Revisiting O(N) sigma model at unphysical m_{π} and finite temperature

Zhiguang Xiao Sichuan Univerisity Collaborated with: Lyv Yuan-Lin, Li Qu-Zhi, Zheng Han-Qing Based on: PRD,109,094026; arxiv:2405.11313

Talk given at USTC, 2024-10-25

2024年12月26日

2 INTRODUCTION OF O(N) SIGMA MODEL

- (3) m_{π} DEPENDENCE OF σ
 - Temperature dependence of σ
- **(5)** Vacuum structure of the O(N) model with EXPLICIT CHIRAL SYMMETRY BREAKING *

- $\pi\pi$ scattering: important in understanding low energy QCD chiral symmetry breaking.
- Lattice calculation: phase shifts at unphysical pion mass, $m_{\pi} = 236 \text{MeV}_{[\text{Dudek, et al., PRD86,034031(2012)]}}.$ $m_{\pi} = 391 \text{MeV}_{[\text{Briceno,PRL118,022002(2017)]}}.$
- Hadron system with a finite temperature: Hadron gases, QCD phase information.
- These two aspects provide more information of QCD: tuning m_{π} and T, to learn more information about chiral symmetry, confinement
- By studyng the properties of resonances with varying m_{π} and T, one would also gain more understanding of the QCD.

Fundamentals on $\pi\pi$ scattering matrix

Full two particle scattering matrix: S(s, t, u), $s + t + u = \sum_{i} m_i^2$. $\pi\pi$ scattering: with isospin indices $S_{ab.cd}$

• Unitarity: $S \cdot S^{\dagger} = I$, S = I + iT. Optical theorem:

 $\mathrm{Im}\mathcal{M}(k_1, k_2 \to k_1, k_2) = 2E_{cm}p_{cm}\sigma_{\mathrm{tot}}$

- Analyticity: S(s, t, u) can be analytically continued to be an analytic function of s, t, u.
- Crossing: By analytic continuation, the same S matrix can describe different scatterings by crossing

$$\begin{split} s &> 4m_{\pi}^2, \ t, u < 0, \ s\text{-channel}, \ \pi_a(p_1) + \pi_b(p_2) \to \pi_c(p_3) + \pi_d(p_4). \\ t &> 4m_{\pi}^2, \ s, u < 0, \ t\text{-channel}, \ \pi_a(p_1) + \bar{\pi}_c(-p_3) \to \bar{\pi}_b(-p_2) + \pi_d(p_4). \\ u &> 4m_{\pi}^2, \ s, t < 0, \ u\text{-channel}, \ \pi_a(p_1) + \bar{\pi}_d(-p_4) \to \pi_c(p_3) + \bar{\pi}_b(-p_2). \end{split}$$

• Crossing and generalized Bose symmetry impose constraints between A(s, t, u), B(s, t, u), C(s, t, u).

 $T(s, t, u) = A(s, t, u)\delta_{ab}\delta_{cd} + B(s, t, u)\delta_{ac}\delta_{bd} + C(s, t, u)\delta_{ad}\delta_{bc}$

 $T(s, t, u) = A(s, t, u)\delta_{ab}\delta_{cd} + B(s, t, u)\delta_{ac}\delta_{bd} + C(s, t, u)\delta_{ad}\delta_{bc}$

Scattering of total angular momentum eigenstates and total lsospin eigenstates:

Isospin projection:

$$\begin{split} T^0_s(s,t,u) &= 3A(s,t,u) + B(s,t,u) + C(s,t,u) \\ T^1_s(s,t,u) &= B(s,t,u) - C(s,t,u) \\ T^2_s(s,t,u) &= B(s,t,u) + C(s,t,u) \end{split}$$

• Partial wave projection: $S_l = 1 + 2i\rho(s)T_l(s)$, $\rho = \sqrt{(s - 4m_\pi^2)/s}$,

$$T_l^I(s) = \frac{1}{32\pi} \int_{-1}^1 d\cos\theta P_l(\cos\theta) T^I(s, t(s, \cos\theta))$$
$$T(s, t, u) = 16\pi \sum_l (2l+1) P_l(\cos\theta) T_l^I(s)$$

Fundamentals on $\pi\pi$ scattering matrix

• Unitarity: Single channel, for physical processes, $s > 4m_{\pi}^2$,

$$S_l(s)S_l^*(s) = 1$$
, $\operatorname{Im} T_l(s) = \rho(s)|T_l(s)|^2$.

