excitations are truncated. One

has no a priori reasons to expect these descriptions to be equivalent to each other, since in

general the truncations are quite different, made at different scales. In particular these two

theories may have different global symmetries and contain different numbers of degrees of

freedom. However, in some cases [9][10] we can take a suitable decoupling limit, under which

the bulk theory becomes equivalent to the boundary theory, so that the exact gravity/gauge

theory correspondence is achieved and can be tested explicitly. One such example is the

BFSS matrix model [9] which we will briefly review now.

The BFSS Theory

Consider a system of N D 0-branes. When these branes are decoupled from all the other

degrees of freedom, they can have a “boundary” description as the dimensional reduction of

D = 10 supersymmetric U(N) gauge theory to 0+1 dimensions. Thus, the bosonic degrees

of freedom of this theory consist of nine N ×N hermitian matrices, X i(t), with their super

partners, θ(t). The Lagrangian reads [9]

L =
1

2R

[
9∑

i=1

TrẊ iẊ i + 2θT θ̇ − 1

2l4s

∑

i6=j

Tr[X i, Xj]2 − 2

l2s
θT γi[θ, X

i]

]
, R ≡ gsls (10)

which has the fermionic conservative charges Qα = 1
R
Tr(γi

βαθβẊ i − i
2l2s

γij
βαθβ[X i, Xj]) and

qα = 1
R
Trθα. The canonical relations {θα, θβ} = Rδαβ implies that upto gauge transforma-

tions these charges form the SUSY algebra

{Qα, Qβ} = Hδαβ,

{qα, qβ} =
N

R
δαβ,
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{Qα, qβ} =
TrẊ i

R
γi

αβ (11)

here H is the Hamiltonian derived from (10). The bosonic light modes correspond to diagonal

elements xi
a (1 ≤ a ≤ N) of the matrix X i, which can be thought of as position variables

of the ath D 0-brane in 9D spacial directions i = 1, · · · , 9. By integrating out heavy modes

(i.e., off-diagonal elements of X i), the effective interaction between xa and xb takes the form

[17]

V (r, v) ∼ l9s
R3

v4

r7
, r = |xa − xb|, v = |ẋa − ẋb|. (12)

Hence, effectively, the boundary theory is a supersymmetric extension of the N -body particles

living in 9+1 dimensional spacetime, with the velocity-dependent pair interactions (12).

Let us turn to the “bulk” description, where D 0-branes are contained in the nonpertur-

bative sector of closed strings (specifically, IIA strings). Such solitonic objects will become

light and hence can be seen in the low-energy effective theory provided the string coupling

is sufficiently strong. When gs → ∞, the IIA string theory goes to D = 11 M-theory, in

which a new dimension x11 of size R = gsls gets uncompactified, and the BPS state of N

D 0-branes becomes a Kaluza-Klein excitation with the longitudinal momentum p11 = N/R.

For generic p11 these K-K modes will couple to some other degrees of freedom in the bulk in

a rather complicated way, so it is not immediately possible to identify the low-energy limit of

M-theory (namely D = 11 supergravity) with the boundary matrix theory considered in the

foregoing paragraph, — the matrix theory is supposed to describe D 0-branes decoupled from

all other degrees of freedom. Indeed, the global symmetry of M theory in flat background

should contain D = 11 super Lorentz group, which is definitely different from the global

symmetry (11) in matrix theory.

The key observation made by Banks, Fischler, Shenker and Susskind [9] is that taking

the infinite momentum frame (IMF) p11 → ∞ in M-theory will force these K-K modes (or

