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I. Introduction: (Backgrounds and
Motivations, Summary of Previous Results)

Bekenstein-Hawking formula:

S =
A

4
, T =

κ

2π
(1)

Statistical, quantum, or dynamic origin of
black hole entropy ?!

• Statistical origin of the black hole entropy
— Brick Wall Method (BWM) by ’t Hooft.

Φ(x) = 0 for
{ r ≥ L ,

r ≤ rh + ε .
(2)

In this model, the black hole entropy is
identified with the statistical-mechanical
entropy of a thermal gas of quantum field
excitations outside the event horizon.

• Wide applications of BWM:
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1) Various static spherically symmetric black
holes: (Schwarzschild, Reissner-Nordström (RN),
dilaton, axion, dyon, Schwarzschild-de Sitter,
...) for all known species of particles: scalar,
spinor, electromagnetic and arbitrary spin fields,
etc.

S = gs
15 + (−1)2s

16

[ Ah

48πε2
+

C

45
ln

(Λ
ε

)]
(3)

C = 1 for Schwarzschild

C = 1− 3Q2

2r2h
for RN

C = 1 +
3(Q2 + P2)

2(r2h −D2)
for GM dilaton

C = 1− 3Q2

4r2h
e−2φ0 for GHS dilaton

C = 1− 3Q2

2r2h
e−2αφ0 for GH dilaton

However all these calculations did not con-
sider the contribution of the subleading term
from the coupling of the spin of particles with
the rotation of black holes.
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2) Rotating axisymmetric black holes: En-
tropy of scalar fields for Kerr, Kerr-Newman,
Kerr-Sen (EMDA), Klein-Klauza black hole.

Entropy of Dirac spinor fields for Kerr-
Newman black hole.

Liu & Zhao, PRD 61 (2000) 063003.

Recently much attention has been paid to
the contribution to the quantum entropies of
black holes due to higher spin fields.

Entropy of Kerr black hole

S

gs
=

15 + (−1)2s

16

{ Ah

48πε2
+

1

45

[
1− 3Q2

4r2h

·
(
1 +

r2h + a2

arh
arctan (

a

rh
)
)]

ln
(Λ

ε

)}

+
3 + (−1)2s

4
· s2

12
C′ln

(Λ
ε

)
(4)

due to massless Dirac, electromagnetic,
Jing & Yan, PRD 63 (2001) 084028

and linearized gravitational fields,
Jing & Yan, PRD 64 (2001) 064015
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C′ = 1− r2h + a2

arh
arctan (

a

rh
)

as well as Rarita-Schwinger field,
Jing, CPL 20 (2001) 459 ;
López-Ortega, GRG 35 (2003) 59

C′ =
a2 − 5r2h

4r2h
+

5r2h + a2

4r2h

·r
2
h + a2

arh
arctan (

a

rh
)

Jing & Yan showed that the contribution
of the spins to the logarithmic terms shall
decrease the entropy of a Kerr black hole.
López-Ortega pointed out that the entropy
is increased by the logarithmic terms relating
to the square of spins of particles.

How the spins of the quantum field changes
the quantum entropy of a rotating black hole
is an interesting question and deserves to be
further clarified.
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• Drawbacks of original BWM:

a) little mass approximation;
b) neglecting logarithm term;
c) taking the L3 term as a contribution of
the vacuum surrounding the black hole;
d) impossible to apply to the case of black
holes with two horizons.

Improved thin-layer BWM:

By taking only the entropy of a thin layer near
the event horizon of a black hole into account.

The Kerr-de Sitter black hole has a cosmo-
logical horizon and a black hole event horizon,
it is a thermal nonequilibrium system that the
temperature of the two horizons is different
from one another. In principle, each horizon
can be treated as an isolated thermodynami-
cal system.
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Although the total system consisted of the
two horizons is thermal nonequilibrium, the
thin layer near the horizon can be taken as a
local thermal equilibrium system. The quan-
tum entropy of such a black hole can be cal-
culated via this improved BWM which means
that the entropy comes from a thin layer near
the horizon, the entropy is then taken the sum
of the contribution from each horizon of the
considered spacetime.

Two main motivations for studying black
holes with a cosmological constant:

(a) dS/CFT correspondence;
(b) Recent astrophysical observations of type

Ia supernovae which indicates a positive cos-
mological constant. A realistic black hole may
be in an asymptotically de Sitter (nonflat)
space.
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It becomes important to investigate the ef-
fect of the cosmological constant on the en-
tropies of these kinds of black holes.

