Two-color quark matter at nonzero temperature and density

Tomáš Brauner

University of Bielefeld

Department of Modern Physics, University of Science and Technology of China Hefei, November 3, 2011

[Motivation](#page-2-0)

- **QCD-like** theories
- [Thermodynamics of two-color QCD](#page-26-0)
- [Center-symmetric effective theory for two-color QCD](#page-40-0)
- [Outlook & challenges](#page-46-0)

[Motivation](#page-2-0)

QCD-like theories

- [Thermodynamics of two-color QCD](#page-26-0)
- [Center-symmetric effective theory for two-color QCD](#page-40-0)
- [Outlook & challenges](#page-46-0)

QCD phase diagram: What we (would like to) know

Low density and high temperature:

- Lattice simulations.
- Heavy ion collisions.

High density and low temperature:

- Lattice simulation not feasible due to sign problem.
- Experimental data inconclusive.

QCD phase diagram: What we (would like to) know

Low density and high temperature:

- Lattice simulations.
- Heavy ion collisions.

High density and low temperature:

- Lattice simulation not feasible due to sign problem.
- Experimental data inconclusive.
- Are effective models all we can do?

Why QC_2D or aQCD (or similar)?

- No sign problem \Longrightarrow lattice simulation feasible.
- Use the results to discriminate between the models.
- Baryons in QCD-like theories are bosons!

Why QC_2D or aQCD (or similar)?

- No sign problem \implies lattice simulation feasible.
- Use the results to discriminate between the models.
- Baryons in QCD-like theories are bosons!

Ideal for model building!

- No annoying three-body physics at low density.
- Gauge-invariant order parameter at high density.
- Decent chance of describing low & high density matter with a single model: a dream of nuclear (astro)physicists!

Why models?

First a bit of pessimism.

- How reliable are the results?
	- Check model dependence: bad news.

- Check approximation dependence.
- Don't go too far, it is not worth of the effort.

There are some good news too.

- Model calculations are usually economical.
- May be used for a first rough calculation.
- Help to identify interesting problems. (Much literature on color superconductivity.)
- Can test ideas used in other approaches. Andersen, Kyllingstad, Splittorff, JHEP 01 (2010) 055

[Motivation](#page-2-0)

2 [QCD-like theories](#page-16-0)

- 3 [Thermodynamics of two-color QCD](#page-26-0)
- 4 [Center-symmetric effective theory for two-color QCD](#page-40-0)
- [Outlook & challenges](#page-46-0)

What QCD-like theories do I have in mind?

Pseudoreal theories

- \bullet "OC₂D" = two-color OCD with fundamental quarks.
- (Almost) the same structure is shared by all QCD-like theories with quarks in a pseudoreal representation.

Real theories

- \bullet "aQCD" = QCD with adjoint quarks.
- (Almost) the same structure is shared by all QCD-like theories with quarks in a real representation.

What makes them interesting? (pseudoreal)

Lattice simulation.

- Determinant of Dirac operator real even at nonzero chemical potential.
- Even number of flavors with equal chemical potentials \Longrightarrow no sign problem.

Spectrum and the phase diagram.

- Baryons are bosons antisymmetric in color.
- Nonzero density realized by BEC of diquarks rather than a Fermi sea of nucleons.
- Global symmetry of theory with N_f massless quarks is not $SU(N_f)_L \times SU(N_f)_R \times U(1)_B$, but rather $SU(2N_f)$!

What makes them interesting? (real)

Lattice simulation.

- Determinant of Dirac operator real even at nonzero chemical potential.
- Any number of flavors with equal chemical potentials \Longrightarrow no sign problem.

Spectrum and the phase diagram.

- Baryons are bosons symmetric in color.
- Nonzero density realized by BEC of diquarks rather than a Fermi sea of nucleons.
- Global symmetry of theory with N_f massless quarks is not $SU(N_f)_L \times SU(N_f)_R \times U(1)_B$, but rather $SU(2N_f)$!

More about the flavor symmetry (pseudoreal)

The flavor symmetry . . .

- *q* and *q* have the same color transformation properties.
- Exchange $\bigcirc \leftrightarrow \bigcirc$ does not affect color symmetry.
- Trade $q_R \rightarrow q_L^{\mathcal{C}} \Longrightarrow$ the theory effectively has $2N_f$ flavors of Weyl fermions, thus $SU(2N_f)$.

. . . and its consequences.

- \bullet $\left(\bigotimes \right) \longleftrightarrow \left(\bigotimes$ is a symmetry of the theory.
- Multiplets of states contain both mesons and diquarks.
- There are diquark NG bosons of $SU(2N_f) \rightarrow Sp(2N_f)$.
- $N_f=$ 2: five NG bosons $\pi^0, \pi^\pm, \Delta, \Delta^*.$
- Dense matter in reach of chiral perturbation theory!

More about the flavor symmetry (real)

The flavor symmetry . . .

