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Why modified gravity?

» Can we address mysteries in the universe>

Dark energy, dark matter, inflation, big-bang singularity,
cosmic magnetic field, etc.

* Help constructing a theory of quantum gravity?
Superstring, Horava-Lifshitz, etc.

One of the best ways to understand something may be
to break (modify) it and then to reconstruct it.



# of d.o.f. in general relativity

* 10 metric components = 20-dim phase space @
each point

e Einstein-Hilbert action does not contain time
derivativesof N& N' 2> 1, =0& 1, =0



 Lapse N, shift N, 3d metric h;
ds® = —N?dt® + h;;(dz" + N'dt)(dz’ + N’ dt)
* Einstein-Hilbert action
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e Extrinsic curvature
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# of d.o.f. in general relativity

* 10 metric components = 20-dim phase space @
each point

* Einstein-Hilbert action does not contain time
derivatives of N& N' 2> 1, =0& 7, =0
All constraints are independent of N & N' 2 1, & 7.
“commute with” all constraints = 1%t-class



{S,C}=0for i
Reduces 1 phase space dimension

 1st-class constraint F
{F,C}=0for Vi
Reduces 2 phase space dimensions
Generates a symmetry
Equivalent to a pair of 2"9-class constraints

{C |i=1,2,..}: complete set of independent constraints

A=B <= A=Bwhen all constraints are imposed
(weak equality)
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# of d.o.f. in general relativity

* 10 metric components = 20-dim phase space @
each point

* Einstein-Hilbert action does not contain time
derivatives of N& N' 2> 1, =0& 7, =0
All constraints are independent of N & N' 2 1, & 7.
“commute with” all constraints = 1%t-class

* 4 generators of 4d-diffeo: 1%-class constraints

¢ 20 — (4+4) x 2 = 4 - 4-dim physical phase space @
each point 2

Minimal # of d.o.f. in modified gravity = 2

Can this be saturated?




Is general relativity unique?

* Lovelock theorem says if we assume:
(i) 4-dimensions; (ii) diffeo invariance; (iii) metric only; (iv)
up to 2"d-order eom’s of the form E_ =0.

* Effective field theory (derivative expansion) says at
low energy if we assume:
(i) 4-dimensions; (ii) diffeo invariance; (iii) metric only.

* A metric theory with 3d-diffeo but with broken 4d-diffeo
typically has 3 local physical d.o.f. (e.g. scalar-tensor theory,
EFT of inflation/dark energy, Horava-Lifshitz gravity)



Example: simple scalar-tensor theory

e Covariant action

1
I = 5 /d4x\/—g [92(¢)(4)R+ P(X, qb)} X = —%g‘“’@ugbayqb
* ADM decomposition

ds® = —N?dt* + h;;(dz" + N'dt)(dz’ + N’ dt)

1N
* Unitary gauge g" = ( N i NN )
1 1 N2 N2

qb =1 ‘ X = 5 N2 This is a good gauge iff

.. , 2 derivative of ¢ is timelike.
* Action in unitary gauge

I= fdtd?’fN\/E {fl (t) [K’UKij —K?+ (S)R} + %fl(t)K + fa(N, t)}

Q*(¢) = f1(t) P(X, ) = f2(N, 1)



Is general relativity unique?

* Lovelock theorem says if we assume:
(i) 4-dimensions; (ii) diffeo invariance; (iii) metric only; (iv)
up to 2"d-order eom’s of the form E_,=0.

 Effective field theory (derivative expansion) says at
low energy if we assume:
(i) 4-dimensions; (ii) diffeo invariance; (iii) metric only.

* A metric theory with 3d-diffeo but with broken 4d-diffeo
typically has 3 local physical d.o.f. (e.g. scalar-tensor theory,
EFT of inflation/dark energy, Horava-Lifshitz gravity)

* |s GR uniqgue when we assume: (i) 4-dimensions; (ii) 3d-
diffeo invariance; (iii) metric only; (iv) 2 local physical d.o.f.
(= 2 polarizations of TT gravitational waves)?