- Analyticity: $S(s) \rightarrow$ analytical continuation, real analytic function of s, Schwartz reflection, $S^*(s) = S(s^*)$. Single channel: Double-sheeted Riemann surface, a cut above the threshold $s = 4m_{\pi}^2$ — unitarity cut, or physical cut.
 - $S^{I} = 1/S^{II}$: Zero point on the first sheet \leftrightarrow poles on the second sheet.
 - On the first sheet: Bound state poles: on the real axis below the threshold $4m_{\pi}^2$. No other poles.
 - On the second sheet:

Virtual state poles on the real axis below the threshold $4m_{\pi}^2$. Resonances poles, a pair of complex poles on the second sheet, symmetric w.r.t real axis.

• Crossing: The physical process of the *t*, *u* channel generate left-hand cut.

Chiral symmetry and σ state

- 2 flavor QCD: only u and d quarks,
 - Chiral symmetry at chiral limit, $m_q = 0$: $SU_L(2) \times SU_R(2) \simeq O(4).$

$$q_L \to e^{i\alpha_L^a \tau^a} q_L, \quad q_R \to e^{i\alpha_R^a \tau^a} q_R.$$

- SSB: quark condensate $\langle \bar{q}q \rangle \neq 0$, $SU_L(2) \times SU_R(2) \rightarrow SU_V(2) \rightarrow$ Goldstone: pions.
- With explicit chiral symmetry breaking: $m_q \neq 0$, $m_{\pi} \neq 0$, PCAC assumption, $\partial_{\mu}A^{a,\mu} = m_{\pi}^2 f_{\pi}\pi^a$.
- To realize this SSB in Low energy effective field theory: Linear realization \rightarrow linear σ model, $\langle \sigma \rangle \neq 0 \rightarrow a 0^{++}$ scalar state. [M. Gell-Mann and M. Lévy,Nuo.Cim.16,705(1960)] Nonlinear realization \rightarrow only pion d.o.f., no σ , ChPT. [Coleman,Wess,Zumino, PR,177,2239;Callan,et.al. PR177,2247;

Gasser, Leutwyler, Ann. Phys. 158, 142, NPB250, 465.]

f(500) state: the lowest 0^{++} state

• For a long time, the existence of the σ particle was in controversy.

A broad resonance disappeared and reappeared from PDG table several times, from 1960 to 2000s.

- Chiral purtabation theory (CHPT): without sigma, can reproduce the lower energy scattering length, effective range, phase shift near threshold. Quickly blow up away from threshold.
- Unitarized CHPT: IAM, a broad resonance was found σ or f₀, but not quite reliable [Pelaez,Mod.Phy.Lett.A19,2870;

A.G.Nicola, Pelaez, PRD65, 054009(2002)].

σ state

• PKU representation with left-hand cut estimated by CHPT

[ZX,Zheng,NPA695,273(2001);Z. Y. Zhou,et.al. JHEP 02, 043(2004);Zheng, et.al., NPA733,235(2004)]: respects unitarity and analyticity, crossing can be imposed by BNR relation

Left-hand-cut contribution is always negative in $\sin 2\delta$. A broad resonance pole is needed.

• Roy equation [Colangelo,Gasser,Leutwyler NPB603,125(2001)]: model independent integral equation. Automatic respect unitarity, analyticity, crossing symmetry — established the existence of a broad 0^{++} resonance $f_0(500)$ [Caprini,Colangelo,Leutwyler PRL96,132001(2006)].

$$\sqrt{s_{\mathsf{pole}}} = 441^{16}_{-8} - i272^{+9}_{-13} \mathrm{MeV}$$

• What role does it play in the chiral SSB? Is this the sigma in LSM2

INTRODUCTION

Analyzing the lattice QCD phase shift: K matrix, no crossing $m_{\pi} = 236 \text{MeV}_{[\text{Dudek, et al., PRD86,034031(2012)]}}, \sigma$ resonance $m_{\pi} = 391 \text{MeV}_{[\text{Briceno,PRL118,022002(2017)]}}, \sigma$ bound state.