- *q* and *q* have the same color transformation properties.
- Exchange $\bigodot \longleftrightarrow \bigcirc$ does not affect color symmetry.
- Trade $q_R \rightarrow q_L^C \implies$ the theory effectively has $2N_f$ flavors of Weyl fermions, thus $SU(2N_f)$.

. . . and its consequences.

- \bullet $\left(\bigotimes \leftrightarrow \left(\bigotimes\right)$ is a symmetry of the theory.
- Multiplets of states contain both mesons and diquarks.
- There are diquark NG bosons of $SU(2N_f) \rightarrow SO(2N_f)$.
- $N_f=$ 2: nine NG bosons $\pi^0, \pi^\pm, \vec{\Delta}, \vec{\Delta}^*.$
- Dense matter in reach of chiral perturbation theory!

Symmetry-breaking patterns (pseudoreal)

Symmetry-breaking patterns (pseudoreal)

Symmetry-breaking patterns (pseudoreal)

Symmetry-breaking patterns (real)

[Motivation](#page-2-0)

QCD-like theories

[Thermodynamics of two-color QCD](#page-26-0)

[Center-symmetric effective theory for two-color QCD](#page-40-0)

[Outlook & challenges](#page-46-0)

• We use the (P)NJL model in the mean-field approximation:

$$
\mathcal{L} = \overline{\psi} (i\mathcal{D} - m_0) \psi + G \left[(\overline{\psi} \psi)^2 + (\overline{\psi} i \gamma_5 \overline{\tau} \psi)^2 + |\overline{\psi^c} \gamma_5 \sigma_2 \tau_2 \psi|^2 \right]
$$

- \bullet Diquark and meson couplings same thanks to SU(4).
- Input physical quantities:

 $T_c = 270 \text{ MeV} \qquad \sigma_s = (425 \text{ MeV})^2$ $\langle \overline{\psi}_u \psi_u \rangle = (-218 \text{ MeV})^3$ *f_π* = 75.4 MeV *m_π* = 140 MeV

- Alternative: $O(6)$ linear sigma model at tree level.
- **•** Improves on LO $_{\chi}$ PT by including finite m_{σ} effects.

Phase diagram

Ratti, Weise, PRD 70 (2004) 054013; Sun, He, Zhuang, PRD 75 (2007) 096004 TB, Fukushima, Hidaka, PRD 80 (2009) 074035

Deconfinement in dense matter

• The insensitivity of deconfinement temperature to μ _B is an obvious artifact of the PNJL model.

Deconfinement in dense matter

- The insensitivity of deconfinement temperature to μ_B is an obvious artifact of the PNJL model.
- However, can it still be right?

Hands, Kim, Skullerud, PRD 81 (2010) 091502

Chiral regime

- Vacuum: $\langle \overline{\psi}\psi \rangle \neq 0$.
- \bullet $\mu_{\rm B}$ > m_{π} : diquark condensation.

 $\bullet \langle \psi \psi \rangle \neq 0.$

- LO χ PT at finite $\mu_{\rm B}$: Kogut et al., NPB 582 (2000) 477
- Lattice simulation (staggered adjoint quarks): Hands et al., EPJC 17 (2000) 285; EPJC 22 (2001) 451
- NJL model calculation: Ratti, Weise, PRD 70 (2004) 054013

- NJL and linear sigma models give identical results.
- Explanation: condensate contribution dominates!
- Do the models stand comparison with lattice?

- NJL and linear sigma models give identical results.
- Explanation: condensate contribution dominates!
- Do the models stand comparison with lattice?

- NJL and linear sigma models give identical results.
- Explanation: condensate contribution dominates!
- Do the models stand comparison with lattice?

- NJL and linear sigma models give identical results.
- Explanation: condensate contribution dominates!
- Do the models stand comparison with lattice?

- NJL and linear sigma models give identical results.
- Explanation: condensate contribution dominates!
- Do the models stand comparison with lattice?

- NJL and linear sigma models give identical results.
- Explanation: condensate contribution dominates!
- Do the models stand comparison with lattice?

Hands, Kim, Skullerud, EPJC 48 (2006) 193; PRD 81 (2010) 091502

- Simulations at nonzero temperature and diquark source.
- Data for pressure and density can be reasonably explained using LO χ PT with source term: dilute Bose gas.

High peak in the energy density!

- Energy dominated by entropy/thermal component.
- Inclusion of thermal order parameter fluctuations needed, NLO χ PT or beyond-mean-field NJL.

[Motivation](#page-2-0)

- [QCD-like theories](#page-16-0)
- [Thermodynamics of two-color QCD](#page-26-0)
- [Center-symmetric effective theory for two-color QCD](#page-40-0)
- [Outlook & challenges](#page-46-0)

Dimensional reduction

4d (Euclidean) quantum field theory at high temperature reduces to a 3d theory of the zero Matsubara mode.