A class of minimally modified gravity

Chushan Lin and SM, JCAP1710 (2017), 033
* 4d theories invariant under 3d-diffeo: x' = x' + E/(t,x)

* ADM decomposition
ds® = -N°dt? + h; (dx'+N'dt) (dx'+N'dt)
* Ansatz: actions linear in the lapse function N
S = / dtd>zVhNF (K;j, Rij, Vi, h" t)
K;; = (0thiyj — V;N; — V;N;)/(2N)
* For simplicity, exclude mixed-derivative terms, i.e. those
that contain spatial derivatives acted on K;

* Relation between K; and © (momenta conjugate to h;)
assumed to be invertible ( O0°F )
e # 0

8Kz‘j 0Ky




What we expect/need

* 10 metric components = 20-dim phase space @ each
point

* Ty = 0 & m =0 : 15-class constraints
e 3 generators of 3d spatial diffeo : 15t-class constraints

* If there is no other constraint then
20 — (4+3) x 2 = 6 =2 6-dim physical phase space @ each
point = 3 local physical d.o.f.



What we found

* The necessary and sufficient condition under which a
theory in this class has 2 or less local physical degrees of
freedom.

e Simple examples with 2 local physical degrees of
freedom



An example of MMG: square-root gravity

e Action

= [t fenrot (1 50x) (14129 1) - a0
K=K;K9—-K) K=K", =41

S ~ /d‘*:m/ﬁN [§M4 — A+ gMz(cllC + coR) + ]

: A—EM*,
GR with M2 =¢eim?, & = Z—i Ar == - is recovered.
* Flat FLRW with a canonical scalar E=1
2
/d:c /dta [M4\/N2661& —NA+—¢ — NV (¢)

1
M H? > —M? as pm — 00
M= (A + pm) 6¢

H remains finite

1—6(31




What we found

* The necessary and sufficient condition under which a
theory in this class has 2 or less local physical degrees of
freedom.

e Simple examples with 2 local physical degrees of
freedom



Matter coupling in scalar tensor

theory
* Jordan (or matter) frame
1
I = 5 / d*z\/—g? [P () Rlg’] + -] + Imatter[giy; matter|
* Einstein-frame QEI/ — 92(@9;{ y K. Maeda (1989)
1
I = 5 /d4:1:\/ —g® [R[g"] + -] + Imatter [ (0)g,,,; matter]

This is a modified gravity
because of non-trivial matter coupling = type-l

* There are more general scalar tensor theories where
there is no Einstein frame =2 type-lI



Type-l & type-ll modified gravity

* Type-l:
There exists an Einstein frame
Can be recast as GR + extra d.o.f. + matter, which
couple(s) non-trivially, by change of variables

 Type-ll:
No Einstein frame

Cannot be recast as GR + extra d.o.f. + matter by
change of variables




Type-I minimally modified gravity (MMG)

Katsuki Aoki, Chunshan Lin and SM, arXiv:1804.03902, to appear in PRD

* There exists an Einstein frame

e Can be recast as GR + matter, which couple(s) non-trivially,
by change of variables

* The most general change of variables = canonical tr.

* Matter coupling just after canonical tr. 2 breaks diffeo 2
15t-class constraint downgraded to 2"9-class = leads to
extra d.o.f. in phase space = inconsistent

* Gauge-fixing after canonical tr. =2 splits 1%t-class constraint
into pair of 2"d-class constraints

* Matter coupling after canonical tr. + gauge-fixing = a pair
of 2"d-class constraints remain = consistent



Simple example of type-| MMG

Katsuki Aoki, Chunshan Lin and SM, arXiv:1804.03902, to appear in PRD

e Start with the Hamiltonian of GR
phase space: (N, N', I';) & (my, m;, I1Y)

* Simple canonical tr. (I';;, IT") = (y;;, ©Y)

ij?

. OF iy OF i . y
j=—fm ™=—5- F=- / By =y, /A
g=~0

{G,)#0 {Gnn}~0 {G,m}=0 {G,H}~0
* Lagrangian for g’ = (N, N\, v;) |
vV—9'L = Vi — Hene Hior Ig-lzurfﬁt-:;(ieadntgza:sity
* Adding matter
Ima,tter [g;]u/; matter]

c.f. Carballo-Rubio, Di Filippo & Liberati (2018) argued that the square-root
gravity should be of type-I but did not find a consistent matter coupling.



