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What? Study the renormalization of a Kähler potential to two

loop order.

why? The computation of the effective Kähler potential can be

important for phenomenological applications:

I It encoded the wave function renormalization of the

chiral multiplets

I The physical masses of the chiral multiplets

how?
Supergraph techniques

At two loop, the computations of self-energy energy of

chiral multiplet involve over 100 diagrams, which is very

hard to manage.
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Plan

I Theoretical framework: a general N = 1 supersymmetric model based on a Kähler manifold with

some of its linear isometries gauged.

I Computation of the one loop Kähler potential.

I Two loop effective Kähler potential.

I Examples:

1. Non–renormalizable Wess–Zumino model and its renormalizable limit.

2. Super Quantum Electrodynamics constitutes our second example.

I Conclusions
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N = 1 gauge non-linear sigma model

The effective action for (D = 4,N = 1) a supersymmetric field theory up two derivatives is encoded

in three functions of the chiral multiplets φ:

Kähler potential : K(φ, φ̄) Real

superpotenial : W (φ) Holomorphic

gauge kinetic : f(φ) Holomorphic

I The superpotential and the gauge kinetic function are constrained to be holomorphic.

This lead to various non–renormalization theorems: [Grisaru et al.], [Seiberg]

I The Kähler potential is only required to be a real function, and therefore far less constrained. It

receives corrections at all orders in perturbation theory
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The effective action

We consider a general globally supersymmetric theory defined by a tree-level action, which can be divided

into three parts:

I The Kähler term

Kähler potenial
Vector superfield

Fayet-Iliop

SK =
1

2

Z

d
8
z

n

K(φ̄, e2V φ) + K(φ̄ e2V , φ) + ξtr V
i

I the gauge kinetic part

gauge kinetic superfield strengths

SG =

Z

d6z
h1

4
tr fIJ(φ)WI αWJ

α + h.c.
i
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I the superpotential interactions:

superpotential

SW =

Z

d
6
z

h

W (φ) + h.c.
i

I Some of the linear isometries, δαφ = iα φ = iαITI φ are assumed to be gauged by the introduction

of the non–Abelian gauge vector superfield V = V ITI.

I The Hermitean generators TI of this group satisfy the algebra [TI, TJ ] = cK
IJ TK.

I Gauging is of course only possible if the Kähler potential and the superpotential are gauge invariant

K(φ̄ e−iα, eiα φ) − K(φ̄, φ) = 0 , W (eiα φ) = W (φ).
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Quantum corrections

Quantizing the supersymmetric gauge theory involve several steps:

I Quantum corrections to the classical supersymmetric action can be computed by various techniques.

split the suerfields (background field method) φ and V into:

V → V φ → φ + Φ

I addition of a supersymmetric gauge fixing action

SGF = −1

8

Z

d
8
z hIJ(φ)Θ̄

I
Θ

J
, Θ

I
=

1√
2
D̄

2
V

I

real part of fIJ

(This is for theories without spontaneous symmetries breaking)
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I The corresponding supersymmetric Faddev–Pappov ghost C, C ′, C̄, C̄ ′:

SFP =
1√
2

Z

d6z C ′
IδCΘI +

1√
2

Z

d6z̄ C̄ ′
IδCΘ̄I

where

δΛΘI → =
√

2
D̄2

−4

n

Λ̄I + [V, ΛI − Λ̄]I
o

+ . . . , but Λ → C

super gauge parameter

I The gauge fixing procedure is then implemented by the insertion of

∆FP

˛

˛

˛ δ(Θ
I − F I)

˛

˛

˛

2

e
iSF , SF =

Z

d
8
z hIJ F̄

I
F

J

FP determinant
chiral superfield
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Spontaneous symmetry breaking

For the general supersymmetric theories under consideration, two additional complications arise:

I Firstly, if the background φ spontaneously breaks some of the gauge symmetry, there will be mixing

(at the quadratic level) between the vector V and the chiral (Φ, Φ̄) multiplets.

Therefore the gauage-fixing function Θ must be modified (if one wishes to work with diagonalized

propagators)

Θ
I

= −
√

2

4
D̄

2
“

V
I

+ (h
−1

)
IJ

K
a
a(TJφ)

a 1

�
Φ̄a

”

.