- Heavy modes: "hard mass" $\omega_n = 2\pi nT$, $n \neq 0$.
- Light modes: "soft mass" ∝ *gT* by loop corrections.
- Dimensionally reduced theory of QCD: EQCD.
- Degrees of freedom: 3*d* gauge field \mathbf{A}_a + adjoint scalar A_a^0 .

$$
\mathcal{L}_{\text{EQCD}} = \frac{1}{4} (F_{ij}^a)^2 + \frac{1}{2} (D_i A_0^a)^2 + \frac{1}{2} m_E^2 (A_0^a)^2 + \frac{1}{8} \lambda_E (A_0^a A_0^a)^2
$$

The EFT determines physics on length scales ∝ 1/*gT*. Braaten, Nieto, PRD 53 (1996) 3421

Basic ingredients (continued)

Center symmetry

Global Z_N symmetry of the Yang–Mills theory; its spontaneous breaking is associated with deconfinement phase transition.

- Second/first order transition for two/three colors.
- Order parameter: Polyakov loop.

$$
\Omega(\mathbf{x}) = \text{Tr}\left\{\mathcal{P} \exp\left[i g \int_0^\beta d\tau A_0(\tau, \mathbf{x})\right]\right\}
$$

• EQCD breaks Z_N explicitly by expanding around one of the *N* degenerate minima.

Vuorinen, Yaffe, PRD 74 (2006) 025011 de Forcrand, Kurkela, Vuorinen, PRD 77 (2008) 125014 Zhang, TB, Vuorinen, in progress

Construction of the theory

- Basic degree of freedom: coarse-grained Polyakov loop \mathcal{Z} .
- \bullet $\mathcal Z$ acts as an adjoint scalar.
- Center symmetry transformation: $\mathcal{Z} \to \pm \mathcal{Z}$.
- \bullet $\mathcal Z$ is unitary up to a real scale factor:

$$
\mathcal{Z} = \frac{1}{2}(\Sigma + i\sigma_a \Pi_a)
$$

• Superrenormalizable 3d gauge theory of \mathcal{Z} :

$$
\mathcal{L} = \frac{1}{g_3^2} \left\{ \frac{1}{2} \operatorname{Tr} F_{ij}^2 + \operatorname{Tr} \left(\mathcal{D}_i \mathcal{Z}^\dagger \mathcal{D}_i \mathcal{Z} \right) + V(\mathcal{Z}) \right\}
$$

$$
V(\mathcal{Z}) = b_1 \Sigma^2 + b_2 \Pi_a^2 + c_1 \Sigma^4 + c_2 (\Pi_a^2)^2 + c_3 \Sigma^2 \Pi_a^2 + d_1 \Sigma^3 + d_2 \Sigma \Pi_a^2
$$

Scales and degrees of freedom

Scales

- Scale *T*: "amplitude mode" $|\mathcal{Z}(x)|$; to be integrated out.
- Scale gT : electric gluons; phases of $\mathcal{Z}(\mathbf{x})$.
- Scale *g* ²*T*: magnetic gluons; 3d gauge potential *Ai*(**x**).

Couplings

- How to ensure the hierarchy of scales: use global "SU(2)_L \times SU(2)_R" symmetry.
- Preserved by "hard" couplings *hⁱ* of order *T*.
- Broken to $SU(2)_V \times Z_2$ by "soft couplings" s_i .

$$
b_1 = \frac{1}{2}h_1
$$
, $b_2 = \frac{1}{2}(h_1 + g_3^2s_1)$, $d_1 = \frac{1}{2}g_3^2s_4$, $d_2 = \frac{1}{2}g_3^2s_5$
 $c_1 = \frac{1}{4}h_2 + g_3^2s_3$, $c_2 = \frac{1}{4}(h_2 + g_3^2s_2)$, $c_3 = \frac{1}{2}h_2$

Perturbative matching

- Match to Z_2 -symmetric one-loop Weiss potential of QCD.
- Reduces to Taylor coefficients (EQCD) and period.
- Domain wall tension predicted at 8% from YM value.

- Explicit Z_2 breaking by quarks: use bubble solution.
- Remaining parameter(s) (to be) fixed nonperturbatively.
- \bullet Predictions for QC₂D thermodynamics as a function of *Nf* , quark masses and chemical potentials (in progress).

[Motivation](#page-2-0)

- **QCD-like** theories
- [Thermodynamics of two-color QCD](#page-26-0)
- [Center-symmetric effective theory for two-color QCD](#page-40-0)
- [Outlook & challenges](#page-46-0)

Outlook & challenges

If you are interested in (deconfinement in) cold dense matter, understand available lattice data on dense two-color QCD first!

Hands, Kenny, Kim, Skullerud, 1101.4961 [hep-lat]

Ideal playground for understanding dense matter:

- Simplified modeling due to two-body physics for baryons.
- (Some) lattice data available and more to come.