More general example of type-| MMG
& phenomenology

Katsuki Aoki, Antonio De Felice, Chunshan Lin, SM and Michele Oliosi, arXiv: 1810.01047
* Original phase space: (M, N/, T, ) & (ITy,, w, ITY)
» Canonical tr. (N, Ty, I1,; IT%) 2 (N, v, 7y, ©Y)

Ij’

__OF  GF _OF . 6F
“ i T Tam NT TN T
Sy i A
Feo [ @A+ NI fi= gty
2 ~ 1
J(6:0) = fo®) + OO oy lonon

°SamesignforN&N [ &y; > f,>0,f,>0

* Wy # -1 in general (without dynamical DE)
* G/G=1/f) #1in general while ¥/® =1



Example withwp #-1 & G /G # 1

e A #0 before canonical tr.

o c2=f2/f) > f) = f,2

* A choice of f, . (M*/Mp1)2 + (¢/¢C)2
| =

L+ (6/6.)

M.2/M2=1.1, A=2




Type-Il minimally modified gravity (MMG)

* No Einstein frame

e Cannot be recast as GR + matter by change of
variables

* Is there such a theory? Yes!

* Example: Minimal theory of massive gravity
[Antonio De Felice and SM, PLB752 (2016) 302; JCAP1604
(2016) 028; PRL118 (2017) 091104]

* Another example? : Ghost-free nonlocal gravity (if
extended to nonlinear level?)



Massive gravity in a nutshell

Simple question: Can graviton have mass?

'



Massive gravity in a nutshell

Simple question: Can graviton have mass?

Fierz-Pauli theory (1939)

Unique linear theory
wit?\out instabilities
(ghosts)




Massive gravity in a nutshell

Simple question: Can graviton have mass?

EREBETRYEIIERE
Zhakharov discontinuity
(1970)

Massless limit #
General Relativity

Fierz-Pauli theory (1939)

Unique linear theory
without instabilities
(ghosts)




Massive gravity in a nutshell

Si '
mple question: Can graviton have mass?

Vainshtein mechanism
(1 972)
Nonlinearity =

van Dam-Veltman-
Zhakharov discontinuity
0

Fierz-Pauli theory (1939)

Unique linear theory
without instabilities
(ghosts)

Massless limit #
General Relativit



Massive gravity in a nutshell

Simple question: Can graviton have mass?

Yes? No?

) 4
Vainshtein mechanism Boulware-Deser ghost
(1972) (1972)
Nonlinearity ->
> < —
. . van Dam-Veltman-
Fierz-Pauli theory (1939) Zhakharov discontinuity
Unique linear theory (1970)
without instabilities Massless limit #
\ (ghosts) y General Relativit




Massive gravity in a nutshell

Si '
mple question: Can graviton have mass?

/" de Rnam-Gabadadze- w
Tolley (2010)

N )
N (e b
Vainshtein mechanism Boulware-Deser ghost
1972 (1972)
Nonlinearity =
. o . _
/" van Dam-Veltman- w

Fierz-Pauli theory (1 939) Zhakharov discontinuity
(1970)

Unique linear theory _
Massless limit #

without instabilities
\ (ghosts) ) | General Relativity J




Cosmological solutions_ln
nonlinear massive gravity

D’Amico, et.g|. (2011)
Non—existence of flat
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isotropic) universel




Cosmological solutions in
nonlinear massive gravity

D’Amico, et.al. (2011)
Non-existence of flat
FLRW (homogeneous
isotropic) universe!

Open universes with self-
acceleration

GLM = Gumrukcuoglu-Lin-Mukohyama



Cosmological solutions in
nonlinear massive gravity

closed/flat/open FLRW
universes
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Cosmological solutions in
nonlinear massive gravity

closed/flat/open FLRW

universes

D’Amico, et.al. (2011)
Non-existence of flat
FLRW (homogeneous
isotropic) universe!

Open universes with self-
acceleration

GLM = Gumrukcuoglu-Lin-Mukohyama
DGM = DeFelice-Gumrukcuoglu-Mukohyama



Cosmological solutions in
nonlinear massive gravity

closed/flat/open FLRW
universes

' Amico, et.al. (2011)
l?\lon-existence of flat
FLRW (homogenem‘Js
isotropic) universe:

GLM = Gumrukcuoglu-Lin-Mukohyama D
DGM = DeFelice-Gumrukcuoglu-Mukohyama

= DeFelice-Gumrukcuoglu-Heisenberg-Mukohyama



Minimal theory of massive gravity

( MTM G) De Felice & Mukohyam%,C1L§1765024((2200116g)300226;
2 physical dof only = massive gravitational waves
exactly same FLRW background as in dRGT

no BD ghost, no Higuchi ghost, no nonlinear ghost
positivity bound does not apply

Three steps to the Minimal Theory

1. Fixlocal Lorentz to realize ADM vielbein in dRGT
2. Switch to Hamiltonian

(It is easy to go back to Lagrangian after 3.)

