Gaugino mass from tree level R-symmetry breaking in gauge mediation models

Zheng Sun

CTP-SCU, Sichuan University

USTC-ICTS, 25 December 2014

SUSY and SUSY breaking

Gaugino mass in gauge mediation models

Gaugino mass from tree level R-breaking

- ▶ 0810.0477 (ZS)
- ▶ 1209.1059 (Zhaofeng Kang, Tianjun Li, ZS)
- ▶ 1412.0183 (Feihu Liu, Muyang Liu, ZS)
- Works in progress.

SUSY and SUSY breaking

Gaugino mass in gauge mediation models

Gaugino mass from tree level R-breaking

Supersymmetry (SUSY)

What is SUSY? (Martin, [hep-ph/9709356], and books)

► Supersymmetry: bosons ↔ fermions. e.g.:

the scalar boson:
$$\phi, \qquad \delta_\xi \phi = \sqrt{2} \xi \psi,$$
 the fermion: $\psi, \qquad \delta_\xi \psi = -i \sqrt{2} \sigma^\mu \bar{\xi} \partial_\mu \phi - \sqrt{2} \xi F,$ the auxiliary field: $F, \qquad \delta_\xi F = -i \sqrt{2} \partial_\mu \psi \sigma^\mu \bar{\xi}.$

▶ Organized in a superfield with fermionic coordinates θ , $\bar{\theta}$, e.g. chiral fields and vector fields (vector bosons \leftrightarrow fermions):

$$\begin{split} \Phi &= \phi + \sqrt{2}\theta \psi + \theta \theta F + \cdots, \\ V_{\text{WZ}} &= \bar{\theta} \bar{\sigma}^{\mu} \theta A_{\mu} + \bar{\theta} \bar{\theta} \theta \lambda + \theta \theta \bar{\theta} \bar{\lambda} + (1/2)\theta \theta \bar{\theta} \bar{\theta} D. \end{split}$$

► The SUSY Lagrangian (using $\int d\theta \theta = \int d\bar{\theta}\bar{\theta} = 1$):

$$L = [\Phi^{\dagger} e^{2T^{a}V^{a}} \Phi]_{D} + ([(1/4)W^{a\alpha}W_{\alpha}^{a}]_{F} + [W(\Phi_{i})]_{F} + \text{c.c.})$$

Why and Where

Why SUSY?

- A consistent extension of the Poincaré symmetry.
- ▶ An ingredient for fundamental theories, e.g., string theory.
- \blacktriangleright Phenomenology, e.g. solve (partially) the hierarchy of GUT \rightarrow EW, Higgs mass, c.c. problem, etc..

Where is SUSY?

- The Standard Model (SM) is extended to SSM.
- No superpartner has been found ⇒ superpartners are heavy (or weakly coupled) ⇒ SUSY must be (spontaneously) broken.
- ▶ SUSY breaking by SSM fields has difficulties, e.g. light fields.
- ► To avoid difficulties, Spontaneous SUSY breaking in a hidden sector → messenger (mediation) → SSM mass splitting.

SUSY breaking in the hidden sector

General pictures

▶ Str $M^2 = 0$ (≥ 0 for bosons and ≤ 0 for fermions).

SUSY breaking in the hidden sector.

- F-type (by chiral fields) and D-type (by vector fields) SUSY breaking.
- Messenger sector models: Gravity mediation, gauge mediation, anomaly mediation.

SUSY breaking and R-symmetries

F-term SUSY breaking (Wess-Zumino or O'Raifeartaigh)

- ▶ Superpotential $W(\Phi_i)$, Kähler potential $K(\bar{\Phi}_i, \Phi_j)$.
- ► $L_{W-Z} = \int d^2 \theta W + c.c. \Rightarrow$ the scalar potential $V = K^{\bar{i}j} \bar{F}_i F_j$.
- ▶ Spontaneous SUSY breaking $\Leftrightarrow V > 0$ at the vacuum \Leftrightarrow $F_i = \partial_i W = 0$ unsatisfied at the vacuum.

The Nelson-Seiberg theorem (revised) ([1209.1059])

- ▶ An R-symmetry: $\theta \to e^{i\alpha}\theta$, $z_i \to e^{i\alpha r_i}z_i$, $W \to e^{2i\alpha}W$.
- ► R-charges: $R(z_i) = r_i$, R(W) = 2, $R(\theta) = 1$, $R(\int d\theta) = -1$.
- ▶ Generically, F-type SUSY breaking at the global minimum " \Leftrightarrow " W has an R-symmetry and $N_Y < N_X$ ($r_X = 2$, $r_Y = 0$).
- "Generic": A small change of parameters does not destroy the vacuum, so no fine-tuning is needed.

SUSY and SUSY breaking

Gaugino mass in gauge mediation models

Gaugino mass from tree level R-breaking

R-symmetry breaking and gaugino masses

R-symmetry breaking

- ► From Nelson-Seiberg, SUSY breaking needs R-symmetries.
- ▶ In SSM, Majorana gaugino masses need R-breaking.
- ▶ Loop level and tree level R-breaking.

