High-Tc Superconductivity by Metallizing Strong-bonding Electrons

Tao Xiang Institute of Physics Chinese Academy of Sciences txiang@iphy.ac.cn

What is superconductor?

Ideal Conductor: zero resistance

Ideal Diamagnet: Messiner Effect

Walther Meissner

High-Tc Superconductors Discovered

It is not difficult to find superconductors But it is difficult to find high-Tc superconductors

Superconducting transition temperature ~ 40 K or higher

Timeline of Discovered Superconductors

By PJRay, https://commons.wikimedia.org/w/index.php?curid=4619314

How to become a superconductor?

Bardeen Cooper Schrieffer 1957 / 1972

1. Electrons must form Cooper pairs: any

two electrons should form a bound state

Binding energy of Cooper pair Δ determines the transition temperature T_c Larger Δ , higher T_c

2. Cooper pairs must condense to form phase coherence

How can electrons form Cooper pairs? Typical Picture

Polarization of the lattice by one electron leads to an attractive potential for another electron, which binds two electrons to a bound state

Is there any guiding principle for hunting superconductors

Bernd Matthias rules:

- 1. high symmetry is good, cubic symmetry is the best
- 2. high density of electronic states is good
- 3. stay away from oxygen
- 4. stay away from magnetism
- 5. stay away from insulators
- 6. stay away from theorists.

Wrong except the 6th rule

Cava's rule:

发现的超导体的临界温度和发现者经验的指数成反比

Conventional Wisdom of Raising T_c

To apply high pressure to light elements

Example: H enriched H₃S

1. $T_{\rm c}$ decreases with magnetic field

2. strong isotope shift of T_c in D_2S : Tc 185 K for H_2S , 90 K for D_2S

AP Drozdov, MI Eremets, IA Troyan, Nature 2015

Conventional Wisdom of Raising T_c

To apply high pressure to light elements

H enriched H₃S: possible 190K superconductor at 200 GPa

λ	ω_{log}	μ^*	T_{c}	Pressure
2.19	<i>1334.6</i> K	0.1~0.13	191-204 K	200 GPa
		0.13	184 K	250 GPa
		0.13	179 K	300 GPa

H₃S

Agree with DFT prediction for H_3S

D. Duan et al., Sci. Reports 4, 6968 (2014)

How to Hunt High-Tc Superconductors

Guiding Principle:

There is a big chance to find high-Tc superconductors if one can metallize σ - or other strong chemical bonding electrons

Cuprates still hold the record of highest-Tc at ambient pressure

Strong antiferromagnetic fluctuations?

Some σ -bonding electrons become metallized?

What are σ -bonding electrons?

Crystal structure is generally stabilized by σ -bonds Metallizing σ -bonding electrons generally mean melting the lattice

Why are σ -bonding electrons relevant to high-Tc SC?

- > Characteristic energy scale of σ -bond is very strong: ~ 3 eV
 - 1. the coupling between σ -bonding electrons and phonons is very strong in order to stabilize this bond
 - 2. σ-electrons are difficult to be metallized: this explains why high-Tc SC are so difficult to find
- Metallzing σ-electrons reduces the coupling of these electrons, but the residual interaction can still be very large, which serves as a strong glue of Cooper pairs

Metallizing σ -electrons: Cuprates

Hole doping lifts the Cu-O σ -bonds to the Fermi level, leading to high-Tc SC

Metallizing σ -electrons: Hole Doping

Roles of antiferromagnetic fluctuations

- ✓ release the lattice instability induced by doping
- ✓ enforce the metallization

Experimental Evidence of Metallized σ -electrons

 $Nd_{2-x}Ce_{x}CuO_{4}$

Armitage et al., PRL 88, 257001 (2002)

Role of Cu-Spin Antiferromagntic Fluctuations

Both the Cu-O σ-bonding electrons and Cu-Cu spins are coupled by the Heisenberg interaction

 $H = JS_i \cdot S_j$

Cu-Cu spin antiferromagnetic fluctuations break the bonds and favor the metallization of σ -electrons

Metallizing σ -electrons: MgB₂

 σ -band is located below the Fermi level, no contribution to conductivity

Can We Lift σ -electrons to the Fermi Level?

Can We Lift σ -electrons to the Fermi Level?

Mg²⁺ couples stronger with the 2p π -electrons and the 2p σ electrons, which lowers the Fermi level of π -bands ---effectively lifting the σ -bands

Can We Lift σ -electrons to the Fermi Level?

J. Nagamatsu *et al.*, Nature 410, 63 (2001)

Mg²⁺ couples stronger with the 2p π -electrons and the 2p σ electrons, which lowers the Fermi level of π -bands ---effectively lifting the σ -bands

Metallizing σ -electrons: H-enriched Materials

"H₃S has a record high Tc due to its covalent bonds driven metallic"

N. Bernstein, CS Hellberg, MD Johannes, II Mazin, MJ Mehl, PRB 91, 060511(R) (2015)

Theoretical predictions for a number of candidates of high-Tc superconductors

1. Hole doped LiBC

LiBC: σ -electrons are on the top valence bands

JM An & WE Pickett, PRL 86, 4366 (2001)

Predicted Tc

JM An & WE Pickett, PRL 86, 4366 (2001)

Li deficiency Distorts LiBC

AM Fogg et al., JACS 128, 10043 (2006)

Can We Dope LiBC without Introducing Li Deficiency?