Lorentz-violation due to graviton loops is suppressed by
m?/My? and thus consistent with all constraints for m = O(H,)



Cosmology of MTMG |

« Constraint Cy=~0 X = a/a
(c3 4+ 2 X + 1 X)) (X +NHX —MH) =0
» Self-accelerating branch

_ 2 _
X = X:I: — 2+ \éfQ €163 )\ — O

SM2H? = m” My

(ca +3c3X 4+ 3caX” + 1 X°) +p

(even with c,=0)
Scalar/vector parts are the same as ACDM
Time-dependent mass for gravity waves



Cosmology of MTMG I

 Constraint Co~ 0 X = a/a
(c5 +2co X + 1 X (X +NHX —MH) =0

* "Normal” branch A(H;X — H)N

_ A\ =
}I_)(}If2 , m?2 (01X2—|—202X+63)M
M
SM2H? = °"F (¢; 4 3¢5 X + 3¢, X% + ¢1.X°) + p

Scalar part recovers GR in UV (LK m™) but
deviates from GR in IR (L>m?)

Vector part is the same as GR

Non-zero mass for gravity waves



1.0

0.8

0.6 |

f08

0.2¢ “Normal branch” of MTMG with ACDM background |
(mass of GW)? ~ (1.08 x Hy)? ~ (1.6 x 10-33 eV)?
cf. LIGO bound: |mass of GW| < 1.2 x 1022 eV ~ 2.9 x 108 Hz
0.0

Exercise!
Fitting ADCM & MTMG to RSD data

De Felice & Mukohyama, arXiv:1607.03368

]__

— = = = ACDM = “Self-accelerating branch” of MTMG

0.4 0.6 0.8 1.0 1.2

1.4



1.0

Exercise!
 Fitting ADCM & MTMG to RSD data

De Felice & Mukohyama, arXiv:1607.03368

0.8

ng

— = = = ACDM = “Self-accelerating branch” of MTMG

0.21 “Normal branch” of MTMG with ACDM background
(mass of GW)? ~ - (2 X Hp)? ~ - (3 x 1033 eV)?
cf. LIGO bound: |mass of GW| < 1.2 x 1022 eV ~ 2.9 x 108 Hz
0.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

1.4



De Felice, Larrouturou, Mukohyama, Oliosi,
arXiv: 1808.01403

* Any solution of GR that can be rendered
spatially flat by a coordinate change is also a
solution of the self-accelerating branch of
MTMG, with or without matter.

e SC
) Sp
CcO

nwarzschild sol =

nerical GR sol with matter - gravitational
lapse, star interior




Blue-tilted & amplified primordial
GW from MTMG Fujita, Kuroyanagi, Miz::;;:h/il;g%hg;;ngal,

* Simple extension: ¢, =2 c¢.,(¢) with ¢ = ¢(t)

* mlarge until t  (t.., <t <tg) but small aftert_
cf. no Higuchi bound in MTMG

* Suppression of GW in IR due to large m = blue spectrum  _c0s
DECIGO




Summary

* Minimal # of d.o.f. in modified gravity = 2
can be saturated 2 minimally modified gravity (MMG)

* Type-l MMG: FEinstein frame
Type-Il MMG: no Einstein frame

* Example of type-| MMG
GR + canonical tr. + gauge-fixing + adding matter
Rich phenomenology: wy, G4, etc.