D 0-branes) to decouple from all other degrees of freedom. The decoupling limit obviously

requires us to send N to infinity. Thus, as in [9], one expects that M-theory in IMF is

equivalent to the large N matrix model (10). Note that p11 →∞ is a kinda non-relativistic

limit, under which the super Lorentz symmetry in M-theory reduces to the super Galilean

symmetry, whose algebra coincides exactly with (11) after the identification

p11 ←→ N

R
, pi ←→ TrẊ i

R
, E ≡ p2

i + M2

2p11

←→ H (13)

where pi is the transverse momentum and E the light-cone energy of a fundamental particle

in M-theory. Such particles should describe supergravitons in the low-energy limit. Since
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Ẋ i/R is also the canonical momentum conjugate to X i in matrix theory, (13) leads to the

correspondence between a BPS bound state of N D 0-branes and a supergraviton in 11D with

the longitudinal monentum p11 ∼ N/R. Moreover, the two-body potential (12) produces the

correct long-range interaction between two supergravitons in flat background [9], which gives

a satisfactory way to calculate the 11D Newton’s constant G11 ∼ l9p using matrix quantum

mechanics, and the result turns out to be consistent with the IIA strings/M-theory duality:

lp = g1/3
s ls. (14)

As reviewed by various authors [18], M(atrix) theory in flat spacetime has in fact passed over

many other consistent checks.

Matrices in de Sitter Space

Several candidates for the holographic description of de Sitter gravity were proposed (see

[19] for a review); here I will only recall a model [20] that mimics M(atrix) theory in flat back-

ground. In the flat space case bulk symmetries are described by the (super) Poincaré group;

mathematically, taking IMF amounts to performing the non-relativistic Inönü-Wigner con-

traction of this kind of symmetries, which gives rise to the (super) Galilean algebra (11). As

long as the non-relativistic symmetries are found out, we can construct the matrix quantum

mechanics in a strightforward way. Now in de Sitter space one could do similar things.

So let us consider the non-relativistic limit of the de Sitter group. This will result in the

Newton-Hooke symmetries [20][21] whose Lie algebra generators contain d momentum oper-

ators Pi, d(d− 1)/2 angular momentum operators J ij, d boosts Ki, as well as a Hamiltonian

H. The algebra so constructed can be viewed as a curved space generalization of the Galilean

algebra. Explicitly, spacetime transformations generated by Pi, J ij, Ki, H take the following

form:

xi → x′i = Ri
j · xj + viR sinh

t

R
+ ai cosh

t

R
t → t′ = t + b (15)

where R denotes the “size” of de Sitter space, R = (Ri
j) ∈ SO(d) is a space rotation gener-

ated by the angular momentum operators, vi is a “velocity” corresponding to the boosts, and

ai, b are spacetime translations generated by the momentum operators and the Hamiltonian,

respectively. It is clear that (15) reduces to the usual Galilean transformations in the flat

space limit R →∞.
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We can now write down a matrix model with (15) as its symmetry group. The Lagrangian

looks like:

L = Tr

{
m

2
(Ẋ i)2 +

m

2R2
(X i)2 +

m

4g2R4
[X i, Xj]2 + · · ·

}
. (16)

In the above expression, m is the mass of some “matrix particle” described by the non-

commuting spatial coordinates X i, g ∼ GΛ(d−1)/2 is the dimensionless coupling constant,

and “· · ·” denotes other terms, possibly including those proportional to a central extension

of the Newton-Hooke algebra or even comming from fermionic contributions. Our conven-

tion is that the cosmological constant term in the Hilbert-Einstein action takes the form

I = Λ
16πG

∫
dd+1x

√−g, so that Λ = d(d− 1)/2R2 has mass dimension 2.

This model is indeed manifestly invariant under the Newton-Hooke transformations

X i → X i +

(
viR sinh

t

R
+ ai cosh

t

R

)
1N×N . (17)

Note that (17) acts only on the center of mass of the system, X i
c.m., and keeps the part X i

rel

of relative motion intact, where X i
c.m. and X i

rel are defined by

X i
c.m. =

TrX i

N
1N×N , X i

rel = X i −X i
c.m.. (18)

Since X i
c.m. is a multiple of the identity and X i

rel is a traceless matrix, we have Tr(X i
c.m.X

i
rel) =

[X i
c.m., (· · ·)] = 0, and therefore (16) is decomposed into two decoupled pieces. The commu-

tator terms appear only in the relative motion part of the Lagrangian.

