Computational AG

and Integrable models

Yunfeng Jiang 江云峰 SEUYC

＠Peng Huanwu Center，USTC
2021-10-19

Based on the works

Y. Jiang and Y. Zhang, JHEP 1803 (2018) 084, arXiv: 1710.04693
J. Jacobsen, Y. Jiang, Y. Zhang, JHEP 03 (2019) 152, arXiv: 1812.00447
Z. Bajnok, J. Jacobsen, Y. Jiang, R. Nepomechie, Y. Zhang,

JHEP 06 (2020) 169, arXiv: 2002.09019
Y. Jiang, R. Wen, Y. Zhang, 2109.10568
J. Boehm, J. Jacobsen, Y. Jiang, Y. Zhang, to appear

Part 1

Introduction to basic ideas

Equation

$$
q(x)=x^{5}-5 x^{4}+7 x^{3}+5 x^{2}-21 x+7
$$

Equation

$$
q(x)=x^{5}-5 x^{4}+7 x^{3}+5 x^{2}-21 x+7
$$

Function

$$
F(x)=\frac{x^{6}}{15}-6 x^{5}+\frac{7}{6} x^{3}+3 x^{2}-\frac{x}{13}+\frac{3}{7}
$$

Questions

Equation

$$
q(x)=x^{5}-5 x^{4}+7 x^{3}+5 x^{2}-21 x+7
$$

Function

$$
F(x)=\frac{x^{6}}{15}-6 x^{5}+\frac{7}{6} x^{3}+3 x^{2}-\frac{x}{13}+\frac{3}{7}
$$

Questions

Equation

$$
q(x)=x^{5}-5 x^{4}+7 x^{3}+5 x^{2}-21 x+7
$$

Function

$$
F(x)=\frac{x^{6}}{15}-6 x^{5}+\frac{7}{6} x^{3}+3 x^{2}-\frac{x}{13}+\frac{3}{7}
$$

Questions

Equation

$$
q(x)=x^{5}-5 x^{4}+7 x^{3}+5 x^{2}-21 x+7
$$

Function

$$
F(x)=\frac{x^{6}}{15}-6 x^{5}+\frac{7}{6} x^{3}+3 x^{2}-\frac{x}{13}+\frac{3}{7}
$$

Questions

Equation

$$
q(x)=x^{5}-5 x^{4}+7 x^{3}+5 x^{2}-21 x+7
$$

Function

$$
F(x)=\frac{x^{6}}{15}-6 x^{5}+\frac{7}{6} x^{3}+3 x^{2}-\frac{x}{13}+\frac{3}{7}
$$

Computational algebraic Geometry

Although the questions we ask are somewhat trivial to solve for a single variable. They become highly non-trivial in the multi-variable cases and are among the main themes of modern computational algebraic geometry.

Numerical Method

Solution

1. By fundamental theorem of algebra, there are 5 solutions
2. Solve the equation numerically (up to 25 digits)

$$
\begin{aligned}
& x_{1}=-1.428817701781382219822436 \\
& x_{2}=0.3819660112501051517954132 \\
& x_{3}=2.618033988749894848204587 \\
& x_{4}=1.714408850890691109911218-1.399984900087945731206127 i \\
& x_{5}=1.714408850890691109911218+1.399984900087945731206127 i
\end{aligned}
$$

Numerical Method

Solution

1. By fundamental theorem of algebra, there are 5 solutions
2. Solve the equation numerically (up to 25 digits)

$$
\begin{aligned}
& F\left(x_{1}\right)=39.5573572063554668510040 \\
& F\left(x_{2}\right)=0.853322962757606348443172 \\
& F\left(x_{3}\right)=-674.760282669717313308150 \\
& F\left(x_{4}\right)=299.037255462756332508564-107.837305569845322316012 i \\
& F\left(x_{5}\right)=299.037255462756332508564+107.837305569845322316012 i
\end{aligned}
$$