• PKU + crossing using BNR relation: [X. L. Gao, Z.H.Guo, ZX, ZZ, PRD 105 (2022)9,094002]

at $m_{\pi} = 236 \text{MeV}: m_{\sigma} = 610 \pm 11 \text{MeV}, \Gamma_{\sigma} = 327 \pm 8 \text{MeV};$

at $m_{\pi} = 391 \text{MeV}$: $m_{bound} = 774 \pm 6 \text{MeV}$, $m_{virtual} = 716 \pm 28 \text{MeV}$

• ChPT+unitarization: [Hanhart, et al. PRL100,152001(2008)]

• Roy equation: [X.H. Cao, et al., PRD108(2023)3,034009] at $m_{\pi} = 236$ MeV: $\sqrt{s_{\sigma}} = 543 - i250$ MeV at $m_{\pi} = 391$ MeV: $m_{bound} = 759$ MeV, $\sqrt{s_{sub}} = (269 - i211)$ MeV Propose the pole trajectory:

• More recent Lattice result + K matrix [Rodas et al.,

PRD108,034513(2023)].

at $m_{\pi} = 330 \text{MeV}$: σ is a bound state.

at $m_{\pi} = 283$ MeV: large statistical error, could be a virtual state or resonance.

The proposed explanation of the subthreshold resonance at $m_{\pi} = 391 \text{MeV}$:

The reason for the appearence of the subthreshold resonance poles:

- When the VS move through the threshold and becomes a bound state, the branch point of the l.h.c. move right.
- From the positivity of the residue of the bound state pole, it can be proved that near the branch point *S*(*s*) tends to negative infinty.
- For small m_{π} , there are two zero point of S(s) below threshold. For larger m_{π} , S(s) become smaller, no zero points \rightarrow resonance pole.

INTRODUCTION: O(N) SIGMA MODEL

• Lagrangian: $a = 1, \ldots, N$

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi_a \partial^{\mu} \phi_a - \frac{1}{2} \mu_0^2 \phi_a \phi_a - \frac{\lambda_0}{8N} (\phi_a \phi_a)^2 + \alpha \phi_N,$$

• Classical level: when $\alpha = 0$, No explicit breaking $\mu^2 > 0$, no SSB; $\mu^2 < 0$, SSB. $\phi^2 = -2\mu^2 N/\lambda \equiv \langle \phi \rangle^2, \langle \phi \rangle > 0$

• Classical level: when $\alpha \neq 0$, vacuum solution

$$(-\mu_0^2 - \frac{\lambda_0}{4N} |\phi|^2) \phi_a = 0 \Rightarrow \phi_a = 0, \text{ for } a = 1, \dots, N-1$$

 $(-\mu_0^2 - \frac{\lambda_0}{4N} |\phi|^2) \phi_N + \alpha = 0$

 $\langle \phi_N \rangle \neq 0 \sim \mathcal{O}(N^{1/2}), \ \alpha \sim \mathcal{O}(N^{1/2}).$

• To count the N order: Introduce an auxiliary field χ ,

 $[{\rm Coleman, et.al., PRD10, 2491}]$

$$\begin{split} \mathcal{L} \to & \mathcal{L} + \frac{N}{2\lambda_0} \left(\chi - \frac{\lambda_0}{2N} \phi_a \phi_a - \mu_0^2 \right)^2 \\ &= & \frac{1}{2} \partial_\mu \phi_a \partial^\mu \phi_a + \alpha \phi_N + \frac{N}{2\lambda_0} \chi^2 - \frac{1}{2} \chi \phi_a \phi_a - \frac{N \mu_0^2}{\lambda_0} \chi \,, \end{split}$$

Integrating out χ , it come back to the previous path integral.