After rescaling X i → gR2X i (so that the redefined matrix variables X i have mass dimen-

sion 1), the Lagrangian (16) gives rise to the following classical equations of motion

d2X i

dt2
+ [Xj, [Xj, X i]] =

2Λ

d(d− 1)
X i. (19)

Presumably, such equations of motion should describe an empty universe with a positive

cosmological constant. Some interesting cosmological consequences of (19) are explored in

[22][23].

Incorporation of Matter

Now we are led to the following question [24]: how can one incorporate matter sources into

the above matrix model? In order to give a complete answer, one has to solve a rather difficult

problem, namely formulating M(atrix) theory in nontrivial background spacetime geometries.
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This problem is closely related to certain subtle issues such as background independence and

covarianting M(atrix) dynamics, which we know little at present. Our approach is therefore

very preliminary.

One natural guess from holography is that matrix equations such as (19) could be consid-

ered as a microscopic version of Einstein’s gravitational theory. Thus, if a matter component

is present, it should couple to (19) via its energy-momentum tensors Tµν . Lorentz invariance

of matter sources requires that the quantity really entering into the equations should be the

trace T µ
µ. Since we are interested in cosmology here, we can assume that the matter is

described by a pefect fluid, so that T µ
µ = ρ + d · p depends only on time t. Let us restrict

ourselves to the case of three spatial dimensions (d = 3), though extension to other dimen-

sions should be straightforword. The equations of motion (19) are then modified by a new

term, proportional to (ρ + 3p):

d2X i

dt2
+ [Xj, [Xj, X i]] =

(
Λ

3
− 4πG

3
(ρ + 3p)

)
X i. (20)

Note that as a matrix model, (20) itself is not in a Lorentz covariant form.

We now consider possible solutions to the above equations of motion, paying particular

attention to those relevant to cosmology. Thus, according to the cosmological principle, we

may take the homothetic ansatz [22][23][25] X i(t) = a(t)M i, where a(t) is a scale factor char-

acterizing the spatial size of the universe and M i denote the co-moving matrix coordinates,

which are independent of time. With this ansatz (20) becomes
(

ä(t)

a3(t)
+

4πG

3a2(t)
(ρ + 3p)− Λ

3a2(t)

)
M i = −[M j, [M j, M i]], (21)

so we get a couple of conditions

µM i + [M j, [M j,M i]] = 0 (22)

ä

a
= −4πG

3
(ρ + 3p) +

Λ

3
+ µa2 (23)

with µ being a numeric constant. Note that (23) looks very similar to the second Friedmann

equation with matter sources ρ and p, plus the standard cosmological constant term Λ/3 as

well as a somewhat exotic “matrix term” µa2.

The first Friedmann equation can be derived from (23) as a first integral. To see this, let

us multiply both sides of (23) by aȧ and rewrite the equation as:

1

2

d

dt
ȧ2 = −2πG

3
(ρ + 3p)

d

dt
a2 +

Λ

6

d

dt
a2 +

µ

4

d

dt
a4 (24)
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Since ρ + 3p depends only on t, we can think of it as a function of a. Thus, introducing an

auxiliary function F ≡ F (a2) such that

dF (a2)

da2
= −(ρ + 3p) (25)

the first term in the right hand side of (24) then becomes a total derivative 2πG
3

dF (a2)
dt

. It

follows that (23) has the first integral

(
ȧ

a

)2

+
k

a2
=

4πG

3

F (a2)

a2
+

Λ

3
+

µa2

2
(26)

where k is an integration constant. Comparing this with the standard Friedmann equation

(
ȧ

a

)2

+
k

a2
=

8πG

3
ρ +

Λ

3
+

µa2

2
(27)

and using the definition (25), we find

ρ =
F (a2)

2a2
, p = −1

3

(
dF (a2)

da2
+

F (a2)

2a2

)
. (28)

This is the condition that our matrix model will reproduce the Friedmann cosmology with

matter sources.

