Jet Quenching & Collective Flow in Relativistic Nuclear Collisions

华中师范大学粒子物理研究所

2014年1月9日@中国科技大学

Outline

- Relativistic nuclear collisions
- Collective flow, initial state fluctuations, final state correlations
- Jet-medium interaction, jet energy loss, heavy quarks
- Summary

QCD and strong interaction

- QCD is an important ingredient of Standard Model and the fundamental quantum field theory of the strong interaction
- Elementary fields: quarks and gluons
- Quarks and gluons carry "color" degrees of freedom
- Color confinement and asymptotic freedom

Strong-interaction matter

QGP and early Universe

Relativistic nuclear collisions

Relativisitic Heavy Ion Collider (RHIC) : Au-Au, Cu-Cu,U-U @ √s_{NN}=10-200GeV

Larger Hadron Collider (LHC): Pb-Pb @ Vs_{NN}=2.76TeV/5.5TeV

PbPb collisions at the LHC

Evolution of relativistic nuclear collisions

Our goals:

To find unambiguous signatures for QGP formation from final state observables by comparing theory/model calculations To understand the expansion dynamics and extract transport properties of hot/dense matter

Anisotropic collective flow

The interaction inside QGP translates initial geometric anisotropy to final state momentum anisotropy Relativistic hydrodynamics gives nice description of flow

Hydrodynamic simulation

$$\partial_{\mu} T^{\mu\nu}(x) = 0$$

$$T^{\mu\nu} = e u^{\mu} u^{\nu} - P(g^{\mu\nu} - u^{\mu} u^{\nu}) + \pi^{\mu\nu} + \dots$$

- Ideal hydro
 - 5 variables (e, P, u_x , u_y , u_z), 4 equations
 - Need EoS: e=e(P) to close
- Viscous hydro
 - 5 independent variables in shear tensor $Tr \pi^{\mu\nu} = 0; u_{\mu}\pi^{\mu\nu} = 0$

$$D\pi^{\mu\nu} = -\frac{1}{\tau_{\pi}} \left(\pi^{\mu\nu} - 2\eta \nabla^{\langle \mu} u^{\nu \rangle}\right) - \frac{4}{3} \pi^{\mu\nu} \partial_{\alpha} u^{\alpha}$$

• Particle spectra from Cooper-Fry formula

$$E \frac{dN_{i}}{d^{3}p} = \frac{\mathscr{S}_{i}}{(2\pi)^{3}} \int_{\Sigma = (\tau_{f}, x, y, \eta_{s})} p^{\mu} d\Sigma_{\mu} f(p \cdot u, T, \mu)$$
$$f = f_{0} + \delta f; f_{0} = \frac{1}{e^{(p \cdot u - \mu_{i})/T_{f}} \mp 1}; \delta f = f_{0} \frac{p_{\mu} p_{\nu} \pi^{\mu\nu}}{2T^{2}(e + P)}$$

Hadronic rescattering and decay

Viscosity

- Bulk viscosity: the resistance to compression/expansion
- Shear viscosity: the resistance to flow

 Shear viscosity measures the ability of momentum transport between different parts of the system (thus the interaction strength)

$$\eta \approx \frac{1}{3} n \overline{p} \lambda_f = \frac{p}{3\sigma_{\rm tr}}$$

Extracting shear viscosity of QGP

Factor of 2 difference in η/s originates from 20-30% e₂ uncertainty

Shear viscosity for other matter

Adams, Carr, Schafer, Steinberg, Thomas, 2012

Initial state fluctuations

Initial conditions are not smooth, but lumpy, leading to anisotropy and inhomogeneity of QGP

Initial state fluctuations affect the system evolution and manifest in final state flow and correlations

Initial state fluctuations could provide more constraints on transport properties with more observables

Initial geometry

Non-zero odd-order eccentricities due to initial state fluctuations

GYQ, Petersen, Bass, Muller, PRC, 2010

Final state anisotropic flow

Event-by-event v_n distribution

in preparation

Dihadron correlations

Different IS fluctuations => different FS flow/correlations

Pang, wang, Wang, PRC 2012, 2013

Initial flow and longitudinal fluctuations

Initial flow fluctuations harden p_T spectra and decrease elliptic flow Longitudinal fluctuations soften p_T spectra and decrease elliptic flow

Pang, wang, Wang, PRC 2012, 2013

Pre-equilibrium evolution

Pre-equilibrium evolution develops radial flow & decreases system anisotropy Need A LOT MORE work for detailed thermalization/equilibration mechanisms

About the initial states

• Anisotropy

 The degree of anisotropy, quantified by harmonic moments: eccentricity, triangularity ...