• After renormalization, effective potential:

$$V(\phi,\chi) = -\alpha\phi_N + \frac{1}{2}\chi\phi^2 + \frac{N\mu^2(M)}{\lambda(M)}\chi - \frac{N}{64\pi^2}\chi^2\left(\log\frac{M^2}{\chi} + \frac{1}{2}\right)\,,$$

$$\begin{split} \frac{\partial V}{\partial \chi} &= 0 \, \text{ and } \, \frac{\partial V}{\partial \phi_a} = 0 \\ & \frac{\partial V}{\partial \chi} = 0 \Rightarrow \quad \phi_a \phi_a = \frac{2N}{\lambda} \chi - \frac{2N\mu^2}{\lambda} - \frac{N}{16\pi^2} \chi \log \frac{\chi}{M^2} \,, \\ & \frac{\partial V}{\partial \phi_a} = 0 \Rightarrow \quad \chi \phi_a = 0 \, (a < N), \quad \chi \phi_N - \alpha = 0 \,. \end{split}$$

•
$$\pi$$
 mass $m_{\pi}^2 = \chi$.

• For N = 4, compared with PCAC: $\partial^{\mu}A^{a}_{\mu} = m_{\pi}^{2}f_{\pi}\pi^{a}$, and with explicit SSB, $\partial^{\mu}A^{a}_{\mu} = \alpha\pi^{a}$. From $\chi = \frac{\alpha}{\phi_{N}} = m_{\pi}^{2}$, we find

$$\langle \phi_N \rangle = f_\pi \sim \mathcal{O}(N^{1/2}).$$

 $\mathbb{B}: O(N)$ model leading order $\pi\pi$ amplitude [Coleman,et.al.,PRD10,2491]

 $\pi\pi$ amplitude to the leading 1/N order: (σ , τ have mixing)

$$\mathcal{J}_{\pi_a\pi_b\to\pi_c\pi_d} = iD_{\tau\tau}(s)\delta_{ab}\delta_{cd} + iD_{\tau\tau}(t)\delta_{ac}\delta_{bd} + iD_{\tau\tau}(u)\delta_{ad}\delta_{bc}, \qquad (1)$$

$$D^{-1}(p^2) = -i \begin{pmatrix} p^2 - m_\pi^2 & -f_\pi \\ -f_\pi & N/\lambda_0 + NB_0(p^2, m_\pi) \end{pmatrix},$$
(2)

$$\tau \equiv \chi - \langle \chi \rangle, \quad B_0(p^2, m_\pi) = \frac{-i}{2} \int \frac{\mathrm{d}^4 \ell}{(2\pi)^4} \frac{1}{(\ell^2 - m_\pi^2 + i\epsilon)((\ell + p)^2 - m_\pi^2 + i\epsilon)}$$

After projection to IJ = 00 channel, leading $\mathcal{O}(N)$ amplitude \mathcal{T}_{00}^{LO} (define M such that $1/\lambda(M) = 0$), only s channel contributes

$$\begin{aligned} \mathcal{T}_{00}^{LO}(s) &= \frac{iND_{\tau\tau}(s)}{32\pi} = \frac{N}{32\pi} \mathcal{A}(s), \\ \mathcal{A}(s) &= \frac{m_{\pi}^2 - s}{(s - m_{\pi}^2)B(s, m_{\pi}, M) - f_{\pi}^2/N}, \\ B(s, m_{\pi}, M) &= \frac{1}{32\pi^2} \left(1 + \rho(s)\log\frac{\rho(s) - 1}{\rho(s) + 1} - \log\frac{m_{\pi}^2}{M^2} \right), \end{aligned}$$

• Adler zero: $s_A = m_\pi^2$.

• σ pole : solve

$$(s - m_{\pi}^2)B^{II}(s, m_{\pi}, M) - f_{\pi}^2/N = 0.$$

No crossing symmetry.

 m_π dependence of σ at leading 1/N

Fix f_{π} , M, changing m_{π} or α ,

- Adjust the $M \sim 550 MeV$, at $m_{\pi} = 139 MeV$, $\sqrt{s_{\sigma}} = 356 i148 MeV$.
- As m_{π} increases, $\sqrt{s_{\sigma}}$ moves \rightarrow real axis \rightarrow two virtual state poles \rightarrow one virtual move left, the other move right $\rightarrow (m_c \simeq 337 \,\text{MeV})$ one virtual, one bound
- No crossing symmetry: $\sigma \rightarrow$ bound state, no l.h.c brach point $\rightarrow s = 4m_{\pi}^2 m_{\sigma}^2$.
- Direct adding t and u channel contribution: violate unitarity.
- Unitarization method: IAM or K matrix, No control of the spurious poles, we resort to N/D.