In this study, the entropies of Kerr-de Sit-
ter black holes due to higher spin fields are
taken up for consideration on which the ef-
fects of the cosmological constant and that
of the spins of particles are emphasized.

The purpose is to deduce expressions of
the entropy of Kerr-de Sitter black holes aris-
ing from arbitrary spin fields by using the im-
proved thin-layer BWM and to investigate ef-
fects of the spins of particles and the cosmo-
logical constant on the statistical entropy.
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II. Perturbations of spin fields
in the Kerr-de Sitter space

The line element Kerr-de Sitter spacetime
can be written in a Boyer-Lindquist type of
coordinate system as

ds2 = − ∆r

χ2Σ

(
dt− a sin2 θdϕ

)2

+
∆θ sin2 θ

χ2Σ

[
adt− (r2 + a2)dϕ

]2

+Σ
(dr2

∆r
+

dθ2

∆θ

)
, (5)

where

∆r = (r2 + a2)
(
1− r2

l2

)
− 2Mr ,

∆θ = 1 +
a2

l2
cos2 θ , χ = 1 +

a2

l2
,

Σ = ρρ∗ = r2 + a2 cos2 θ ,

ρ = r + ia cos θ , ρ∗ = r − ia cos θ .

Cosmological constant, metric determinant,
Ricci scalar, nonvanishing Weyl scalar:

Λ = 3/l2;
√−g = Σsin θ/χ2;

R = 4Λ = 12/l2; Ψ2 = −M/ρ∗3.
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Null-tetrad vectors (Newman-Penrose for-
malism)

lµ =
1

∆r

[
(r2 + a2)χ,∆r,0, aχ

]
,

nµ =
1

2Σ

[
(r2 + a2)χ,−∆r,0, aχ

]
,

mµ =
1√

2∆θρ

(
iχa sin θ,0,∆θ,

iχ

sin θ

)
,

mµ =
1√

2∆θρ
∗
(
− iχa sin θ,0,∆θ,

−iχ

sin θ

)
,

nonvanishing spin coefficients:

ρ̃ =
−1

ρ∗
, µ =

−∆r

2Σρ∗
, γ = µ +

∆′
r

4Σ
,

τ =
−ia

√
∆θ sin θ√
2Σ

, π =
ia
√

∆θ sin θ√
2ρ∗2

, (6)

β =

√
∆θ

2
√

2ρ

(
cot θ +

∆′
θ

2∆θ

)
, α = π − β∗ ,

where a prime denotes the partial differential
with respect to its argument.
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Directional derivatives: (∼ ei(mϕ−ωt))

D = D0 , ∆ =
−∆r

2Σ
D†0 ,

δ =

√
∆θ√
2ρ
L†0 , δ =

√
∆θ√
2ρ∗

L0 , (7)

where

Dn =
∂

∂r
− iχK1

∆r
+ n

∆′
r

∆r
,

D†n =
∂

∂r
+

iχK1

∆r
+ n

∆′
r

∆r
,

Ln =
∂

∂θ
− χK2

∆θ
+ n

(
cot θ +

∆′
θ

2∆θ

)
,

L†n =
∂

∂θ
+

χK2

∆θ
+ n

(
cot θ +

∆′
θ

2∆θ

)
,

K1 = ω(r2 + a2)−ma ,

K2 = aω sin θ − m

sin θ
.
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It can be shown that perturbation master
equations in the Kerr-de Sitter geometry are
separable for massless Klein-Gordon scalar
(s = 0), Weyl neutrino (s = 1/2), Maxwell
electromagnetic (s = 1), Rarita-Schwinger
gravitino (s = 3/2), and linearized Einstein
gravitational (s = 2) fields. The Teukolsky’s
master equations controlling the perturba-
tions of Kerr-de Sitter black hole for mass-
less arbitrary spin s = 1/2,1,3/2, and 2 fields
reads

{
[D − (2s− 1)ε + ε∗ − 2sρ̃− ρ̃∗](∆− 2sγ

+µ)− [δ − (2s− 1)β − α∗ − 2sτ + π∗](δ
−2sα + π)− (s− 1)(2s− 1)Ψ2

}
Φs = 0 ,

(8)

for spin weight s = 1/2,1,3/2,2 and
{
[∆ + (2s− 1)γ − γ∗ + 2sµ + µ∗](D + 2sε

−ρ̃)− [δ + (2s− 1)α + β∗ + 2sπ − τ∗](δ
+2sβ − τ)− (s− 1)(2s− 1)Ψ2

}
Φ−s = 0 ,

(9)

for spin weight s = −1/2,−1,−3/2,−2.
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Eqs. (8) and (9) are also valid when s =
0, they coincide with the massless (minimal
conformal coupling) Klein-Gordon scalar field
equation

1√−g

∂

∂xµ

(√−ggµν ∂

∂xν
Φ

)
+

1

6
RΦ = 0 , (10)

with Φ = Φ0 = Φ−0.