Numerical Method

Solution

1. By fundamental theorem of algebra, there are 5 solutions
2. Solve the equation numerically (up to 25 digits)

$$
\begin{aligned}
& F\left(x_{1}\right)=39.5573572063554668510040 \\
& F\left(x_{2}\right)=0.853322962757606348443172 \\
& F\left(x_{3}\right)=-674.760282669717313308150 \\
& F\left(x_{4}\right)=299.037255462756332508564-107.837305569845322316012 i \\
& F\left(x_{5}\right)=299.037255462756332508564+107.837305569845322316012 i
\end{aligned}
$$

$$
F\left(x_{1}\right)+\cdots+F\left(x_{5}\right)=-36.27509157509157509158 \approx-\frac{99031}{2730}
$$

Analytical Method

- Linear space spanned by

$$
e_{1}=x^{4}, \quad e_{2}=x^{3}, \quad e_{3}=x^{2}, \quad e_{4}=x, \quad e_{5}=1
$$

Analytical Method

- Linear space spanned by

$$
e_{1}=x^{4}, \quad e_{2}=x^{3}, \quad e_{3}=x^{2}, \quad e_{4}=x, \quad e_{5}=1
$$

- Divide $F(x)$ by $q(x)$, find the remainder

$$
F(x)=a(x) q(x)+r(x)
$$

$$
r(x)=-\frac{144}{5} x^{4}+\frac{81}{2} x^{3}+\frac{491}{15} x^{2}-\frac{23311}{195} x+\frac{842}{21}
$$

Analytical Method

- Linear space spanned by

$$
e_{1}=x^{4}, \quad e_{2}=x^{3}, \quad e_{3}=x^{2}, \quad e_{4}=x, \quad e_{5}=1
$$

- Divide $F(x)$ by $q(x)$, find the remainder

$$
F(x)=a(x) q(x)+r(x)
$$

$$
r(x)=-\frac{144}{5} x^{4}+\frac{81}{2} x^{3}+\frac{491}{15} x^{2}-\frac{23311}{195} x+\frac{842}{21}
$$

- Construct a matrix of the remainder in the linear space

$$
r(x) e_{i}=a_{i}(x) q(x)+r_{i}(x)
$$

$$
r_{i}(x)=M_{i j} e_{j}
$$

This matrix is called the companion matrix of the function

Analytical Method

$$
\boldsymbol{M}_{F}=\left(\begin{array}{ccccc}
-\frac{1910212}{1365} & \frac{801854}{195} & -\frac{24539}{13} & -\frac{4688677}{390} & \frac{303429}{65} \\
-\frac{43347}{65} & \frac{203171}{105} & -\frac{8341}{15} & -5222 & \frac{11893}{6} \\
-\frac{1699}{6} & \frac{292093}{390} & -\frac{9913}{210} & -\frac{19719}{10} & \frac{1449}{2} \\
-\frac{207}{2} & \frac{703}{3} & \frac{4769}{195} & -\frac{59294}{105} & \frac{1008}{5} \\
-\frac{144}{5} & \frac{81}{2} & \frac{491}{15} & -\frac{23311}{195} & \frac{842}{21}
\end{array}\right)
$$

Analytical Method

$$
M_{F}=\left(\begin{array}{ccccc}
-\frac{1910212}{1365} & \frac{801854}{195} & -\frac{24539}{13} & -\frac{4688677}{390} & \frac{303429}{65} \\
-\frac{43347}{65} & \frac{203171}{105} & -\frac{8341}{15} & -5222 & \frac{11893}{6} \\
-\frac{1699}{6} & \frac{292093}{390} & -\frac{9913}{210} & -\frac{19719}{10} & \frac{1449}{2} \\
-\frac{207}{2} & \frac{703}{3} & \frac{4769}{195} & -\frac{59294}{105} & \frac{1008}{5} \\
-\frac{144}{5} & \frac{81}{2} & \frac{491}{15} & -\frac{23311}{195} & \frac{842}{21}
\end{array}\right)
$$

$$
\operatorname{Tr} M_{F}=-\frac{99031}{2730}=F\left(x_{1}\right)+\cdots+F\left(x_{5}\right)
$$