Inhomogeneity

- The degree of inhomogeneity: the population of hot/cold spots, their fractions, their magnitudes, their spatial distribution ...
- Should be encoded by correlations between different orders of harmonic moments

10

Initial state event-plane correlations

The initial state event-plane correlations are sensitive to the number of local fluctuations (hot and cold spots) of the fireball

Final state event-plane correlations

The reality is: Non-linear hydrodynamics evolution develops correlations between different order event planes which destroy the original initial state correlations between different order event planes

Same-order event plane correlations

With longitudinal fluctuations, the correlations of same order event planes decreases with increasing pseudorapidity gap

The longitudinal decorrelation of event planes depends on the cross section (shear viscosity)

Pang, GYQ, Roy, Wang, in preparation

Flow in smaller p+Pb & d+Au systems?

Is it purely an initial state effect or the signature of a mini-QGP?

Results from hydro + IS fluctuations

Quite consistent with calculations from hydro + initial state fluctuations Larger v2 in d-Au than p-Pb collisions Similar magnitude for v3 No strong centrality dependence

The origin of flow anisotropy?

Eccentricity is not the only factor that determines the flow anisotropy The local density gradients and detailed structures of the system affect the development of the flow Is it possible to find a new/simple q (measure) for flow anisotropy?

Jet quenching

Computerized Axial Tomography Scan

High energy partons produced from initial hard collisions interact with traversed QGP and lose energy in the process The study of jet modification provides useful tools to probe the properties and internal structure of QGP

Jet evolution and energy loss in QGP

Evidences for jet quenching

If AA collision is a geometric combination of NN collisions, R_{AA}=1

Photon R_{AA} =1, hadron R_{AA} <1

Due to final state interaction between high energy partons and QGP (i.e., jet energy loss), the production of high p_T hadrons (from the fragmentation of high energy partons) is suppressed

One goal is to quantitative extraction of jet transport coefficients

Jet transport coefficients

$$\frac{\partial \phi}{\partial L^{-}} = \left[D_{L1} \frac{\partial}{\partial l_{q}^{-}} + \frac{1}{2} D_{L2} \frac{\partial^{2}}{\partial^{2} l_{q}^{-}} + \frac{1}{2} D_{T2} \nabla_{l_{q\perp}}^{2} \right] \phi(L^{-}, l_{q}^{-}, \vec{l}_{q\perp})$$

$$\hat{e} = \frac{dE}{dt} = D_{L1}, \hat{e}_{2} = \frac{d(\Delta E)^{2}}{dt} = \frac{D_{L2}}{\sqrt{2}}, \hat{q} = \frac{d(\Delta p_{T})^{2}}{dt} = 2\sqrt{2} D_{T2}$$

GYQ, Majumder, PRC 2013

q=(λ^2 , 1, λ)Q, scattered gluons (λ^2 , λ , λ)Q

Models for radiative energy loss

BDMPS-Z: Baier, Dokshitzer, Mueller, Peigne, Schiff, Zakharov ASW: Amesto, Salgado, Wiedemann AMY: Arnod, Moore, Yaffe GLV: Gyulassy, Levai, Vitev Higher Twist (HT): Guo, Wang, Majumder

Modeling the medium

Static scattering centers (BDMPS-Z, GLV, ASW) HTL perturbative plasma (AMY) General nuclear medium, soft scatterings (HT)

Resummation schemes

Resume all possible numbers of soft interactions(BDMPS, AMY)Path integral representation of partondetransport(Zakharov, ASW)Order by order in number of scatterings (GLV)

Evolution schemes

Poisson independent emissions (BDMPS, GLV, ASW) Transport rate equations (AMY) Modified DGLAP (HT)

The longitudinal scattering may play a role in medium-induced radiation (GYQ et al, work in progress)

General picture of jet quenching study

General picture of jet quenching study

Jet quenching @ RHIC & LHC

McGill-AMY

GYQ, et al, PRL 2008

HT-BW

HT-M

Chen, Hirano, Wang, Wang, Zhang, PRC 2011

Majumder, Chun, PRL 2012

arXiv:1312.5003 [nucl-th]

Jet transport coefficient

arXiv:1312.5003 [nucl-th]