All the above equations are separable and
can be written as (ignoring ei(mϕ−ωt))

[ 1

Σ

(
∆rD1D†s +

√
∆θL†1−s

√
∆θLs

)

+2(2s− 1)
(iχω

ρ∗
− s− 1

l2

)]
Φs = 0 ,

(11)
[ 1

Σ

(
∆rD†1−sD0 +

√
∆θL1−s

√
∆θL†s

)

−2(2s− 1)
(iχω

ρ∗
+

s− 1

l2

)]
(ρ∗2sΦ−s) = 0 .

(12)

They are also satisfied by the scalar Debye
potentials φs = Φs/ρ∗2s and φ−s = ρ∗2sΦ−s.
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From their obvious expressions

1

Σ

{
∆−s

r
∂

∂r

(
∆1+s

r
∂

∂r

)
+

χ2K2
1 − isχK1∆

′
r

∆r

+
s

2
∆′′

r +
1

sin θ

∂

∂θ

(
∆θ sin θ

∂

∂θ

)

− 1

∆θ

[
χK2 − s

(∆′
θ

2
+ ∆θ cot θ

)]2

+4isχωρ− 4s2 + 2

l2
Σ

}
Φs = 0 , (13)

and

1

Σ

{
∆s

r
∂

∂r

(
∆1−s

r
∂

∂r

)
+

χ2K2
1 + isχK1∆

′
r

∆r

−s

2
∆′′

r +
1

sin θ

∂

∂θ

(
∆θ sin θ

∂

∂θ

)

− 1

∆θ

[
χK2 + s

(∆′
θ

2
+ ∆θ cot θ

)]2

−4isχωρ− 4s2 + 2

l2
Σ

}
φ−s = 0 , (14)

one can easily find that they are dual by in-
terchanging s → −s.
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Eqs. (13) and (14) can be combined into
the form of Teukolsky’s master equation

{∆r

Σ

∂2

∂r2
+

(1 + s)∆′
r

Σ

∂

∂r
+

s

2Σ
∆′′

r+
∆θ

Σ

∂2

∂θ2

+
∆′

θ + ∆θ cot θ

Σ

∂

∂θ
+

ω2χ2

Σ

[(r2 + a2)2

∆r

− a2 sin2 θ

∆θ

]
− 2ωmaχ2

Σ

(r2 + a2

∆r
− 1

∆θ

)

+
m2χ2

Σ

( a2

∆r
− 1

∆θ sin2 θ

)
+

2sωχ

Σ

[
2ir

− i∆′
r

2∆r
(r2 + a2) + a sin θ

( ∆′
θ

2∆θ
− cot θ

)]

+
2smχ

Σ

[ia∆′
r

2∆r
− 1

sin θ

( ∆′
θ

2∆θ
+ cot θ

)]

−4s2 + 2

l2
− s2∆θ

Σ

( ∆′
θ

2∆θ
+ cot θ

)2}
Φs = 0 ,

(s = 0,±1/2,±1,±3/2,±2). (15)
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III. Improved thin-Layer BWM

Distinguished from the original BWM, the
thin-layer BWM suggests that the entropy of
a black hole with two horizons mainly comes
from a very thin layer in the vicinity of the
horizon where exists a local thermal equilib-
rium. Just as the original BWM, it impose a
small ultraviolet cutoff ε such that

Ψ(x) = 0 for r ≤ rh + ε , (16)

where rh denotes one horizon of the Kerr-de
Sitter black hole, satisfying

∆rh = (r2h + a2)(1− r2h
l2

)− 2Mrh = 0 .

To remove the infrared divergence, it intro-
duce another cutoff parameter — an arbitrary
big integer N such that

Ψ(x) = 0 for r ≥ rh + Nε . (17)
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Improved thin-layer BWM boundary condi-
tion:

L=⇒rh + Nε

A crucial difference from the original BWM.

1) The Kerr-de Sitter black hole has a cosmological

horizon and a black hole event horizon, there exist no

thermal equilibrium over the entire spacetime since the

two horizons have different temperatures. 2) There

can not exist a global thermal equilibrium between the

external field and the hole in a large spatial region, and

statistical physics laws become invalid in this case.