Analytical Method

$$
M_{F}=\left(\begin{array}{ccccc}
-\frac{1910212}{1365} & \frac{801854}{195} & -\frac{24539}{13} & -\frac{4688677}{390} & \frac{303429}{65} \\
-\frac{43347}{65} & \frac{203171}{105} & -\frac{8341}{15} & -5222 & \frac{11893}{6} \\
-\frac{1699}{6} & \frac{292093}{390} & -\frac{9913}{210} & -\frac{19719}{10} & \frac{1449}{2} \\
-\frac{207}{2} & \frac{703}{3} & \frac{4769}{195} & -\frac{59294}{105} & \frac{1008}{5} \\
-\frac{144}{5} & \frac{81}{2} & \frac{491}{15} & -\frac{23311}{195} & \frac{842}{21}
\end{array}\right)
$$

$$
\operatorname{Tr} M_{F}=-\frac{99031}{2730}=F\left(x_{1}\right)+\cdots+F\left(x_{5}\right)
$$

Remarks

1. The result is exact, no need to solve equations
2. It is clear that the final result should be a rational number.

Notions of algebraic geometry

Notions of algebraic geometry

Polynomial ring $\mathbb{C}[x]$

All polynomials in x
with complex coefficients

Notions of algebraic geometry

Polynomial ring $\mathbb{C}[x]$

All polynomials in x
with complex coefficients

Ideal $\mathrm{I}_{q}=\langle q(x)\rangle$

All polynomials of the form $a(x) q(x)$

Notions of algebraic geometry

Polynomial ring $\mathbb{C}[x]$

All polynomials in x with complex coefficients

Ideal $\mathrm{I}_{q}=\langle q(x)\rangle$
All polynomials of the form $a(x) q(x)$

Quotient ring

A finite dimensional
linear space $\mathrm{Q}_{q}=\mathbb{C}[x] / \mathrm{I}_{q}$

Notions of algebraic geometry

Polynomial ring $\mathbb{C}[x]$

All polynomials in x with complex coefficients

Quotient ring

A finite dimensional
linear space $\mathrm{Q}_{q}=\mathbb{C}[x] / \mathrm{I}_{q}$

Ideal $\mathrm{I}_{q}=\langle q(x)\rangle$
All polynomials of the form $a(x) q(x)$

Standard basis

All monomials that cannot be divided by $\operatorname{LT}[q(x)]$

Notions of algebraic geometry

Polynomial ring $\mathbb{C}[x]$

All polynomials in x with complex coefficients

Quotient ring

A finite dimensional linear space $\mathrm{Q}_{q}=\mathbb{C}[x] / \mathrm{I}_{q}$

Ideal $\mathrm{I}_{q}=\langle q(x)\rangle$
All polynomials of the form $a(x) q(x)$

Standard basis

All monomials that cannot be divided by $\operatorname{LT}[q(x)]$

Key results from AG

- Polynomial $F(x) \mapsto M_{F}$ is mapped to a numerical matrix
- Dimension of $\mathrm{Q}_{q}=$ number of solutions of $q(x)=0$

9 Baby problem

in Real problem

Baby problem

- Equation $q(x)=0$
- Bethe ansatz equations

Baby problem

- Equation $q(x)=0$
- Function of one variable $F(x)$
- Bethe ansatz equations
- Function of rapidities

$$
F\left(u_{1}, u_{2}, \cdots, u_{N}\right)
$$

Baby problem

- Equation $q(x)=0$
- Function of one variable $F(x)$
- Number of solutions of $q(x)=0$ (Trivial)
- Bethe ansatz equations
- Function of rapidities
$F\left(u_{1}, u_{2}, \cdots, u_{N}\right)$
- Number of solutions of Bethe ansatz equations
(Highly non-trivial !!)