This is very similar to the ’t Hooft Rξ gauge fixing for spontaneously broken gauge theories.

I The second complication is that the Gaussian integral over SF is not properly normalized. This can

be implemented by the introduction of the Nielsen–Kallosh (NK) ghosts χI

SNK =

Z

d
8
z hIJ(φ) χ̄

I
χ

J
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The full action of quantum theory

The full quantum action is given by:

Squantum = SK(φ → φ + Φ) + SW(φ → φ + Φ) + SG

+SGF + SFP + SNK

Quantum bilinear and propagators

To obtain the functional dependence on the chiral multiplets of these one and two loop corrections, we

expand the theory around: φ → φ + Φ, V → V

I The zero-th order is just the original action for classical background superfields S(φ, V ).

I The terms linear in quantum superfields do not contribute to the effective actions.

I The part bilinear in quantum superfields (is the relevant one for computations of one and two loops

quantum corrections) are:

S
2
= S

2
V + S

2
FP + S

2
Φ + SNK

1
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I The quadratic actions of the vector

S
2
V = −

Z

d
8
z V

I
[∆−1

V V ]
IJ

V
J

∆V V = [h � − M2
V ]

−1
,

propagator

vector mass-matrix

I The quadratic Faddeev–Poppov ghost superfields are given

S
2
FP = −

Z

d
8
z C

′
I

“

[∆−1
C̄′C]

I

J
C̄

J
+ C̄

′
I [∆−1

CC̄′]
I
J C

J
”

ghost propagators

I Because of the gauge fixing Θ, the quadratic part of the chiral multiplet action has become more

complicated

chiral propagator
propagator propagator

S
2
Φ =

Z

d
8
z

“

Φ̄ā[∆
−1
Φ̄Φ

]āa Φa + Φa[∆−1
ΦΦ]abΦ

b + Φ̄ā[∆
−1
Φ̄Φ̄

]āb̄Φ̄b̄

”

1
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I From the quadratic part of the quantum action we read off the propagators

∆C′C̄ = [� − h−1M2
C]−1 , ∆C̄′C = [� − h−1M2

C

T
]−1

with the Hermitean mass matrices for the ghost and vector multiplets

(M
2
C)IJ = 2 φ̄TIGTJφ , M

2
V =

1

2

“

M
2
C + M

2
C

T
”

,

I Finally, the chiral multiplet propagators

∆Φ̄Φ = [� − M
2
]
−1

G
−1

,

∆ΦΦ = G
−1

[� − M
2
]
−1

W̄ (G
−1

)
T

∆Φ̄ Φ̄ = (G−1)TWG−1 [� − M2]−1 .

1
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I The superpotential MW , Goldstone MG and total mass matrices M

M2
W = G−1W̄ (G−1)TW , (M2

G)a
b = 2 (TIφ)a (h−1)IJ (φ̄TJG)b ,

M
2

= M
2
W + M

2
G ,

I Because of the super gauge invariance of the superpotential ,the superpotential matrix W has zero

modes TIφ :

Wab (TIφ)b = 0, M2
W M2

G = M2
G M2

W = 0.

I The background φ generically leads to spontaneous symmetry breaking and massive vector multiplets.

– Massive vector multiplet consists of V I : Goldstone mode chiral superfields the massive Faddeev–

Poppov ghosts.

– Moreover, in this gauge the chiral Goldstone multiplets and the ghost multiplets have the same

mass eigenvalues

tr(M2
G)p = Tr(h−1M2

C)p = Tr(h−1M2
C

T
)p .

I Our graphical representation notation for these propagators are:

∆Φ̄Φ ∆ΦΦ ∆V V ∆CC

1
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One loop effective Kähler potential

The one loop calculation of the effective Kähler potential involves the computation of one loop vacuum

bubble graphs with multiple insertions of two–point interaction terms

+ + + ...

I To evaluate these bubbles in general, we consider a generic vector of commuting superfields Ψ with

quadratic action

S =
1

2

Z

d8z ΨT
h

∆−1 + M + JT
i

Ψ

propagator

2–point interaction

sources

I The sum of the connected bubble graphs reads

iΓ1L = e
1
2

R

d8z δ
iδJ

M( δ
iδJ

)T
e
− i

2

R

d8z JT ∆J
=

X

n≥1

iΓ(n)

1
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I We apply this to the various quadratic terms, the full one loop Kähler potential is given in a coordinate

representation by

iΓ1L =

Z

(d4x)12d
4θ

h

Tr ln h + Tr ln
“

11 − h−1M2
C

�

”

− tr ln G

−1

2
tr ln

“

11 − M2
W

�

”i

1
δ4
12

1

�1

δ4
12 .