However the global thermal equilibrium is
not needed, the notion of local thermal equi-
librium is still worked very well and is crucial
to the discussion. In this thin-layer BWM, it
is assumed that the total entropy is mainly
attributed to the two thin-layers near the two
horizons, namely it is a linear sum of the en-
tropy of the black hole horizon and that of
the cosmological horizon.
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IV. Entropy of Kerr-de Sitter black
holes due to arbitrary spin fields

WKB approximation: Φs ∼ ei(krr+kθθ)

∆r

Σ
k2
r +

∆θ

Σ
k2
θ+

ω2χ2

Σ

[a2 sin2 θ

∆θ
− (r2 + a2)2

∆r

]

+
2ωmaχ2

Σ

(r2 + a2

∆r
− 1

∆θ

)
− m2χ2

Σ

( a2

∆r

− 1

∆θ sin2 θ

)
+

2sωχa sin θ

Σ

(
cot θ − ∆′

θ

2∆θ

)

+
2smχ

Σsin θ

( ∆′
θ

2∆θ
+ cot θ

)
+

4s2 + 2

l2

+
s2∆θ

Σ

( ∆′
θ

2∆θ
+ cot θ

)2− s

2Σ
∆′′

r = 0 , (18)

Rewrite it as

k2
r

grr
+

k2
θ

gθθ
+

gϕϕω2 + 2gtϕmω + gttm
2

D
+2(ωB + mC) + Hs= 0 , (19)
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where

grr =
Σ

∆r
, gtt =

∆θa
2 sin2 θ −∆r

χ2Σ
,

gθθ =
Σ

∆θ
, gtϕ =

∆r − (r2 + a2)∆θ

χ2Σ
a sin2 θ ,

gϕϕ =
(r2 + a2)2∆θ −∆ra2 sin2 θ

χ2Σ
sin2 θ ,

D = gttgϕϕ − g2
tϕ = −∆r∆θ sin2 θ

χ4
,

B =
sχa sin θ

Σ

(
cot θ − ∆′

θ

2∆θ

)
,

C =
sχ

Σsin θ

( ∆′
θ

2∆θ
+ cot θ

)
,

Hs =
s2∆θ

Σ

( ∆′
θ

2∆θ
+ cot θ

)2

+
4s2 + 2

l2
− s

2Σ
∆′′

r .
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Suppose that a quantum field in a thin-layer
very near the event horizon is in local thermal
equilibrium with the Kerr-de Sitter black hole
at temperature 1/β, it is appropriate to as-
sume that the quantum field is rotating with
an angular velocity Ωh in this thin-layer. After
making substitution E = ω − mΩh, Eq. (19)
is reduced to

k2
r

grr
+

gϕϕE2 + 2(gtϕ + gϕϕΩh)mE + g̃ttm
2

D
+

k2
θ

gθθ
+ 2[EB + m(ΩhB + C)] + Hs = 0 ,

(20)

and can be rewritten as

k2
r

grr
+

k2
θ

gθθ
+
−g̃tt

−D
(
m + m0

)2

=
1

−g̃tt

(
E + sW

)2 − Vs , (21)

g̃tt: the temporal component of the metric
of the dragged optical space, W : the “spin
potential”, Vs: the effective potential:
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g̃tt = gtt + 2gtϕΩh + gϕϕΩ2
h ,

g̃ttm0 = (gtϕ + gϕϕΩh)E + (ΩhB + C)D ,

sW = (gtt + gtϕΩh)B − (gtϕ + gϕϕΩh)C ,

Vs = Hs − (gttB
2 − 2gtϕBC + gϕϕC2)

= P − s∆′′
r

2Σ
. (22)

For a given energy ω = E+mΩh and a fixed
m, the total number of modes with energy less
than ω is equal to the number of states in the
classical phase space

Γ(E, s) =
1

3π

∫
dθ

∫ rh+Nε

rh+ε
dr

√−g

(−g̃tt)2

×
[
(E + sW )2 + g̃ttVs

]3/2
, (23)

provided that

grr > 0 , gθθ > 0 , −g̃tt > 0 , −D > 0 ,

(E + sW )2 + g̃ttVs ≥ 0 . (24)
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Summing over the positive and negative he-
licity states p = ±s, we get the total states
number (density of states)

Γ(E) =
gs

2

[
Γ(E, s) + Γ(E,−s)