$\rm N/D$: Unitarity with partial recovery of crossing

N/D Method: Basic ideas

- T matrix: $T(s) = \frac{N(s)}{D(s)}$: N(s) only has left-hand cut, D only has right-hand cut.
- Since $\operatorname{Im}_R \mathcal{T}^{-1} = -\rho$, we have

$$Im_R D(s) = -\rho(s)N(s), \qquad (3)$$

$$Im_L N(s) = D(s)Im_L \mathcal{T}(s). \qquad (4)$$

• Write down the dispersion relation of N(s) and D(s) (twice subtracted)

$$D(s) = \frac{s - s_A}{s_0 - s_A} + g_D \frac{s - s_0}{s_A - s_0} - \frac{(s - s_0)(s - s_A)}{\pi} \int_R \frac{\rho(s')N(s')}{(s' - s)(s' - s_0)(s' - s_A)} ds',$$
(5)
$$N(s) = b_0 \frac{s - s_A}{s_0 - s_A} + g_N \frac{s - s_0}{s_A - s_0} + \frac{(s - s_0)(s - s_A)}{\pi} \int_L \frac{D(s')\operatorname{Im}_L \mathcal{T}(s')}{(s' - s)(s' - s_0)(s' - s_A)} ds',$$
(6)

- Using the O(N) result Im_LT(s): from next to leading 1/N order.
- Subtraction, $s_0 = 4m_\pi^2$, $s_A = m_\pi^2$, $D(s_0) = 1$: require \mathcal{T} to recover O(N) result at the leading 1/N order

$$b_0 = \mathcal{T}_{00}(s_0) = \frac{N-1}{32\pi} \mathcal{R}^{LO}(s_0) + I_{tu}(s_0), \qquad (7)$$

$$g_D = \frac{32\pi f_\pi^2 b_0}{N(s_0 - s_A)}, \quad \frac{g_N}{g_D} = \operatorname{Re} I_{tu}(s_A).$$
 (8)

- When $m_{\pi} > m_c$, we require $D(m_{\sigma}^2) = 0$, for the sigma pole to be consistent with the branch point of the left hand cut.
- Solve the integral equation numerically.

 As m_π increases:
 σ approaches the real axis→ two virtual states, →
 {
 one moving right → first sheet bound state
 one moving left
 l.h.c. → another virtual state
 }
 hit → resonant poles

 The VSIII is generated when the Adler zero hit the left-hand
 cut

σ pole trajectory with varying m_π

Physical-sheet S-matrix below threshold

- The left graph ($m_{\pi} = 207 \text{ MeV}$) : two virtual states in the near threshold region and one additional virtual state pole generated close to the left-hand cut.
- The middle graph ($m_{\pi} = 283 \text{ MeV}$) : one bound state with two virtual states.
- The right graph (m_π = 391 MeV): two virtual state poles have become a pair of resonance poles.

Temperature dependence at leading 1/N

- It is well known: under high temperature, chiral symmetry recovers.[R. D. Pisarski and F. Wilczek, PRD 29,338(1984);A. Bazavov et al., PRD85,054503(2012)] $\lim_{T\to\infty} v(T) \to 0$
- It is expected that $m_{\sigma} \rightarrow m_{\pi}$ at high temperature.
- ChPT: intrincically in broken phase, break down at high temperature, $T \sim f_{\pi}$.
- In O(N) model: v.e.v. v(T) evolves with $T_{,[J.O.Anderson, et. al. PRD70,116007]}$

- No explicit breaking $\alpha = 0$:at $T < T_c \sim 160$ MeV, $m_{\pi}(T) = 0$, $v(T) \neq 0$ SSB; at $T > T_c$, v(T) = 0, $m_{\pi}(T) \neq 0$.
- With $\alpha \neq 0$, $v(T) \rightarrow 0$.

σ pole trajectory with T

At the leading 1/N order, N = 4:

From left to right, $m_{\pi}(0)=200$, 139 and 80 MeV respectively.