I The origins of the various terms are as follow:

– The first term is due to the Nielsen–Kallosh ghosts.

– The second term is the combined effective action of the Faddeev–Poppov ghosts and the Goldstone

chiral multiplets.

– The last two terms are due bubbles that contain chiral multiplets.

I As it stands this expression iΓ1L is ill–defined and requires regularization.

1
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I Mainly because computational convenience at the two loop level, we choose to use dimensional

reduction:

– Wick rotation, . . . , Fourier transform to momentum space and evaluate the momentum integral

in D = 4 − 2ε dimensions
Z

p

= µ
2ε

Z

d
D

p/(2π)
D

I At the one loop level we encounter three different types of integrals.

– The first integral reads

J(m2) =

Z

dDp

(2π)DµD−4

1

p2 + m2
= − m2

16π2

h1

ε
+ 1 − ln

m2

µ̄2
+ Oε

i

..

Here we have introduced the MS scale µ̄2 = 4πe−γµ2 with the Euler constant γ

– The second integral is

L(m
2
) =

Z

dDp

(2π)DµD−4

1

p2
ln

“

1 +
m2

p2

”

=
m2

16π2

h1

ε
+ 2 − ln

m2

µ̄2

i

– Finally the integral

S(m2) =

Z

dDp

(2π)DµD−4

1

(p2 + m2)2
=

1

16π2

h1

ε
− ln

m2

µ̄2

i

.1
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I Using these integrals, and dropping the 1/ε poles, we find that the effective one loop Kähler potential

is given by

K1L = − 1

16π2
Tr h−1M2

C

“

2 − ln
h−1M2

C

µ̄2

”

+
1

32π2
tr M2

W

“

2 − ln
M2

W

µ̄2

”

.

I One–loop corrections to the Kähler potential have been computed by many Authors (in supersymmetric

Landau gauge) [Grisaru, de Wit, Buchbinder, . . . ]

[Brignole]

Their results for the effective one loop Kähler potential read

∆K1L = − 1

16π2
Tr M

2
V

“

2 − ln
M2

V

µ̄2

”

+
1

32π2
tr M

2
W

“

2 − ln
M2

W

µ̄2

”

[Brignole].

I In the Abelian case, their result agree with our one loop effective Kähler potential result:

M
2
C = M

2
V ⇒ ∆K1L = K1L

I In the non–Abelian case the mass matrices M 2
C and M2

V are not equal anymore, and our results

slightly deviate from their results

(M
2
C)IJ = 2 φ̄TIGTJφ, M

2
V =

1

2

“

M
2
C + M

2
C

T
”

.

(This might be an artifact of the use of different gauge fixing procedures)1
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Two loop effective Kähler potential

I At the two loop level there are three different topologies of the supergraphs that may contribute to

the Kähler potential.

They have the topologies of an “8” (figure a) and “	” (figure b), a “double tadpole” (figure c),

respectively.

a b c

“Double tadpole” supergraphs

I Most computations of the effective (Kähler) potential are restricted to only those connected graphs

that are 1–P–I.

– The argument for this restriction is that all 1–P–I contain one or more tadpole subgraphs, which

are generically absent by symmetry arguments.

– For example, a φ4 theory has the symmetry φ → − φ which forbids tadpoles to arise.

I Because we are dealing with rather generic supersymmetric models in arbitrary backgrounds, we

reconsider the issue of one–particle–reducible graphs.

1
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The connecting line can represent either

chiral chiral vector ghost

I We can divide these diagrams into two classes depending on whether the connecting line is a chiral or

a vector multiplet.

– In the case that the connecting line is a chiral superfield, one can show by some partial integrations

of D2 or D̄2 that these diagrams contain too little D2 or D̄2 , and therefore vanish.

– This leaves us with double tadpole graphs with a vector multiplet as a connecting line.

I Because a vector multiplet is not chiral, no D2 or D̄2 appear on the connecting line.