Full jets

Jets: a spray of charged/neutral particles originating from fragmentation of hardscattered partons

Jet reconstruction: recombining hadron/parton fragments, hoping to get the original parton energy/momentum

Different algorithms use different criteria to cluster the fragments, and use different sequence for recombination (jet cone size R)

In AA collisions, significant contribution from (hydro) background needs removed

Full jets in HIC

$$A_{J} = \frac{E_{J,1} - E_{J,2}}{E_{J,1} + E_{J,2}}$$

Jet shower evolution in medium

Leading parton:

Transfers energy to medium by elastic collisions Medium-induced gluon radiation (<u>inside</u> and <u>outside</u> jet cone) <u>Radiated gluons (vacuum & medium-induced):</u> Transfer energy to medium by elastic collisions

Be kicked out of the jet cone by multiple scatterings after emission

$$E_L(t) = E_L(t_i) - \int \hat{e}_L dt - \int \omega d\omega dk_{\perp}^2 dt \frac{dN_g^{med}}{d\omega dk_{\perp}^2 dt}$$

$$\frac{df_g(\omega, k_{\perp}^2, t)}{dt} = \hat{e}\frac{\partial f_g}{\partial \omega} + \frac{1}{4}\hat{q}\nabla_{k_{\perp}}^2 f_g + \frac{dN_g^{med}}{d\omega dk_{\perp}^2 dt}$$

GYQ, Muller, PRL, 2011

Theory postdictions for dijet asymmetry

Photon tagged full jets

Photons experience no final state interaction once produced from early hard collisions

Provide better control of the initial jet information (e.g., p_p direction)

Provide a good tool for the tomographic study of QGP

Haven been regarded as "golden" channel for studying jet-medium interaction

Medium modification of γ -full jet

More quenching for more central collisions

Dai, Vitev, Zhang, PRL 2013; Wang, Zhu, PRL 2013; Qin, arxiv:1210.6610

Tomography of QGP

Larger x_T jets are more produced at the surface of the medium

Smaller x_T jets have traveled large distance of medium

Different average x, probe different path lengths

Combined with different directions, probe different areas of the collision zone

Qin, arxiv:1210.6610

Nuclear modification of heavy flavors

Due to finite masses, heavy quarks are expected to lose less energy in QGP medium Large suppression and flow for heavy flavor mesons have been observed, comparable to light hadrons!

Heavy quark energy loss

Gluon radiation is suppressed compared to light flavors (dead cone effect) Many earlier studies only consider collisional energy loss

One method is to use Langevin equation to describe heavy quark (Brown) motion in medium $\eta \rightarrow \eta$

$$\frac{dp}{dt} = -\eta_D(p)\vec{p} + \vec{\xi}$$

 $\langle \xi^i(t)\xi^j(t')\rangle = \kappa \delta^{ij}\delta(t-t') \qquad D = \frac{T}{M\eta_D(0)} = \frac{2T^2}{\kappa}$

Add gluon radiation

Radiation of gluon gives additional drag force to the propagating heavy quarks

$$\frac{d\vec{p}}{dt} = -\eta_D(p)\vec{p} + \vec{\xi} + \vec{f_g} \qquad \qquad \vec{f_g} = -\frac{d\vec{p_g}}{dt}$$

Cao, GYQ, Bass, PRC 2013

The momentum distribution of radiated gluons may be taken from (any) jet energy loss calculation; here we use Higher-Twist results

$$\frac{dN_g}{dxdk_{\perp}^2dt} = \frac{2\alpha_s(k_{\perp})}{\pi}P(x)\frac{\hat{q}}{k_{\perp}^4}\sin^2\left(\frac{t-t_i}{2\tau_f}\right)\left(\frac{k_{\perp}^2}{k_{\perp}^2+x^2M^2}\right)^4$$

Guo, Wang, PRL 85, 3591; Majumder, PRD 85, 014023; Zhang, Wang, Wang, PRL 93, 072301.