Baby problem

- Equation $q(x)=0$
- Function of one variable

$$
F(x)
$$

- Number of solutions of $q(x)=0$ (Trivial)
- Calculate the sum

$$
\sum_{\text {sol }} F(x)=0
$$

Real problem

- Bethe ansatz equations
- Function of rapidities
$F\left(u_{1}, u_{2}, \cdots, u_{N}\right)$
- Number of solutions of Bethe ansatz equations
(Highly non-trivial !!)
- Calculate the sum
$\sum_{\text {sol BAE }} F\left(u_{1}, \cdots, u_{N}\right)$

Polynomial ring

$$
\mathbb{C}\left[u_{1}, \cdots, u_{N}\right]
$$

All polynomials in

$$
\left\{u_{1}, \cdots, u_{N}\right\}
$$

Algebraic Geometry

Polynomial ring

$$
\mathbb{C}\left[u_{1}, \cdots, u_{N}\right]
$$

All polynomials in

Generated by Bethe ansatz equations

$$
\begin{aligned}
\mathrm{I}_{\mathrm{B}} & =\left\langle\mathrm{B}_{1}, \cdots, \mathrm{~B}_{n}\right\rangle \\
& =\left\{p\left(u_{1}, \cdots, u_{N}\right) \mid p=\sum_{i=1}^{n} a_{i} \mathrm{~B}_{i}\right\}
\end{aligned}
$$

Ideal of BAE

Quotient ring

$$
\mathbb{C}\left[u_{1}, \cdots, u_{N}\right]
$$

$$
\mathrm{Q}_{\mathrm{B}}=\mathbb{C}\left[u_{1}, \cdots, u_{N}\right] / \mathrm{I}_{\mathrm{B}}
$$

All polynomials in

Generated by Bethe ansatz equations

$$
\begin{aligned}
\mathrm{I}_{\mathrm{B}} & =\left\langle\mathrm{B}_{1}, \cdots, \mathrm{~B}_{n}\right\rangle \\
& =\left\{p\left(u_{1}, \cdots, u_{N}\right) \mid p=\sum_{i=1}^{n} a_{i} \mathrm{~B}_{i}\right\}
\end{aligned}
$$

A finite dimensional linear space
number of solutions of

$$
\mathrm{B}_{1}=\cdots=\mathrm{B}_{n}=0
$$

Differences

More (variables) is different !
\qquad

[^0] \square \square

都

Differences

More (variables) is different !

Single variable

$$
\mathrm{BAE}=q(x)=x^{3}-2 x^{2}+7=0
$$

"Remainder" of polynomials "divided" by BAE is well-defined All remainders in the linear space $\operatorname{Span}_{\mathbb{C}}\left(x^{2}, x, 1\right)$

Differences

More (variables) is different !

Single variable

$$
\mathrm{BAE}=q(x)=x^{3}-2 x^{2}+7=0
$$

"Remainder" of polynomials "divided" by BAE is well-defined All remainders in the linear space $\operatorname{Span}_{\mathbb{C}}\left(x^{2}, x, 1\right)$

Multi variable

$$
f_{1}=y^{2}-1 \quad f_{2}=x y-1 \quad F(x, y)=x^{2} y+x y^{2}+y^{2}
$$

We see that $\quad F(x, y)=(x+1) f_{1}+x f_{2}+(2 x+1)$

Differences

More (variables) is different !