This implies that these graphs are non–vanishing iff the sum of Fayet–Illiopoulos tadpole graphs is

non–zero. [Weinberg’s 3rd vo]

[Nilles et al.]

I Let us briefly review the arguments which are applicable in our case:

– If the vector multiplet is non–Abelian no tadpole is possible because the tadpole graph is never

gauge invariant

1
9



– For a U(1) vector superfield V a tadpole is possible. The, induced ξ at the one loop level

ξ1L = trTa

Z

d4p/p2.

Since in this work we use dimensional reduction throughout, this integral vanishes.

2
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Supergraphs of the “8” topology

I There is in fact only one “8” supergraph that results from the vertex

∆S
4 ⊃

Z

d
8
z

1

4
Kab

a b
Φ

a
Φ

b
Φ̄aΦ̄b ,

I Using standard supergraphs techniques we find that the supergraph, becomes the following scalar

integral

iΓ
“8”
2L = − i

2

Z

(d
4
x)123d

4
θ K1 ab

a b
δ

4
21(∆ΦΦ̄)

a
2 aδ

4
21 δ

4
31(∆ΦΦ̄)

b
3 bδ

4
31

I By doing a Fourier transform to momentum, we find that the “8” supergraph can be compactly

expressed as

iΓ
“8”
2L =

i

2

Z

d
8
z K

a b
ab J̄

a
a

b
b(M

2
, M

2
) ,

Notice that, this expression is not covariant. This signals that this result is not complete.

2
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Supergraphs of the “	” topology

I The non–vanishing supergraphs of the “	” topology that can be obtained from the interaction ∆S3

are:

A B C D E F G H I

I Diagrams “8’’, A B, C, C and D combined to form curvature Ra
a
b
b and and covariant derivatives of

the superpotential W ;a b c.

R
a

a
b
b = K

a b
ab − K

a b
c G

−1c
c Kab

c
,

W;abc = Wabc − Γ
d

ab Wdc − Γ
d

bc Wda − Γ
d

ca Wdb

Summary results for the effective Kähler potential at two loops

The full two loop corrections to the Kähler potential is naturally divided into two parts:

K2L = Kuniversal
2L + Kgauge kinetic

2L .2
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I Kuniversal
2L is the part that is only present for constant gauge kinetic functions and takes the form

K
universal
2L =

1

2
R

a
a
b
b J̄

a
a

b
b(M

2
, M

2
) +

1

6
W̄

;a b c
W;abc Ī

a
a

b
b
c
c(M

2
, M

2
, M

2
)

+
1

2
hLP c

P
IN hJQ c

Q
KM

n

Ī
IJKLMN

(M
2
C, M

2
C, M

2
V )

−ĪIJKLMN(M2
C, M2

C

T
, M2

V )
o

−(GTIφ)a
;a (φ̄TJG)b

;b Īa
a
b
b
IJ(M2, M2, M2

V ).

I This result is manifestly covariant under diffeomorphisms that preserve the Kähler structure.

I The combination of the diagrams “8” and A-D have been computed for a single ungauged chiral

multiplet [Buchbinder, Petrov]

(However, there seemed to be some differences with our results, in particular that result is not

covariant.)

2
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I When the gauge kinetic function is not constant we find the additional contributions

K
gauge kinetic
2L =

1

8
fIK a f̄JL

a
n

2 h
−1KL

J̄
a
a
IJ

(M
2
, M

2
V ) − G

−1a
a J̄

IJKL
(M

2
V , M

2
V )

+(TMφ)
a
(φ̄TN)a Ī

IJKLMN
(M

2
V , M

2
V , M

2
C)

o

+
1

8

n

fIK b(G
−1W̄ )ba f̄JL

b(G−1T
W )ba − fMK a f̄NL

a
“

δM
I(h

−1M2
V )N

J

+ δN
J(h

−1M2
V )M

I

”o

ĪaIJKL
a (M2, M2

V , M2
V )

+
1

2

“

fIK a (M
2
C)JL

;a
+ f̄IK

a
(M

2
C)JL ;a

”

Ī
aIJKL

a (M
2
, M

2
V , M

2
V ) .

I The terms that are proportional to the product of tensors f and f̄ arise from diagram H.