10

$$\hat{q} = 2\kappa C_A / C_F \qquad \eta_D(p) = \frac{\kappa}{2TE}$$

Nuclear modification of D mesons

Collisional dominates low p_T , radiative dominates high p_T . Shadowing effect reduces R_{AA} significantly at low p_T . Recombination mechanism raises R_{AA} at intermediate p_T , and has more significant contribution to R_{AA} at RHIC energy

Cao, GYQ, Bass, PRC 2013

Probing initial state by hard probes

more realistic simulation in progress

Medium excitation by jets

Mach cone formation at $v_{source} > v_{medium}$ The propagation of high energy partons through QGP will excite Mach cone Complication: QGP is dynamically evolving, and we need simulate both jet energy loss and QGP evolution at the same time

GYQ, Majumder, Song, Heinz, PRL 2009

Summary

- Hydrodynamics has been very successful in describing space-time evolution of QGP and explaining collective phenomena in relativistic nuclear collisions
- Initial state fluctuations manifest in the final state collective flow and correlations
- Flow in small p+Pb & d+Au systems probably needs new ideas
- Jets/hard probes are useful tools for studying QGP (and initial states)
- Full jet observables and correlation measurements may provide more detailed information about jet-medium interaction

Viscosity

- Bulk viscosity: the resistance to compression/expansion
- Shear viscosity: the resistance to flow

 Shear viscosity measures the ability of momentum transport between different parts of the system (thus the interaction strength)

$$\eta \approx \frac{1}{3} n \overline{p} \lambda_f = \frac{p}{3\sigma_{\rm tr}}$$

Shear viscosity

Use Kubo method to extract transport coefficients in terms of the correlation functions in the stress-energy tensor for the system

$$\eta_s = \frac{1}{T} \int d^3r \, \int dt \langle T^{xy}(\vec{0},0) \, T^{xy}(\vec{r},t) \rangle$$

Use relaxation time approximation for Boltzmann equation to obtain the shear viscosity (for a+b->c+d)

$$\eta_s = \frac{1}{15T} \int_0^\infty \frac{d^3 p_a}{(2\pi)^3} \frac{|p_a|^4}{E_a^2} \frac{1}{w_a(E_a)} f_a^{eq}$$
$$w_a(E_a) = \int_0^\infty \frac{d^3 p_b}{(2\pi)^3} \frac{\sqrt{s(s-4m^2)}}{2E_a 2E_b} f_b^{eq} \sigma_T$$

Anisotropy of fluctuating initial states

In central collisions, finite anisotropy purely due to fluctuations; same distribution for all ϵ_n (χ distribution)

With increasing b, ϵ_n increase Largest b dependence for ϵ_2 due to geometry (also seen in the fluctuations)

From initial state to final flow/correlations

Initial conditions remain to be one of the largest uncertainties in extracting QGP transport properties Little knowledge about pre-equilibrium evolution and thermalization mechanisms; need a lot more work

Different IS fluctuations => different FS flow/correlations

From initial state to final flow/correlations

QGP and hydrodynamic expansion

hadronic phase

pre-equilibrium

hadronization

- Initial conditions
 - Fluctuations, geometry, asymmetry, anisotropy, inhomogeneity, etc
- Pre-equilibrium evolution and thermalization
- Hydrodynamic evolution
- Hadronization
- Hadronic rescattering and freeze-out
- Analyze anisotropic flow and correlations for final state momentum distributions
- Initial conditions remain to be one of the largest uncertainties in extracting QGP transport properties

Different IS fluctuations => different FS flow/correlations

Various initial condition models

- Fluctuations of nucleon positions: MC Glauber, MC KLN-CGC
- Fluctuations of color charges inside nucleons: IP-Glasma
 - Schenke, Tribedy, Venugopalan, PRL 2012; Muller, Schafer, PRD 2012
- Fluctuations of multiplicity: modified MC Glauber & KLN-CGC
 GYQ, Petersen, Bass, Muller, PRC 2010; Dumitru, Nara, PRC 2012
- Pre-equilibrium evolution and initial flow: modified MC Glauber, URQDM, HIJING, AMPT, EPOS/NEXUS, etc
 - GYQ, Petersen, Bass, Muller, PRC 2010, Petersen, Bleicher, PRC 2010; Pang, Wang, Wang, PRC 2012; Gardim et al, PRL 2012, Werner et al, PRC 2012

Different initial state fluctuations => different final states

Separate different contribution

Away-side: short and long range correlations are consistent with the flow contribution, little contribution from mini-jets Near side: The excess of long range correlations over flow contribution comes from mini-jets

Pang, wang, Wang, 2013

Different centrality determination

Flow for thermal photons

Photon v2 is expected to be smaller than the hadron v2 The inclusion of E-b-E fluctuations & viscosity cannot increase to observed level The best description used strong initial expansion and large photon production rates in the hadronic phase

Van Hees, Rapp, Gale, PRC 2012

γ -full jet correlations

The distribution shifts towards smaller x_j More quenching for more central collisions Missing pair probability (the integral is smaller for ATLAS)

Radiative vs collisional energy loss

Collisional E-loss dominates low energy region, while radiative dominates high energy region (Crossing point: 6 GeV for *c* and 16 GeV for *b* quark) Collisional E-loss alone may work well at RHIC but is insufficient at the LHC

Cao, GYQ, Bass, PRC 2013

Heavy quark hadronization: frag. vs rec.