Single variable

$$
\mathrm{BAE}=q(x)=x^{3}-2 x^{2}+7=0
$$

"Remainder" of polynomials "divided" by BAE is well-defined All remainders in the linear space $\operatorname{Span}_{\mathbb{C}}\left(x^{2}, x, 1\right)$

Multi variable

$$
\begin{array}{ll}
f_{1}=y^{2}-1 & f_{2}=x y-1 \quad F(x, y)=x^{2} y+x y^{2}+y^{2} \\
\text { We see that } & F(x, y)=(x+1) f_{1}+x f_{2}+(2 x+1) \\
& F(x, y)=f_{1}+(x+y) f_{2}+(x+y+1)
\end{array}
$$

Differences

More (variables) is different !

Single variable

$$
\mathrm{BAE}=q(x)=x^{3}-2 x^{2}+7=0
$$

"Remainder" of polynomials "divided" by BAE is well-defined All remainders in the linear space $\operatorname{Span}_{\mathbb{C}}\left(x^{2}, x, 1\right)$

Multi variable

$$
f_{1}=y^{2}-1 \quad f_{2}=x y-1 \quad F(x, y)=x^{2} y+x y^{2}+y^{2}
$$

We see that $\quad F(x, y)=(x+1) f_{1}+x f_{2}+(2 x+1)$

$$
F(x, y)=f_{1}+(x+y) f_{2}+(x+y+1)
$$

The remainder is not unique !

Groebner Basis

Ideals can be generated by different basis
$\mathrm{I}_{\mathrm{B}}=\left\langle\mathrm{B}_{1}, \cdots, \mathrm{~B}_{n}\right\rangle=\left\langle\mathrm{G}_{1}, \cdots, \mathrm{G}_{s}\right\rangle$
The Groebner basis : remainders are well-defined for this basis !

Groebner Basis

Ideals can be generated by different basis
$\mathrm{I}_{\mathrm{B}}=\left\langle\mathrm{B}_{1}, \cdots, \mathrm{~B}_{n}\right\rangle=\left\langle\mathrm{G}_{1}, \cdots, \mathrm{G}_{s}\right\rangle$
The Groebner basis : remainders are well-defined for this basis !

Compute Groebner Basis

Groebner Basis

Ideals can be generated by different basis
$\mathrm{I}_{\mathrm{B}}=\left\langle\mathrm{B}_{1}, \cdots, \mathrm{~B}_{n}\right\rangle=\left\langle\mathrm{G}_{1}, \cdots, \mathrm{G}_{s}\right\rangle$
The Groebner basis : remainders are well-defined for this basis !

Compute Groebner Basis

Pen \& Paper

For very simple cases, we can compute it by hand using known
algorithms

Groebner Basis

Ideals can be generated by different basis
$\mathrm{I}_{\mathrm{B}}=\left\langle\mathrm{B}_{1}, \cdots, \mathrm{~B}_{n}\right\rangle=\left\langle\mathrm{G}_{1}, \cdots, \mathrm{G}_{s}\right\rangle$
The Groebner basis : remainders are well-defined for this basis !

Compute Groebner Basis

For very simple cases, we can compute it by hand using known algorithms

For slightly more complicated cases, use standard algebraic software

Groebner Basis

Ideals can be generated by different basis
$\mathrm{I}_{\mathrm{B}}=\left\langle\mathrm{B}_{1}, \cdots, \mathrm{~B}_{n}\right\rangle=\left\langle\mathrm{G}_{1}, \cdots, \mathrm{G}_{s}\right\rangle$
The Groebner basis : remainders are well-defined for this basis !

Compute Groebner Basis

Pen \& Paper
For very simple cases, we can compute it by hand using known algorithms

Mathematica

For slightly more complicated cases, use standard algebraic software

Singular 《

For the Groebner basis of BAE, we need more efficient package like SINGULAR

Groebner Basis

Ideals can be generated by different basis $\mathrm{I}_{\mathrm{B}}=\left\langle\mathrm{B}_{1}, \cdots, \mathrm{~B}_{n}\right\rangle=\left\langle\mathrm{G}_{1}, \cdots, \mathrm{G}_{s}\right\rangle$

The Groebner basis : remainders are well-defined for this basis !