I The last line is the effect of diagram I and it’s Hermitian conjugate.

2
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Simple applications

We illustrate our general formulae for the effective Kähler potential at one and two loops, by applying

them to some simple supersymmetric models.

The (non–)renormalizable Wess–Zumino model

We consider a single chiral multiplet φ described by a Kähler potential K = K(φ̄, φ) and a

superpotential W (φ) .

I The metric, connection and curvature read

G = K
1
1 , Γ = G

−1
K

1
11 , R = K

1 1
11 − Γ̄ G Γ ,

I The triple covariant derivative of the superpotential and the superpotential mass are given by

W;111 = W111 − 3 Γ W11 , M2
W = G−2 |W11|2 .

I The one and two loop corrections to the effective Kähler potential read

K1L =
1

16π2

1

2
M

2
W

“

2 − ln
M2

W

µ̄2

”

K2L =
1

2
RG

−2
J̄ +

1

6
|W;111|2G−3

Ī ,2
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with the short hand notations

J̄ =
1

(16π2)2
(M

2
W )

2
“

1 − ln
M2

W

µ̄2

”2

,

Ī =
1

(16π2)2

3

2
M

2
W

h

− 5 + 4 ln
M2

W

µ̄2
− ln

2 M2
W

µ̄2
+ 12 κ(x̄)

i

.

I Reduction to the renormalizable Wess–Zumino model:

K = φ̄φ, W (φ) =
1

2
m φ

2
+

1

3!
λ φ

3
.

I Hence the expressions for the one and two loop Kähler potentials further simplify to

K1L =
1

16π2

1

2
M

2
W

“

2 − ln
M2

W

µ̄2

”

,

K2L =
1

(16π2)2

1

4
|λ|2 M

2
W

n

− 5 + 4 ln
M2

W

µ̄2
− ln

2 M2
W

µ̄2
+ 12 κ(x̄)

o

,

with the mass M2
W = |m + λ φ|2 .

2
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A consistency check

I The effective Kähler potential can be used to determine the wave function renormalization at one

loop by taking the second mixed derivative of it.

Σeff. Kähler pot. =
∂2 K1L

∂φ ∂φ̄
= − |λ|2

32π2
ln

|m + λ φ|2
µ̄2

,

I This wave function renormalization can also be computed directly from the one loop self energy

supergraph

Σself energy = − |λ|2
32π2

ln
|m + λ φ|2

µ̄2
,

which agrees with our one loop effective Kähler potential result.

2
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Super Quantum Electrodynamics

The theory of Super Quantum Electrodynamics consists of two oppositely charged chiral multiplets φ+

and φ− under a U(1) gauge symmetry of which V is the vector superfield.

I The Kähler potential and superpotential for this model have the well known form

K = φ̄+e
2V

φ+ + φ̄−e
−2V

φ− , W = m φ+φ−.

where m is the mass of the super electron.

I The gauge kinetic action reads

SG =
1

4g2

Z

d6z WαWα + h.c. ,

where g−2 = h = f is the inverse gauge coupling.

I The one and two loop corrections to the effective Kähler potential are given by the following expressions:

– At the one loop level we find

K1L = − 1

16π2
g2M2

V

“

2 − ln
g2M2

V

µ̄2

”

+ constant.2
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– The two loop result takes the form

K2L = −
n

Ī(m2
+, m2

+, g2M2
V ) + Ī(m2

−, m2
−, g2M2

V )
o“φ̄σ3φ

φ̄φ

”2

−2 Ī(m2
+, m2

−, g2M2
V )

˛

˛

˛

φTσ1φ

φ̄φ

˛

˛

˛

2

.

with the mass eigenvalues m2
+ = |m|2 + g2M2

V and m2
− = |m|2 .

2
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Conclusions

We perform a supergraph computation of the effective Kähler potential at one and two loops for

(Non-)Renormalizable N = 1 Supersymmetric Models.

I As long as no non-abelian gauge interaction are taken into account, our one–loop results are consistent

with some existing literature concerning the computations of the Kähler potential [Grisaru, de Wit,

Buchbinder, . . . ]

– In the non-abelian case, our results slightly deviate from these reference (This might be an artifact

of the use of different gauge fixing procedures.)