* Example of type-ll MMG
Minimal theory of massive gravity (MTMG)
Cosmology: self-accelerating branch & normal branch
BHs and stars: no strong coupling, no new singularity
Stochastic GWs: blue-tilted & largely amplified






Backup slides



Setup

* ADM decomposition
ds® = -N°dt? + h; (dx'+N'dt) (dx'+N'dt)
* Ansatz: actions linear in the lapse function N
S = / dtd>zVhNF (K;j, Rij, Vi, h" t)
K;; = (0thiyj — V;N; — V;N;)/(2N)
* For simplicity, exclude mixed-derivative terms, i.e. those
that contain spatial derivatives acted on K;

* Relation between K; and © (momenta conjugate to h;)
assumed to be invertible ( O0°F )
e # 0

8Kz‘j 0Ky




Equivalent action and Hamiltonian

S = /dtd?’:c\/ﬁN [F (Qij, Rij, Vi, B, t) + 07 (Qij — Kij)]

* Conjugate momenta

y 1 y
T = 8.[, = ——vVhv', WN:(‘?—L.::O, = 8920,
Ohi; 2 ON ON*
pii = 9£ =0, Uj= 8_4.:0.
0Qi; v
* 22 primary constraints
mn ~ 0, m; ~ 0, PY =0, Ui; = 0, U =~ 0.
* Hamiltonian i = i 4 LTl
2

H = / d*x [NC + N'H; + ANmw + X' + xi; P + " Usj + M ]



Primary and secondary constraints
* 10 secondary constraints

dmn
0~ —— = HY = —C
dt {ﬂ-N? } 3
dﬂ'i
~ _ (,;7H = — I,
O~ gy = {mi Hy=—#
dPv g g g OF g
~ ={PY , H} = NOY dY =+/h ( + 'UZJ>
0~ ——={PY H} : 50

* Total Hamiltonian
Hioy = /dgﬂ? [ACC + N'H; + ANTN + N + Xz‘jPij - ‘,DijUz‘j + )\z‘j\IJij — Qbijq)ij}

TN ~ 0 7 ~ () HE ~ 0

; : Ik
HE = —2VhV; <%> + P*V,;Qjk — 2VhVy, (P—\/EQ@

* 25 remaining constraints

C=~O0, PY ~0), Ui =0, dY ~ 0, U9~ 0.
If they are 2"%-class and there is no tertiary constraint then
44 —7 x 2 — 25 =5 > 5-dim phase space @ each point 2
inconsistent theory

. U
+U:Viv"F + 2RV (v”ki) + mnO; N
) Jk k \/E N




Functional determinant

0 of W of af
oethyle 20 whare (0 &
If Det Mab(xly) O' where Os Os6 Osgp Ay Us,6

Vi _ — 0 0 alge b1
ab\l,Y) = ¢a L), ¢b Y)y = e 6|6 6,6 6,6 AI6’6 ’

o = (C, PV, U3, @7, WY)  \ _g, 06,6 _b166 _AQ As

then all ¢, are 2"9-class and there is no tertiary constraint.
3

A\

— (a,’l)l,’l)z,’l)g, ,04)T¢ O s.t.

Q

/d3 [ui va(y) + @3 va(y)] ~ 0, /d3y [—ura(y) + avs(y) + bua(y)] = 0,
/ &y [Ara)] ~0, [ &' [~AToi0) — avay) + Arvs()] 0.
[y [~i2a(0) ~ boa(y) — Aavay) + Asea)] ~ 0. for Yz .

This is equivalent to that
does not vanish everywhere and that satisfies

icls il R
[ @2 |55 u@al) - 500k Qu @) <0, for Yala)

hij(x
O[N] = / d>z\O




Necessary and sufficient condition
* Suppose |7 a/s.t.

5C[p 5Clol R
[ | )@z-jcc)a( )~ g s Q@] %0, for YB(a)

If /dSmZU“’(m Jis non -vanishing then it will
be a tertiary constraint.
If it vanishes then /d3wZv“(a})q§a(x) is 15%-class.

[ @ [ 5o 0s@iae) - ot Qu@ie)]| 20, foffa@) Y6la).

* Under this condition, we define c¥(z) by
/ Pz qua’(w)qba(w) — CP[a] 4 boundary terms

o If oct /ot ~ 0then cZis 1%t-class. Otherwise, oC¥ /ot ~
should be imposed as a tertiary constraint.




Further modification: lapse-independent term

S = /dtd%\/ﬁ INF + G (Rij, Vi, h",t)]

|G does not
contribute to the primary and secondary constraints and
the Poisson brackets among them.]

e Generically, 0 =~ 0CF /ot + {C¥, Hio} leads to a tertiary
constraint. [G contributes to the Hamiltonian.]