• Scattering amplitude at T in the center of mass frame.

$$\begin{split} \mathcal{T}_{00}^{T}(s) &= -\frac{1}{32\pi} \frac{s - m_{\pi}^{2}(T)}{\left(s - m_{\pi}^{2}(T)\right) B^{T}(s, m_{\pi}(T), M) - v^{2}(T)/N} \\ B^{T}(s, m_{\pi}(T), M) &= B\left(s, m_{\pi}(T), M\right) + B^{T\neq 0}\left(s, m_{\pi}(T)\right) , \\ B^{T\neq 0}\left(s, m_{\pi}(T)\right) &= \int_{0}^{\infty} \frac{\mathrm{d}k k^{2}}{8\pi^{2} \omega_{k}^{2}} n_{B}(\omega_{k}) \left(\frac{1}{E + 2\omega_{k}} - \frac{1}{E - 2\omega_{k}}\right) , \end{split}$$

• σ resonance on the second sheet, \rightarrow virtual state, \rightarrow bound state \rightarrow tends to m_{π} .

N/D WITH TEMPERATURE

• Unitarity with two particle intermediate states for IJ = 00 channel,

$$\operatorname{Im} \mathcal{T}^{T}(s) = \rho^{T}(s) \left| \mathcal{T}^{T} \right|^{2}, \qquad (9)$$

- Lorentz symmetry is broken by the temperature: Center of mass system in *s* channel is different from *t* channel crossing is also broken.
- IJ = 00 thermal amplitude:

$$\begin{aligned} \mathcal{T}_{00}^{T}(s) &= -\frac{1}{32\pi} \frac{s - m_{\pi}^{2}(T)}{(s - m_{\pi}^{2}(T)) \ B^{T}(s, m_{\pi}(T), M) - v^{2}(T)/N}, \\ B^{T}(s, m_{\pi}(T), M) &= B(s, m_{\pi}(T), M) + B^{T \neq 0}(s, m_{\pi}(T)), \\ B^{T \neq 0}(s, m_{\pi}(T)) &= \int_{0}^{\infty} \frac{\mathrm{d}k \ k^{2}}{8\pi^{2} \omega_{k}^{2}} n_{B}(\omega_{k}) \left(\frac{1}{E + 2\omega_{k}} - \frac{1}{E - 2\omega_{k}}\right), \end{aligned}$$

N/D can be done: substitute the corresponding temperature dependent amplitudes.

N/D with temperature: σ trajectory

• $T = 0, m_{\pi} = 139 \text{MeV}.$

- T = 60 MeV, VSIII generated from the l.h.c.
- σ resonance \rightarrow virtual states (I, II), (T=124MeV)
- VS1 \rightarrow BS (T=137MeV),
- T = 140 MeV, VSII meets VSIII \rightarrow subthreshold resonance.

•
$$m_{\sigma}^2 \to m_{\pi}^2$$

- The σ ($f_0(500)$) pole trajectory with varying m_{π} , can be qualitatively reproduced by the N/D improved O(N) linear sigma model.
- A pair of subthreshold pole is generated with crossing symmetry taken into account for large m_π.
- The $f_0(500)$ could be the σ in the linear σ model.
- The pole trajectory with varying temperature is similar to the one with varying m_π.

Vacuum structure: m_{π} dependence

Solve $\chi(\phi)$, insert into $V(\phi, \chi)$, to obtain the effective potential $V_{e\!f\!f}(\phi)$.

$$\begin{split} V(\phi,\chi) &= -\alpha\phi_N + \frac{1}{2}\chi\phi^2 + \frac{N\mu^2(M)}{\lambda(M)}\chi - \frac{N}{64\pi^2}\chi^2\left(\log\frac{M^2}{\chi} + \frac{1}{2}\right)\,,\\ \frac{\partial V}{\partial\chi} &= 0 \Rightarrow \quad \phi^2 = f_\pi^2 + \frac{N}{16\pi^2}\left(m_\pi^2\log\frac{m_\pi^2}{M^2} - \chi\log\frac{\chi}{M^2}\right)\,,\\ \frac{\partial V}{\partial\phi_a} &= 0 \Rightarrow \quad \chi\phi_a = 0 \ (a < N), \quad \chi\phi_N - \alpha = 0\,. \end{split}$$

Fix f_{π} , M, changing m_{π} or α ,

- Two solutions branches: separated at χ_b
- Left one: With Chiral SSB in the Chiral limit, determine f_{π} (fixed), m_{π} .
- Right one : No chiral SSB in the Chiral limit.
- V become complex for $|\phi|^2 > \phi_b^2$: the system not stable. $\phi^2 < \phi_{min}^2$.