Gauge mediation (with loop level R-breaking)

- ▶ SUSY breaking sector \rightarrow spurion X (usually $r_X = 2$).
- ▶ X breaks both SUSY and R-symmetry: $X = \langle X \rangle + \theta \theta F_X$.
- Yukawa coupling to the messenger sector $W = X\tilde{\Phi}\Phi$:

$$[X\tilde{\Phi}\Phi]_F + \text{c.c.} = \langle X \rangle \tilde{\psi}\psi + F_X \tilde{\phi}\phi + \text{c.c.}.$$

Messengers are charged under SM gauge symmetry:

$$[\Phi^{\dagger}(e^{2T^aV^a})\Phi]_D = -\sqrt{2}(\phi^*T^a\psi)\lambda^a + \text{c.c.} + \cdots$$

R-symmetry breaking and gaugino masses (2)

Vertexes related to gaugino masses

• λ^a corresponds to gauginos \tilde{g} .

R-symmetry breaking and gaugino masses (3)

One loop gaugino masses

▶ The loop diagram.

- R-charges of corresponding superfields has been labeled.
- ▶ The resulting gaugino mass: $M_{\tilde{g}} \sim \frac{\alpha}{4\pi} \frac{F_X}{\langle X \rangle}$.

Tree level SUSY breaking and R-breaking

No-go for tree level SUSY breaking (Komargodski, Shih, [0902.0030])

- ▶ Tree level SUSY breaking: Metastable for any $\langle X \rangle$.
- (Extra)ordinary gauge mediation: $W = (\lambda_{ij}X + m_{ij})\tilde{\Phi}_i\Phi_j$.
- ▶ If there is an R-symmetry, then $\det(\lambda X + m) = X^n G(m, \lambda)$, where $n = r_X^{-1} \sum_i (2 R(\tilde{\Phi}_i) R(\Phi_i))$.
- ► Gaugino mass: $M_{\tilde{g}} \sim \frac{\alpha}{4\pi} F_X \partial_X \log \det(\lambda X + m) \sim \frac{\alpha}{4\pi} \frac{n F_X}{\langle X \rangle}$.
- ▶ Metastable for any $\langle X \rangle \Rightarrow n = 0 \Rightarrow M_{\tilde{g}} = 0$.
- $X = \langle X \rangle + \theta \theta F_X$, so the model is not tree-level R-breaking.

Tree level R-symmetry breaking ([0810.0477])

- SUSY breaking and R-breaking by different fields.
- Very complicated model, but still possible.

SUSY and SUSY breaking

Gaugino mass in gauge mediation models

Gaugino mass from tree level R-breaking

Loop level and tree level R-breaking

Plots of the scalar potential

► Loop level R-breaking:

► Tree level R-breaking

R-breaking everywhere on the pseudomoduli space.

Tree level R-breaking models

Misaligned SUSY breaking and R-breaking fields ([1209.0183])

- $X = \theta^2 F_X$ breaks SUSY, $Y = \langle Y \rangle$ breaks R-symmetry.
- ▶ Including tree level R-breaking models and more.

Gauge mediation (with tree level R-breaking)

▶ Both spurions couple to messengers: $W = X\tilde{\Phi}_i\Phi_j + Y\tilde{\Phi}_i\Phi_j$

$$[X\tilde{\Phi}_i\Phi_j]_F + \text{c.c.} = F_X\tilde{\phi}_i\phi_j + \text{c.c.},$$

 $[Y\tilde{\Phi}_i\Phi_j]_F + \text{c.c.} = \langle Y \rangle \tilde{\psi}_i\psi_j + \text{c.c.}.$

Messengers are charged under SM gauge symmetry:

$$[\Phi_i^{\dagger}(e^{2T^aV^a})\Phi_i]_D = -\sqrt{2}(\phi_i^*T^a\psi_i)\lambda^a + \text{c.c.} + \cdots.$$

Gaugino masses from tree level R-breaking

Vertexes related to gaugino masses

• λ^a corresponds to gauginos \tilde{g} .

R-symmetry breaking and gaugino masses (3)

One loop gaugino masses

▶ The loop diagram.

- ► The resulting gaugino mass: $M_{\tilde{g}} \sim \frac{\alpha}{4\pi} \frac{F_X}{\langle Y \rangle}$ (?)
- ▶ R-charge conservation $\Rightarrow r_X = r_Y$.

SUSY and SUSY breaking

Gaugino mass in gauge mediation models

Gaugino mass from tree level R-breaking

No-go for tree level R-breaking

Concern of genericness

- ▶ $r_X \neq r_Y \Rightarrow$ vanishing $M_{\tilde{g}}$ at one loop \Rightarrow no-go.
- $ightharpoonup r_X = r_Y \Rightarrow X$ and Y are indistinguishable.
- ightharpoonup \Rightarrow generically $\langle X \rangle$, F_X , $\langle Y \rangle$, F_Y are non-zero and comparable.
- $ightharpoonup
 ightharpoonup M_{\tilde{g}}$ has loop level R-breaking contribution $\sim \frac{F_X}{\langle X \rangle}, \sim \frac{F_Y}{\langle Y \rangle}$
- ▶ ⇒ tree level R-breaking is redundant and unnecessary.

Conclusion

- ► Tree level R-symmetry breaking is either no-go, or redundant for phenomenology model building (if we concern simpleness, genericness, naturalness of the model).
- ► Forget about tree level R-breaking(?)

Bypassing the no-go

More vertexes

▶ Inserting more F_X and $\langle Y \rangle$:

- ▶ Both F_X and $\langle Y \rangle$ must be inserted odd number of times.
- ▶ R-charge conservation $\Rightarrow r_X = r_Y \Rightarrow$ no-go again.
- ▶ Multiple X or Y fields is plausible (works in progress).