I When we restrict to the ungauged case, we obtain the same terms at two loops as [Buchbinder,Petrov],

(but with different coefficients) such that the result contains the curvature tensor and covariant

derivatives of the superpotential.)

– The result of the two loop Kähler potential looks surprisingly simple as long as the gauge kinetic

function is strictly constant.

I Apart from the possible phenomenological applications, our results at the two loop level might be

interesting for various applications in N = 2 theories.

– In theories with extend supersymmetry the Kähler and super–potential are obtained from a single

holomorphic prepotential

3
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– Since our results are obtained for generic N = 1 supersymmetric theories they can be applied

in particular to N = 2 theories, and can lead to important cross checks on the validity of the

constraints that come from the N = 2 structure.

3
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One loop effective Kähler potential

The one loop calculation of the effective Kähler potential involves the computation of one loop vacuum

bubble graphs with multiple insertions of two–point interaction terms

+ + + ...

I To evaluate these bubbles in general, we consider a generic vector of commuting superfields Ψ with

quadratic action

S =
1

2

Z

d8z ΨT
h

∆−1 + M
i

Ψ + tems involving sources

propagator

2–point interaction

I To understand the notation, consider quadratic action for Φ

S2 = S0 + SJ + ∆S2, SJ =

Z

d
6
z JaΦ

a
+ h.c.

S0 =

Z

d
8
z Φ̄aδ

a
bΦ

b
, ∆S2 =

Z

d
8
z Φ̄aL

a
bΦ

b

with La
b = Ga

b − δa
b.

3
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I The first two terms can be written as

S̃2 = S0 + SJ =

Z

d
8
z

“

Φ̄aδ
a
bΦ

b
+

D2

−4�
JaΦ

a
+

D̄2

−4�
J̄

a
Φ̄a

”

This (Gaussian) integral is of the form I(y) and may be evaluated by shift of variables to give

I(y) =

Z

dx dx̄ ei(12xT A x+xT y) = cons. e(− i
2yT A−1y).

Using this

S̃2 = −
Z

d8z Ja

δa
b

�
J̄b

I Intoducing the notation:

J →
„

Ja

J̄a

«

,
δ

iδJ
→

`

Φa Φ̄a

´

, M =

„

0 LT

L 0

«

,

∆ =

„

0 δa
b

δ b
a 0

«

1

�

we write:

iS̃2 = − i

2

Z

d
8
z J

T
∆J, i∆S2 =

i

2

Z

d
8
z

δ

iδJ
M(

δ

iδJ
)
T

3
3



I The connected bubble graphs is given:

iΓ = ei∆S2 eiS̃2 =
X

n≥1

iΓ(n)

for example:

iΓ1 =
i

2

h

Z

d
8
z

δ

iδJ
M(

δ

iδJ
)
T

i

1

h

−1

2

Z

d
8
z J

T
∆J

i

2

= −1

2

Z

(d8z)12 tr
“

M1X21∆2X21

”

with

X21 =
“ δ

iδJ

”T

1
J

T
2

3
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Superspace integrals

I The full superspace integral is

Z

d8z =

Z

d4x d4θ =

Z

d4x
“

−1

4
D2

”“

−1

4
D̄2

”

with superspace covariant derivatives:

Dα =
∂

∂θα
+ iσn

αα̇ θ̄α̇∂n, D2 = Dα Dα,

D̄α̇ = − ∂

∂θ̄α̇
− iθ

α
σ

n
αα̇ ∂n D̄

2
= D

α̇
Dα̇

I The chiral subintegral is given by

Z

d
6
z =

Z

d
4
x d

2
θ =

Z

d
4
x

“

−1

4
D

2
”

I The superspace covariant derivatives have the following properties:

D
2
D̄

2
D

2
= 16�D

2
, D̄

2
D

2
D̄

2
= 16�D̄

2
, D̄

2
D

2
φ = 16�φ3

5



I We can write a chiral integral as a full superspace integral:

Z

d4x d2 θφ · j =

Z

d4x φ
“D̄2D2 j

16�

”

=

Z

d2 θ
“

−1

4
D̄2

”

Z

d4xφ
“

−D̄2 j

4�

”

= −
Z

d
4
θ d

4
xφ

“D̄2 j

4�

”

I The general superspace δ–function is δ21 = δ4(x2 − x1) δ4(θ2 − θ1)

I
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