]

=
gs

6π

∫
dθ

∫ rh+Nε

rh+ε
dr

√−g

(−g̃tt)2

×
{[

(E + sW )2 + g̃ttVs

]3/2

+
[
(E − sW )2 + g̃ttV−s

]3/2}

≈ gs

3π

∫
dθ

∫ rh+Nε

rh+ε
dr

√−g

(−g̃tt)2

[
E3 +

3

2
g̃ttPE

]

≡ gs

3π

(
I1E3 + 3I2E

)
, (25)

where two integrals are defined by,

I1 =
∫

dθ
∫ rh+Nε

rh+ε
dr

√−g

g̃2
tt

,

I2 =
1

2

∫
dθ

∫ rh+Nε

rh+ε
dr

√−g

g̃tt
P ,

P =
4s2 + 2

l2
+

s2∆θ

Σ

( ∆′
θ

2∆θ
+ cot θ

)2

−(gttB
2 − 2gtϕBC + gϕϕC2) . (26)
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For a local (quasi-)equilibrium ensemble of
states of spin fields, the free energy can be
expressed as

F = −
∫ ∞
0

dE Γ(E)
eβE − (−1)2s

,

≈ − gs

3π

∫ ∞
0

dE
eβE − (−1)2s

[
I1E3 + 3I2E

]

= −gs

[
2ζ(4)

15 + (−1)2s

16πβ4
I1

+ζ(2)
3 + (−1)2s

4πβ2
I2

]
. (27)

The entropy of the Kerr-de Sitter black hole
due to arbitrary spin fields is obtained from the
standard formula S = β2(∂F/∂β),

S =
gs

2π

[
ζ(4)

15 + (−1)2s

β3
I1

+ζ(2)
3 + (−1)2s

β
I2

]
. (28)

By means of the thin-layer BWM, one find
that only the integrals I1 and I2 contribute
to the leading and subleading terms to the
entropy.
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Now consider the integrals I1 and I2.

β−1
h =

κh

2π
=

∆′
rh

χ2Ah
,

Ah = 4π(r2h + a2)/χ . (29)

Take the angular velocity of a quantum field
in the thin layer near the horizon of Kerr-de
Sitter black hole as Ωh = a/(r2h + a2), and
expand ∆r close to rh as

∆r = ∆′
rh

(r − rh) +
1

2
∆′′

rh
(r − rh)

2 + · · · ,

(30)
and then expand three quantities g̃tt, P , and
W in terms of the surface gravity

κh = ∆′
rh

/[2χ(r2h + a2)] = 2π∆′
rh

/(χ2Ah)

as follows

g̃tt =
∆θa

2 sin2 θ(r2 − r2h)
2 −∆rΣ2

h

χ2(r2h + a2)2Σ

≈ −2κhΣh(r − rh)

χ(r2h + a2)

[
1−

(2rh

Σh
− ∆′′

rh

2∆′
rh

+
4r2h∆θa

2 sin2 θ

∆′
rh

Σ2
h

)
(r − rh)

]
+ · · · ,
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P =
4s2 + 2

l2
+

4s2a2 cos2 θ

Σ3

[
∆r

−∆θ(r
2 + a2) +

a2 sin2 θ

l2
Σ

]

≈ 4s2 + 2

l2
+

4s2a2 cos2 θ

Σ3
h

[a2 sin2 θ

l2
Σh

−∆θ(r
2
h + a2)

]
+ · · · ,

W =
−a cos θ

χ(r2h + a2)Σ2

{[
χΣ + 2a2 sin2 θ

×(1− r2

l2
)
]
(r2 − r2h) + 2∆rΣh

}

≈ −4κha cos θ

Σh

{
1 +

rh

∆′
rh

[
χ +

2a2 sin2 θ

Σh

×(1− r2h
l2

)
]}

(r − rh) + · · · . (31)

where Σh = r2h + a2 cos2 θ.
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Expanding the integrands in I1 ∼ I2 as
√−g

g̃2
tt

≈ (r2h + a2)2 sin θ

4κ2
hΣh

[ 1

(r − rh)2
+

(6rh

Σh

−∆′′
rh

∆′
rh

+
8r2h∆θa

2 sin2 θ

∆′
rh

Σ2
h

) 1

r − rh

]
+ · · ·

≈ (r2h + a2) sin θ

4χκ3
hΣh

[ ∆′
rh

2(r − rh)2
+

(3rh∆
′
rh

Σh

−1

2
∆′′

rh
+

4r2h∆θa
2 sin2 θ

Σ2
h

) 1

r − rh

]
+ · · · ,

√−g

g̃tt
P =

−(r2h + a2) sin θ

2χκh(r − rh)