Normalization: $P_{\text{coal.}}(p_{HQ}=0) = 1$

Use Monte-Carlo to determine the hadronization of each HQ: frag. or recomb.? recomb. to *D/B* or a baryon?

Fragmentation dominates D meson production at high p_{T} .

Recombination significantly enhances the *D* meson spectrum at intermediate p_{T} . f

Cao, GYQ, Bass, PRC 2013

The Sudden Recombination Model

Two-particle recombination:

$$\frac{dN_M}{d^3p_M} = \int d^3p_1 d^3p_2 \frac{dN_1}{d^3p_1} \frac{dN_2}{d^3p_2} f_M^W(\vec{p}_1, \vec{p}_2) \delta(\vec{p}_M - \vec{p}_1 - \vec{p}_2)$$

 $\frac{dN_i}{d^3p_i}$ Distribution of the *i*th kind of particle

Light quark: fermi-dirac distri. in the I.r.f of the hydro cell Heavy quark: the distribution at T_c after Langevin evolution

 $f_M^W(\vec{p_1}, \vec{p_2})$ Probability for two particles to recombine

$$f_M^W(\vec{r}, \vec{q}) \equiv N g_M \int d^3 r' e^{-i\vec{q} \cdot \vec{r'}} \phi_M(\vec{r} + \frac{\vec{r'}}{2}) \phi_M^*(\vec{r} - \frac{\vec{r'}}{2})$$

 $\vec{r} = \vec{r}'_1 - \vec{r}'_2$ $\vec{q} = \frac{1}{E'_1 + E'_2} (E'_2 \vec{p}'_1 - E'_1 \vec{p}'_2)$ Variables on the R.H.S. are defined in the c.m. frame of the two-particle system.

The Sudden Recombination Model

$$f_M^W(\vec{r}, \vec{q}) \equiv N g_M \int d^3 r' e^{-i\vec{q} \cdot \vec{r'}} \phi_M(\vec{r} + \frac{\vec{r'}}{2}) \phi_M^*(\vec{r} - \frac{\vec{r'}}{2})$$

N: normalization factor

- g_{M} : statistics factor
- e.g. D ground state: 1/(2*3*2*3)=1/36 spin and color D*: 3/(2*3*2*3)=1/12 – spin of D* is 1

 Φ_M : meson wave function – approximated by S.H.O.

Integrating over the position space leads to

$$f_M^W(q^2) = Ng_M \frac{(2\sqrt{\pi}\sigma)^3}{V} e^{-q^2\sigma^2} \qquad \sigma = 1/\sqrt{\mu\omega}$$

μ: reduced mass of the 2-particle system
 ω: S.H.O frequency – calculated by meson radius
 0.106 GeV for *c*, and 0.059 GeV for *b*

Can be generalized to 3-particle recombination (baryon)

The Hybrid Coal. + Frag. Model

Use f^{W} to calculate $P_{coal.}(p_{HQ})$ for all channels: $D/B \wedge \Sigma \equiv \Omega$ Normalization: $P_{coal.}(p_{HQ}=0) = 1$ Use Monte-Carlo to determine the hadronization channel of each HQ: frag. or recomb.? recomb. to D/B or a baryon?

Fragmentation dominates *D* meson production at high p_{T} . Recombination significantly enhances the *D* meson spectrum at intermediate p_{T} .

Inhomogeneity

Photon production

Different photon-trigged jets have different distribution and shapes

10

10

PHENIX Prelim. 0-109

direct fragmentation

Photon-hadron correlations

- Photon-triggered FF is an approx. of medium-modified FF
- Suppression at high z_T and enhancement at low z_T
- Consistent with the picture of jet energy loss and redistribution of lost energy from jet

Simulating in-medium jet evolution

Medium modification of γ -jet

Modification for different x_T jets

- Combined with the distribution of tagged jet distribution f(x_τ)
- Stronger suppression and centrality dependence for larger x_T jets
- Less suppression (or enhancement) for smaller x_T jets