* An example: GR + higher spatial curvature terms



For F = F(Q, R, h', t)

* The consistency condition:

1j”

: : oF _ . 1 1
/\/ﬁ (V'8 — BV a) [—WMVJ (Qz‘lhjk — §leh?‘,j — Ethkhil)

. ( OF 1 1
-I—VJ (W) . (Qﬂhik — §lehij — §thkhﬂ)} ~ 0, for VCI{(IL'), VB(IB) .
kl

e A sufficient condition:

oF . 1 1
8Rle (Ql ik Qle j 2Q ik l)

. OF 1 1

i () Qahik — ~Quihis — =Qhggha ) =~ 0.
+V <3sz) (le ik 2le j 2Q k 31)

* F=F(Q hY, t) (independent of R;) is too simple:
gravitational waves do not propagate, static masses do
not gravitate, ...



Example 1: general relativity

* Ansatz

F=fi(Q+ f2(R), [fi(Q)#0, f5(R)#0
Q= Q;QY —Q° Q=Q"
* Consistency condition
—V' (Qij — Qhij) + (Qi; — Qhij) V'In fy = 0
* Momentum constraint |
V' (Qij — Qhij) + (Qij — Qhyj) Vi In fi = 0
e Consistency condition rewritten
O;1n (f1f3) =0, ie.  f1(Q)f5(R) ~ constant in space

F=c1()Q+ ()R — A(t), c1(t) £0, eot) #£0.



Details of GR and its relatives

 If cico = constant, c¢1A = constant.
then C¥ is 15t-class and the theory is GR up to
redefinition of N, provided that c, and c, are positive.

 If cico = constant, ¢ A # constant
then oc¥ /ot = 6C/0t ~ Ad;In(c1A) is non-vanishing and
thus the theory is inconsistent.

« If cico # constant then o ~ ac®/ot = oc /ot gives
a tertiary constraint. Both ¢® ~0and ac¥/ot ~ 0are
2"d_class.



Example 2: a square root gravity

* Ansatz

F=fi(Q) fa(R) —Alt), fi(Q)#0, fo(R)#0.
* Consistency condition
—V'(Qij — Qhij) + V'In(fif2) - (Qij — Qhij) = 0
* Momentum constraint
V' (Qij — Qhij) + V' In(fif2) - (Qij — Qhij) = 0
e Consistency condition rewritten
8?; In (flf{fgfé) ~ 0, 1.e.

f1(Q) f1(Q) fo(R) f5(R) =~ constant in space.

fi=At)Q+B(t), fi=C({t)R+D(t),
At) £0, Ct) #0.



Details of square root gravity

* If AC and (A2-BD)A/B are constant then C¥is 15t-
class.

* If AC is constant and if (A>-BD)A/B is not constant
then ac* /ot = 6C/ot is non-vanishing and thus the

theory is inconsistent.

* If AC is not constant then 0 ~ dc¥/ot = ac/ot gives
a tertiary constraint. Both ¢” ~ 0 and dc¥/ot ~ 0 are

2nd_class.

 IfB=A=0andif A (#0), C(#0), D are constant then
the theory is equivalent to the shape dynamics
description of GR [Baierlein-Sharp-Wheeler 1962].



Phenomenology of square root gravity

* For BD>0,
_ c1(t) ca(t)
S = /d‘lx\/EN lgM(t)“\/(l + M(t)glc) (1 + M(t)2R) — A(t)]
K=K;K9—-K) K=K", =41
* In the weak gravity limit,
S ~ /d‘lx\/EN [§M4 — A+ gMz(cllC + coR) + ]

. A—EMA .
GR with M2 =¢em?, 2= 2—? Act = ﬁcjw IS recovered.
* Flat FLRW with a canonical scalar E=1

/dac /dta [M‘l\/NQGQGQNAqub — NV (¢)

M°® H _>LM2 as Pm —7 OO

1— 661 =
M2 (A pp)? 6¢




Example 3: an exponential gravity

* Ansatz

F = f1(Q) +exp[ciR + f2(Q)]

 Hamiltonian constraint

0~ F = S Q= (i 21Q) + € (1~ 2£30)
* Momentum constraint

0 m(z flg et o fé) Vi (QY — Qh) + (Q¥ — Q) v, (2 flg et o fé)
* Consistency condition

‘ f1_2f{Q /_f1_2f{Q / ~
V2[1—2f5Q (fl 1—2féQf2HNO

fi=cat)Q+A(t)  fo=c3(t)Q + Inca(?)
cqs = 2A\c3 coA <0




Details of exponential gravity

* If c;,c;A% and In(-A/c,)/c, are constant then C¥is 1°t-
class.