{4s2 + 2

l2

+4s2a2 cos2 θ
[a2 sin2 θ

l2Σ2
h

−∆θ(r
2
h + a2)

Σ3
h

]}
+ · · · , (32)

and carrying out the integrals with respect to
θ and r, we finally arrive at
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I1 =
2

χκ3
h

[15(r2h + a2)

4ε2
+

(
1− 3r2h + a2

2l2

)
ln

Λ

ε

]
,

I2 =
1

2χκh

{
− 4(r2h + a2)

l2
+ s2

[a2 − r2h
r2h

+
r2h − a2

l2
+

(r2h + a2

r2h
− 9r2h + a2

l2

)

×r2h + a2

arh
arctan(

a

rh
)
]}

ln
Λ

ε
. (33)

where the ultraviolet cutoff ε = η2∆′
rh

/(4Σh)
is replaced by the proper distance

η =
∫ rh+ε

rh

√
grrdr ≈ 2

( εΣ

∆′
rh

)1/2
.

The new ultraviolet cutoff ε and infrared cut-
off Λ are defined by

η2 =
2ε2

15

N − 1

N

Σh

arh
arctan (

a

rh
)≈ 2ε2

15
,

N = Λ2/ε2 . (34)
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The statistical-mechanical entropy:

S/gs = π315 + (−1)2s

180β3
I1 + π

3 + (−1)2s

12β
I2

=
15 + (−1)2s

90χ(βκh/π)3

[15(r2h + a2)

4ε2

+
(
1− 3r2h + a2

2l2

)
ln

Λ

ε

]

+
3 + (−1)2s

24χ(βκh/π)

{
−4(r2h + a2)

l2

+s2
[a2 − r2h

r2h
+

r2h − a2

l2

+
(r2h + a2

r2h
− 9r2h + a2

l2

)

×r2h + a2

arh
arctan(

a

rh
)
]}

ln
Λ

ε
. (35)
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Assuming that the field is in the Hartle-
Hawking vacuum state and taking β = βh,
we get that the entropy is given by

S/gs =
15 + (−1)2s

16

[ Ah

48πε2
+

1

45χ

×
(
1− 3r2h + a2

2l2

)
ln

Λ

ε

]
+

3 + (−1)2s

4

×
{
− Ah

12πl2
+

s2

12χ

[a2 − r2h
r2h

+
r2h − a2

l2

+
(r2h + a2

r2h
− 9r2h + a2

l2

)r2h + a2

arh

× arctan(
a

rh
)
]}

ln
Λ

ε
. (36)
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V. DISCUSSIONS AND CONCLUSIONS

(a) The entropies given above have summed up the
contribution from the maximal and minimal spin-weight
states of a quantum field. The total entropy of the
Kerr-de Sitter black hole is a linear sum of that of the
two horizons.

The calculations here are valid both for the black
hole event horizon case and for the cosmological hori-
zon case. We think it is also valid for the black hole
event horizon of the Kerr-anti de Sitter space by
changing the sign of the cosmological constant.

(b) The entropies depend not only on the spins of
the particles but also on the cosmological constant ex-
cept different spin field obey different statistics. They
rely on the quadratic terms of s2 and −1/l2 as well as
a2.

(c) Both the contribution of the spins and that of
the cosmological constant to the entropies are in sub-
leading order.

(d) The logarithmic term from the spins of the par-
ticles not only depend on the spin-rotation coupling
effect but also on the coupling between the spins of
particles and the cosmological constant.

(e) Two special cases may be very interesting:
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I. Schwarzschild-de Sitter black hole Case:

S/gs =
15 + (−1)2s

16

[ Ah

48πε2

+
1

45

(
1− 3r2h

2l2

)
ln

Λ

ε

]

−3 + (−1)2s

4
· 1 + 2s2

12πl2
Ah ln

Λ

ε
,

(37)

where Ah = 4πr2h.

II. Kerr black hole Case:

S/gs =
15 + (−1)2s

16

( Ah

48πε2
+

1

45
ln

Λ

ε

)

+
3 + (−1)2s

4
· s

2

12

[a2 − r2h
r2h

+
(r2h + a2)2

ar3h
arctan(

a

rh
)
]
ln

Λ

ε
,

(38)

where Ah = 4π(r2h + a2).
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Thank you !
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