Compute Groebner Basis

For very simple cases, we can compute it by hand using known algorithms

Mathematica

For slightly more complicated cases, use standard algebraic software

SINGULAR ${ }^{*} /$

For the Groebner basis of BAE, we need more efficient package like SINGULAR

Quotient ring

Bruno Buchberger

Quotient ring

Standard Basis

All monomials that cannot be divided by $\operatorname{LT}\left[\mathrm{G}_{i}\right]$,
$i=1, \cdots, s$

Bruno Buchberger

Quotient ring

Standard Basis

All monomials that cannot be divided by $\operatorname{LT}\left[\mathrm{G}_{i}\right]$,
$i=1, \cdots, s$

Bruno Buchberger

Simple Example

$$
f_{1}=y^{2}-1 \quad f_{2}=x y-1
$$

$$
\left\langle f_{1}, f_{2}\right\rangle=\left\langle\mathrm{G}_{1}, \mathrm{G}_{2}\right\rangle
$$

$$
\mathrm{G}_{1}=y^{2}-1 \quad \mathrm{G}_{2}=x-y
$$

Choose the order, $x \succ y$ we have

$$
\begin{aligned}
& \operatorname{LT}\left[\mathrm{G}_{1}\right]=y^{2} \\
& \operatorname{LT}\left[\mathrm{G}_{2}\right]=x
\end{aligned}
$$

The basis of $\mathbb{C}[x, y] /\left\langle f_{1}, f_{2}\right\rangle$
is given by $\{y, 1\}$
Indeed, easy to see we have 2 solutions

Properties

Important result

$$
\begin{aligned}
& M_{P_{1} \pm P_{2}}=M_{P_{1}} \pm M_{P_{2}} \\
& M_{P_{1} \cdot P_{2}}=M_{P_{1}} \cdot M_{P_{2}} \\
& M_{P_{1} / P_{2}}=M_{P_{1}} \cdot M_{P_{2}}^{-1}
\end{aligned}
$$

$$
\sum_{\mathrm{sol}} P(\mathbf{s})=\operatorname{Tr} M_{P}
$$

Companion Matrix

For any e_{j}, find $P(\mathbf{s}) e_{j}=\sum_{k=1}^{S} a_{k} G_{k}+r_{j}(\mathbf{s})$
Expand in terms of basis $r_{j}(\mathbf{s})=\sum_{k=1}^{S} M_{j k} e_{k}$
The matrix $\left(M_{P}\right)_{i j}=M_{i j}$ is called the companion matrix of $P\left(s_{1}, \cdots, s_{K}\right)$

Example

Example

$$
\begin{aligned}
& F_{1}=x^{4} y^{2}+3 x y+1 \quad F_{2}=y^{3}+y^{2}-2 \\
& P(x, y)=\frac{x^{3}}{3}+\frac{y^{3}}{7}+4 x y(x+y)+2 x+1
\end{aligned}
$$

Example

$$
\begin{aligned}
& F_{1}=x^{4} y^{2}+3 x y+1 \quad F_{2}=y^{3}+y^{2}-2 \\
& P(x, y)=\frac{x^{3}}{3}+\frac{y^{3}}{7}+4 x y(x+y)+2 x+1
\end{aligned}
$$

Numerical approach

- The equations $F_{1}=F_{2}=0$ has 12 solutions, solve numerically
- Plug each solution to $P(x, y)$, each term is irrational
- Take the sum $\mathrm{P}=\sum_{12 \text { sol }} P(x, y) \approx \frac{104}{7} \quad$ Rational number !