A First Look at Matrix Cosmology

Given an equation of state of the matter source, the condition (28) will impose some

constraints on the admissible form of the auxiliary function F (a2). Suppose, for example,

that the universe described by our matrix model has only one matter component, obeying

the simple equation of state:

p = wρ, w ≡ const. (29)

Then (28) gives rise to the following differential equation for F (a2):

F ′(a2) +
1 + 3w

2a2
F (a2) = 0 (30)

The general solutions of this differential equation can be easily found

F (a2) = c · a−(1+3w), c = const. (31)

and, accordingly, we have

ρ =
c

2
· a−3(1+w), p =

wc

2
· a−3(1+w). (32)
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This form agrees completely with the form of matter sources in the standard cosmology (e.g.

w = 1/3 ↔ radiation, w = 0 ↔ “dust”, w < 0 ↔ dark energy, w < −1 ↔ phantom etc.).

Of course, in general the energy density ρ will contain different components, each with a

different equation of state pI = wIρI . This can be easily realized in our model if the auxiliary

function takes the general form:

F (a2) =
∑

I

cIa
−(1+3wI), cI = const. (33)

Consequently, in the regime when the µa2 term in (27) is negligible, our model will share with

the convetional appraoches essentially all the same features, at least at the classical level.

In order that (27) are consistent with astrophysical observations, the constant µ should not

be too large. This raises a new problem similar to the (old) cosmological constant problem.

Pehaps these two apparently different problems originate from one source.

From Eq.(27) we see that the µ-term is not important in the early universe, when the

scale factor a(t) is small. It will have considerable effects in later time universe, however.

There may have two different cases that should be considered separately: (i) µ > 0, and (ii)

µ < 0. In the first case, the µ-component can be equivalently described by a phantom energy

source, with wµ = −5/3. The appearance of such a source seems to be compatible with

the most classical tests of cosmology based on current data [26]. The second case (µ < 0)

seems physically problematic since it describes a certain “anti-phantom” energy with ρµ < 0

and pµ = −5ρµ/3 > 0. When such a source dominates the universe at later time, the scale

factor will have a maximal value determined by amax ∼ (2k/|µ|)1/4 (corresponding to a closed

universe k ∼ 1), and there will have no real function solutions to the Friedmann equation

when a exceeds this maximal value.

As indicated in [23], the case (ii) corresponds to the most symmetric solutions to the static

matrix equations (22). In fact, let J i be a basis of SU(2) generators (in the N -dimensional

irreducible representation), satisfying the standard commutation relations [J i, J j] = iεijkJk.

One find that M i =
√−µ

2
J i solve (22), and the heimitian condition for M i requires µ < 0.

This solution defines a fuzzy sphere of radius

∑
i

(M i)2 = −µ

8
(N2 − 1) ∼ k

4a4
max

(N2 − 1) (34)

As we mentioned ealier, our theoretical understanding of the matrix model is rather

incomplete, and we expect that problems with µ < 0 may be resolved within a more accurate

formulation. Some unusual but possible couplings that we omitted in (20) may have positive

phantom energies that could cancel out the anti-phantom contribution from the µ-term.
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Consider, for instance, a rank four “RR background field” F
(4)
0ijk ∼ −fεijk coupled to our

matrix system, similar to that studied by Myers [27]. This would add an additional term
i
3
F

(4)
0ijkX

iXjXk to the Lagrangian, so that the equations of motion (20) receive a correction:

d2X i

dt2
+ [Xj, [Xj, X i]] + ifεijk[X

j, Xk] =

(
Λ

3
− 4πG

3
(ρ + 3p)

)
X i. (35)

Solving this equation by the ansatz X i =
√−µ

2
a(t) J j, one finds the following Friedmann-like

equation (
ȧ

a

)2

+
k

a2
=

8πG

3
ρ +

Λ

3
+

µa2

2
+

√−2µ f

3
a (36)

The new term,
√−2µ f

3
a, corresponds to a phantom source (wf = −4/3) with positive energy

density (though it cannot be accuturely used to cancel out the µ-component contribution).

Quantum Fluctuations
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