Two branches of the vacuum

- $m_{\pi}^2 < \chi_b \sim 333$ MeV, solution I: the local minimum on the first branch, false vacuum. There is a tachyon.
- Global minimum: Solution II on the second branch.
- As m_{π} increases, solution I moves towards the second branch.
- $m_{\pi}^2 > \chi_b$, no local minimum on the first branch. Solution I moves on the second branch \rightarrow saddle point.
- $m_{\pi} > (32\pi^2 f_{\pi}^2/(Ny_0))^{1/2} \sim 680$ MeV: solution I \leftrightarrow Solution II.

VACUUM STRUCTURE: FINITE TEMPERATURE

- T increases: $|\phi_b|$ and $|\phi_{min}| \rightarrow$ smaller.
- T_f : there is no solution for the gap equations. $T_f \sim 314 \text{MeV}$
- T_b : $\phi_b = 0$.
- The two branches: Effective potential V get closer.
- $T_c < T_f < T_b$. $T > T_f$, no vacuum, the system is already unstable. Difference $T_b - T_f \sim \text{keV}$.

At high temperature: the Solution I will move to the second branch, becoming a saddle point.

TACHYON: m_{π} and T dependence

There could be a tachyon for solution I.

- Plays a role of another cutoff of the theory: $-m_t^2 \ll s \ll s + m_t^2$. ($m_t \sim 1.1$ GeV for physical mass, T = 0) [R. S. Chivukula and M. Golden, PLB 267, 233]
- $s = -m_t^2 < 0$: m_t decreases with temperature and m_{π} .
- Tachyon has positive residue in the $\sigma \sigma$ propogator, similar to bound state.
- Tachyon \rightarrow bound state transition \leftrightarrow the point of exchanging the two solution.

- σ pole trojectory in leading O(N) and N/D modified O(N): with varying m_{π} and temperature.
- Subthreshold resonance pole generation: After crossing symmtry partially recovered.
- Vacuum structure: with varying m_{π} and temperture. Phenominological favored one is the first branch.

m_{π} (MeV)	139	239	283	330	391
O(N) (LO)	356 - i148	448 - i57	558(VS I)	660(VS I)	780(BS)
			438(VS II)	451(VS II)	489(VS II)
N/D modified $O(N)$	348 - i180	469(BS)	527(BS)	585(BS)	658(BS)
		426(VS II)	422(VS II)	396 - i28	466 - i77
		168(VS III)	264(VS III)	(Sub. pole)	(Sub. pole)
lattice + K -matrix		$(487 \sim 809)$ $-i136 \sim 304)[49, 51]$	$(476 \sim 579)$ $-i0 \sim 129)[51]$	$657^{+3}_{-4}(BS)[51]$	$758\pm4(\mathrm{BS})[49]$
lattice + Roy Eq.		$\begin{array}{l} (416 \sim 644 \\ -i176 \sim 307) [57, 58] \end{array}$	$522 \sim 562$ (VS I&II)[58] ^a		$\begin{array}{c} 759^{+7}_{-16}(\mathrm{BS})[57]\\ 269^{+40}_{-25}-i211^{+26}_{-23}\\ (\mathrm{Sub.\ pole})[57] \end{array}$

^a Additionally, there is a third though "noisy" pole close to the left-hand cut on the second sheet, which could correspond to the virtual state pole VS III appearing in the N/D modified O(N) model analysis. However, a definitive conclusion about whether the σ is a virtual state or a subthreshold resonance at this m_{π} value cannot be made, owing to large statistical uncertainties in the results, see Ref. [58] for details.

TABLE I. Comparison of the pole positions $(\sqrt{s_{\text{pole}}})$ for O(N) model, lattice + K-matrix [49, 51] and lattice + Roy equation [57, 58]. When $m_{\pi} = 391$ MeV, the subtreshold (Sub.) pole close to the left-hand cut in Ref. [57] can also be found (qualitatively) within the N/D modified O(N) model discussed in this work.