Analytical approach

Analytical approach

Groebner basis of the system $\left\langle F_{1}, F_{2}\right\rangle=\left\langle\mathrm{G}_{1}, \mathrm{G}_{2}\right\rangle$

$$
\begin{aligned}
& \mathrm{G}_{1}=3 x y^{2}+3 x y+y+2 x^{4}+1 \\
& \mathrm{G}_{2}=y^{3}+y^{2}-2
\end{aligned}
$$

Analytical approach

Groebner basis of the system $\left\langle F_{1}, F_{2}\right\rangle=\left\langle\mathrm{G}_{1}, \mathrm{G}_{2}\right\rangle$

$$
\begin{aligned}
& \mathrm{G}_{1}=3 x y^{2}+3 x y+y+2 x^{4}+1 \\
& \mathrm{G}_{2}=y^{3}+y^{2}-2
\end{aligned}
$$

2
Standard basis of quotient ring : all monomials that cannot be divided by x^{4} and y^{3}, 12 terms in total

$$
\left\{e_{1}=x^{3} y^{2},, e_{2}=x^{3} y \cdots, e_{11}=y, e_{12}=1\right\}
$$

Analytical approach

1
Groebner basis of the system $\left\langle F_{1}, F_{2}\right\rangle=\left\langle\mathrm{G}_{1}, \mathrm{G}_{2}\right\rangle$

$$
\begin{aligned}
& \mathrm{G}_{1}=3 x y^{2}+3 x y+y+2 x^{4}+1 \\
& \mathrm{G}_{2}=y^{3}+y^{2}-2
\end{aligned}
$$

2
Standard basis of quotient ring : all monomials that cannot be divided by x^{4} and y^{3}, 12 terms in total

$$
\left\{e_{1}=x^{3} y^{2},, e_{2}=x^{3} y \cdots, e_{11}=y, e_{12}=1\right\}
$$

3
Compute the companion matrix

$$
\begin{aligned}
& P(x, y) e_{1}=a_{1} G_{1}+a_{2} G_{2}+R_{1}(x, y) \quad R_{1}(x, y)=\sum_{j=1}^{12}\left(M_{P}\right)_{1 j} e_{j} \\
& \left(M_{P}\right)_{1 j}=\left(\frac{8}{7},-\frac{9}{7}, \cdots, 0,-2\right)
\end{aligned}
$$

The full matrix takes the following form

The full matrix takes the following form

$$
\operatorname{Tr} M_{P}=\frac{104}{7}
$$

The full matrix takes the following form

$$
M_{P}=\frac{1}{42}\left(\begin{array}{cccccccccccc}
48 & -54 & 12 & -504 & 0 & -14 & 504 & -420 & -1008 & -168 & 0 \\
6 & 54 & -54 & -7 & -511 & 0 & -504 & 0 & -420 & -42 & -210 & -84 \\
-27 & -21 & 54 & 0 & -7 & -511 & -210 & -714 & 0 & 0 & -42 & -210 \\
252 & 336 & -336 & 48 & -54 & 12 & -504 & 0 & -14 & 0 & -168 \\
-168 & 84 & 336 & 6 & 54 & -54 & -7 & -511 & 0 & 0 \\
168 & 0 & 84 & -27 & -21 & 54 & 0 & -7 & -511 & -84 & -84 & -168 \\
-168 & 0 & 336 & 252 & 336 & -336 & 48 & -54 & 12 & 0 & 0 & -14 \\
168 & 0 & 0 & -168 & 84 & 336 & 6 & 54 & -54 & -7 & -7 & 0 \\
0 & 168 & 0 & 168 & 0 & 84 & -27 & -21 & 54 & 0 & -7 & -7 \\
14 & 0 & 0 & -168 & 0 & 336 & 252 & 336 & -336 & 48 & -12 & 12 \\
0 & 14 & 0 & 168 & 0 & 0 & -168 & 84 & 336 & 6 & 54 & -12 \\
0 & 0 & 14 & 0 & 168 & 0 & 168 & 0 & 84 & -6 & 0 & 54
\end{array}\right)
$$

$$
\operatorname{Tr} M_{P}=\frac{104}{7}
$$

Comments

- No need to solve any equations
- The final result is rational number

Part 11.

Applications

[^0]: