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1. Introduction: Particles vs. Strings

Quantum theory and special theory of relativity =
Quantum Field Theory (QFT): the fundamental theory
of elementary particles (the Standard Model).

Basic assumption: point particles with local
interactions:
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e The interactions are arbitrary

e The loop corrections are mostly divergent

e The gauge principle (“symmetry dictates
interaction”)

e Renormalization




This leads to the SU(3), ©® SU(2), ® U(1), Standard
Model which is the most precise theory of elementary
particle physics.

However it left a lot of questions unanswered.

e The family problem (why 37)
e Why the specific particle spectrum in each family?

e Why the 19 free parameters take the observed
values?




e Gravity is not renormalizable. No quantum gravity

The string jump

point particles = 1-dimensional string with “local”
interaction:




Why strings?
e May explain the structure of the Standard Model

e Natural step in unification: GUT, higher dimensions
(Kaluza-Klein) and Supersymmetry

e Natural step to consider the extension of the point
particle idea: unification of all particles

e Gravity is included and a finite theory of quantum
gravity




2. String Perturbation Theory

Amplitudes can be easily constructed. We have

DXDg Y
Ajy by k) = 3 X=X
iren (K1 5 ) ~ / Vol.(Diff x Weyl)

XH/(PO’@(dGiJQ(O'i))l/Q V}Z(/{Z,O'Z)
1=1

Vi(ko) is a vertex operator describing a specific
particle.







3. Superstring Theory: The 3 Different Formalisms

e quantization only in light-cone gauge
e space-time super-symmetric string theory
e computation of tree amplitude is quite easy

e It has never been used for computing multi-particle
and higher-loop amplitudes (dependence on insertion
points)




e Spacetime supersymmetric only after GSO proj.

e Higher loops: summation over spin structure and
modular invariance.

e Applied to multi-particle, higher-loop (2-loop, see
below) and topological string theory amplitudes.
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e Lorentz covariant and manifestly spacetime
supersymmetric (no summation over spin structures).

e All integer dimensional free fields on (ordinary)
Riemann surface.

e Shortcoming: pure spinor constraints and very
complicated composite b fields.
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4. String Amplitudes: Some Explicit Results
The n (NS, J/\fg’) particle amplitudes:

i (k€)= / TT d2([eVs ) o, b, ) V2] (2, Ky )
1=4

n

<[V (28, ks, e3) T (V] (20, ki )
1=4
X (right-moving part)),

To compute the 4-particle we do need the right-
moving part to get the full amplitude.
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Explicitly:

iAg(ki, €;, g@') 471 ge KS(kia e’i)f(3(ki7 g’i)

20 N\3 -
1Ay(ki, €, €) = ¢ X m4(oz) K (ki €;) K (ki €;)
L P ETr=)

T'(1+ %T(1 4+ 2HT(1 4 2v)

Factorization gives ¢ = 1. See Polchinski’s book (vol.
2). o =2. K3(k;,¢;) and K (k;, ¢;) are kinematic factors
and s, ¢, u are Mandelstam variables: s = —(k;+ky)?, - -
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One-loop amplitudes: the massless 4-particle case

./41 loop 1—loopK kia z /
J4 (Fi, € Im7)?

O1(z5|7) —
: H 001(0|7) P (ImT

r<s

dzzz-
/ H ImT

Oé,kfr"ks

(. ))

You may fix one z; to an arbitrary point.

15



16



One-loop amplitudes: the 3-particle case—2
massless and 1 massive

A ke b) = o sk [ it [ Hdzz@

XH @1(ZTS‘T) N L (Imz )2 o krkg
90,(0]7) P \Imr- "

r<s

1—loop
gl—loop o 9ar I
4 47 /!

by using factorization or explicit computation.
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One-loop amplitudes: the 2-particle case—2 massive
tensors

oo oo ~ d?r
At Pk, E) = gt pKMMKMM/ /d2z
F

(Im7)°
O1(z|7) 7 D\ [
—(1
. 001(0|7) P (ImT( mz)
1—loop
1—loop 9y v
93 N 4ol
Kym = _6au11/1p1(k>&mylpl(k/) _I_UW(k)UW(k/)

Modular invariant only for k- k' = —k> = 2,

a
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The 2-loop 4-particle amplitude:

~ 1= Z’L Z]
A~ [ e L H el

X|8(z122 + 2324) + t(2124 + 2223) + u(2123 + Z2Z4)|2

d*a;d?*a,;d%ay T _ /dQZlszg\zl — 29/?
y(21)y(z2)?
(X (21) X (2))) = G(zi, 25) = — In|E(z; 2;) |

+27(Im Q) ; (Im/ jw[) (Im/ ij)

dv,, =

aijaipar|®
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A better but equivalent form derived by D’ Hoker and
Phong (hep-th/0501197):

KK [ []l;<sdul’
2274 | (det Im 2)°

s /4 Vs[Pexp(— > ki k; Gz, 2)))
2 i< j

Vs = +(k1— ko) - (ks — k) A(z1,22)A(23, 24) + -

o (2122 + 2324) + t(2124 + 2223) + u(2123 + 2224)

A€, k;)

Az, w)

w1(2)wa(w) — wr(w)we(2)
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5. Factorization and Unitarity