Trilayer LiB₂C₂ is structurally stable

Gao, Yan, Lu, Xiang, arXiv:<u>1911.12690</u>

No imaginary frequency in the spectrum

Trilayer LiB₂C₂ is a Good High-Tc Candidate

Superconducting energy gap as a function of temperature

Gao, Yan, Lu, Xiang, arXiv:<u>1911.12690</u>

Obtained by solving Eliasberg equation

Hole doped LiBC: More suggestions

Li₃B₄C₂ and Li₂B₃C: dope holes without introducing lattice distortions

M Gao, ZY Lu, T Xiang, PRB 91, 045132 (2015)

2. Materials analog to the cuprates

There is high chance to find metallized σ-bonding electrons in materials isostructural and isoelectronic to cuprate superconductors They may become high-Tc SC by doping

Superconducting materials isostructural to cuprates

Are they electronically similar to cuprates?

Can we find a Fe-based analog of the cuprate?

Zhao, Ma, Lu, Xiang, arXiv:1910.03545

AFeSe₂: Fe-based superconducting analogs of the cuprates,

This kind of material exists: AFeSe₂ (A=TI, K, Rb, Cs)

Other Structures of AFeSe₂

CsFeSe₂: Stuble and Rohr, Zeitschrift fr

anorganische und allgemeine Chemie (2017)

Bronger et al., J. Solid State Chem. (1987

I-4m2 symmetry Group

AFeSe₂ is similar to the cuprate parent compounds

AFeSe₂ is an antiferromagnetic insulator The ground state is Neel ordered

AFeSe₂: charge gap

Tl, K:	22meV
Rb:	56meV
Cs:	98meV

Cuprate: 2 eV

Antiferromagnetic coupling in AFeSe₂

$$\mathbf{H} = \sum_{\langle ij \rangle} (J_1 \delta_{\langle i,j \rangle_1} + J_2 \delta_{\langle i,j \rangle_2} + J_3 \delta_{\langle i,j \rangle_3}) S_i \cdot S_j$$

$$J_3$$

 J_1
 J_2
 J_2
 J_1
 J_2
 J_2
 J_3
 J_2
 J_3
 J_4
 J_2
 J_2
 J_3
 J_4
 J_5
 J_5
 J_6
 J_7
 J_7

$AFeSe_2$	J_1	J_2	J_3
$TlFeSe_2$	115.01	9.29	10.92
$KFeSe_2$	115.00	6.04	9.29
$RbFeSe_2$	115.75	7.62	15.96
$CsFeSe_2$	115.62	8.62	14.79
	1		meV/S ²

comparable to cuprates

AFeSe₂: Charge and Spin Density Distribution

Summary

- Metallizing strong bonding electrons provides a universal route to high-Tc superconductivity
- LiB₂C₂, Li3B4C2, Li2B3C, and doped AFeSe₂ (A=TI,K,Rb,Cs) are good candidates of high-Tc SC

Zhongyi Lu Renmin Univ China N

Miao Gao Ningbo University

Xunwang Yan Qufu Normal Univ

Fengjie Ma Xinlei Zhao Beijing Normal University

Thank you for your attention!

TIFeSe₂: Band Structure in the Nonmagnetic Phase

No Fermi-surface nesting

1, 2, 3 electron-type FS 4 hole-type FS

Boron doped diamond

$$T_{c} = 4 \text{ K}$$
 2.8% B

Low density of states at Fermi level

E. A. Ekimov et al., Nature (London) 428, 542 (2004).

Conventional Wisdom of Raising T_c

To apply high pressure to light elements

- H enriched H₃S: possible 190K superconductor at 200 GPa
- resistivity is 50 times lower than the copper resistivity
- 2. T_c decreases with magnetic field
- 3. strong isotope shift of T_c in D_2S : Tc 185 K for H_2S , 90 K for D_2S

Conventional Wisdom of Raising T_c

To apply high pressure to light elements

H enriched H₃S: possible 190K superconductor at 200 GPa

λ	ω_{log}	μ^*	T_{c}	Pressure
2.19	<i>1334.6</i> K	0.1~0.13	191-204 K	200 GPa
		0.13	184 K	250 GPa
		0.13	179 K	300 GPa

Agree with DFT prediction for H_3S

D. Duan et al., Sci. Reports 4, 6968 (2014)

What is a superconductor?

Resistivity vanishes in the

superconducting state

Perfect diamagnet

Messiner effect

Anderson-Higgs Mechanism

How to become superconducting

Electrons form Cooper pairs via electron-phonon or other interactions

Cooper pairs condense to form phase coherence

Bardeen Cooper Schrieffer 1957

Superconductivity