* If c;c3A? is constant and if In(-A/c,)/c, is not
constant then ac¥ /ot = 6c/at is non-vanishing and
thus the theory is inconsistent.

* If c,c3A? is not constant then 0~ ac”/ot = ac/ot
gives a tertiary constraint. Both ¢¥ ~ o0and ac¥ /ot ~ 0
are 2"d-class.



Phenomenology of exponential gravity

* In the weak gravity limit,
F = 2AcsK + A+ caexp [c1 R + ¢3K]
1
= A+ o+ (2A63 + (22(23) K+ cicoR + §CQ(ClR + Cg]C)Q + .-

GR is recovered if A+c, is constant and if
(2Ac;+c,C,), €4C, are constant and positive.






Step 1. Fix local Lorentz to
realize ADM vielbein iIn dRGT

(_)'T

N
letull = (efz_Ni T




Step2. Switch to Hamiltonian
Hpre — fdgfli[ —NRO — NZRZ

linear in lapse and shift
-> 4 primary constraints

+ m*M H1 +H A\¥C,
2 secondary
constraints (a=1,2)

apnP N 4 By Y IMNT

6 ( = 3 primary + 3 secondary) constraints
associated with symmetry of spatial vielbein

Ox2-4-2-6=6=>3d.0.f.

c.f. consistent with the analysis by Comelli, Nesti and Pilo 2014




Step2. Switch to Hamiltonian
Hpre — fdgx[ —NRO — NZRZ

linear in lapse and shift
-> 4 primary constraints

~7 ~

Pretditsorifreory

constraints (a=1,2)

oy LR "Bahon X )

6 (= 3 primary + 3 secondary) constraints
associated with symmetry of spatial vielbein

Ox2-4-2-6=6=>3d.0.f.

c.f. consistent with the analysis by Comelli, Nesti and Pilo 2014




H = / d>x[-NRy — N'R,

+miMH, +A\Co + N°C;

4 constraints instead of 2
+ apn PN 4 B n YN

. OR .
Co = {Ro, H1 } ato C, = {R, H1}

=) Only 2 among (C,, C) are new

6 (from precursor theory) — 2
(additional constraints) = 4=» 2 d.o.f.




M32 m2 M\’ 1 y
S = Spre + TP /d%Nﬁ (T ~ ) (%‘k’le - 5%;"}%1) CACK

M2 _ .
_ M /d433l)\30 + NCi) + Simat »

2
Spre = SGR + SdraT in ADM vielbein
- 1 1 P R
CO — §m2M\/’_Y ('sz')’jl — E’Y’L],Ykl) @kﬁl (KU _ K*}/ZJ)'

9 VA - .
m M\/_ [01C+C2(]CC K nC m)] + c3R nC
\/_

Cz’ = m2\/”_ﬂ)n [M (%[cﬂC”i + CQ(ICICTL@ = IC";ICZZ)] -+ c35”i>]

oY = [%{q(v“l@z + LK) + o[ (YHKCT ) + AL KCE)) — 25749} + 2c37@’j]



WE .
Sarer = - ) Si,  in ADM vielbein

Sl — —m2C1 a/?c (N + M}C) )

1 . .
Sy = =5 micaay 2NK + MK® — MK';K/3],
S; = —mQCgﬁ M + N g],

Sy = —mzc4ﬁ.

k k
= (VAT) w &= (Vi)



M3 m2 M\’ 1 :
S = Spre + TP /d%Nﬁ (T ~ ) (%‘k’le - 5%;"}%1) CACK

M2
/ d*z(ACo + N'C;) + Smat

e =S K%ﬂnet Wt@rm IS
e nt from dRGT!

_sz\/_ VG 01C+C2 (K¢ = K™ m)] + c3 R n (" )

C; = m*\/yDy, [M (ﬁ

ﬂ[cllC’”’i + co(KK™; — /Cnl/Clz')] + C35nz‘>]

oY = [%{q(v“l@z + LK) + o[ (YHKCT ) + AL KCE)) — 274} + 2c37@’j]