The unitarity relation at 1-loop:
A(s +1ie) — A(s — ie)
i [ dPk o [ dPks 2
= 2 276 (k
o1 | (@myp 20 / (2m)p 2702
x (2267 (ki + ko + k) | A" (ky; ko; k) |2

The factor of 2 is due to the propagation of
intermediate identical particles.
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In D = 10 superstring theory, the difficult part is to
compute |A"°(k; ko; k)|°. By summing over all possible
intermediate states, we have:

Z |A5\2€f*!2(k1;kz;k) — (QM)2 KMMKMM

all intermediate states
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Here we used the following:

ks o
| G MDAk — ki)

1 1 del [ 2 2
= 3k [ s ROk — ki)

deQ W,V 2 o 2
[ Gy MRSk — k)

1
= yp-p F - DEE)
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) / - k16 (k7)0((k — ki)?),

(2m)"
etc. By using this result we have:
1—loop (O/)D/2 (ZW)D _ (gM)2 1—-loop __ gg
MM (om)a'kk (wa)? 2 ' M 2m2(a/)?’
1—loop 92 1—loop 292
93 o 71.2(04/)57 94 o 71.2(0/)5

Factorization and Unitarity are also true at 2 loops
and can be used to determine the 2-loop overall
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coefficient:

Crr =
In period matrix language:

1 d37|?
K ki) 1
oy 1 (his i) / (det Tm)>

x/Hszi\Sys\z [ [exp{—Fki- k(X ()X (2)))}

i<

Air = Crg
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and the overall coefficient is

Crr=Cypt = G
U 0n62s T (2ra)7

which agrees with D’Hoker, Gutperle and Phong
(hep-th/0501197) by taking into account the different
convention for d°z (we use d*z = dxzdy for z = x + iy).

The above result also agrees with S-duality.
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6. The Frontier: Superstring Multiloop Amplitudes?

In Berkovits’ pure spinor formalism:

e Basic variables: X"(z,z), 0%(z) and p,(z) (conjugate
to 0(z)). (For NRS: X*(z,z), ¥*(z), b(z), ¢(z) and
B(z), v(2).)

e ALso introducing bosonic pure spinor ghost variable
A* (and their conjugates w,,):

A%y 5)\5 =0
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The BRST operator

Q = 7{/\%

is used to impose the fermionic constraints:

1 1
dy = Po — 5(7“9)04 {6’Xﬂ + 109%0} =0

To insure Lorentz covariance, w, only appears in:

1
J = a>\a7 Nmn — FWal'mn - )\B
(& Qw (Ymn ) B

30



Many checks have be done. The physical vertex
operators and (manifestly supersymmetric covariant)
tree amplitudes are shown to be in agreement with
other formalisms. A quantizable c-model action for
the superstring in curved backgrounds (with Ramond-
Ramond flux). Infinite set of nonlocal (classically
and quantum) conserved charges. = Exactly solvable
theory for superstring theory on AdSs; x S°. AdS/CFT
correspondence, ....
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Berkovits, hep-th/0406055

¢ vanishing of the m = 0 N-particle amplitudes N < 3
e 1-loop 4-particle amplitude

e vanishing of the multi-loop 4-particle leading
contribution (absence of the R* term)

e the complete multi-loop 4-particle amplitude

But we have doubts about these results. 0 even for
4-particle amplitude?
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Key points

e Picture changing operators:

— “picture-lowering” operator: Y, = CQHO‘CS(C[&)\B)
— “picture-raising’ operator:
1

ZB — ian )\/ymnd 5(quNpq), ZJ — )\adaé(J)

e A construction of the “b-ghost fields”:

1Q,0(2)} = T'(2)
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{Q,bp(z,w)} = T(2)Zp(w)
Schematicaly, Berkovits got:

bp = B(ddIl +dNO§+ NN + NIII)§(BN)
+BB(dddd + ddNTI + NNIIII + NNdo9)0§(BN)
+BBB(ddddN + ddNNII)9*5(BN) - --
+BBBB(ddddNN)9*5(BN)

~

bp(z,w) =bp(z) + T (2) /w du By, 0N (u)6(BN (u))
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¢ Integration over 6“ and p, requires a 16 + 16g zero
modes to give a non-vanishing result.

39—3

./4 — /dQTl...d27393<‘ H/dQUPﬂp(UP)EBP(UP,ZP)
P=1
10g
x |l Zs,(zp)
P=3g—1

X HZJ(UR)HYCI(?/I) & H/thTUT(tT) )
R—1 I=1 T—1
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. 1
U = e’k'X(aeo‘Aa(G)+HmAm(«9)+d&W“(9)+§Nm”}“mn(9))

e Counting of the d, zero modes:

— The massless vertex operator can give at most 1
zero modes of p,,.

— Each picture-raising operator Zp gives at most 1
zero modes of p,,.

— Each “b-ghost fields” can give at most 4 zero
modes of p,, but there are other restrictions
(the “engineering dimension” and conformal
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dimension).
Two possible methods to compute the g-loop 4-
particle amplitude:
1) Explicit calculation at ¢ = 2,3 to see a pattern;

2) Guess a formula and fix it by factorization

in the dividing degeneration limit (incorrect in hep-
th/0503001).

We hope that there do exist a nice formula for the
massless 4-particle amplitude and its 3-particle and
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2-particle factorization limits.

The crispness and precision of standard string theory
should not stand just around g = 2.
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