Advancing Multimessenger Astrophysics with Next-Generation Black Hole and Neutron Star Binary Merger Simulations

Zach Etienne 😽

Funding Acknowledgements NASA awards

80NSSC18K0538 (ISFM, 2017-2020)

80NSSC18K1488 (TCAN, 2018-2021)

NSF awards

PHY-1806596 (Grav theory, 2018-2021)

PHY-1607405 (LIGO research, 2016-2019)

PHY-1912497 (LIGO research, 2019-2021)

PHY-1757005 (Grav expmt, 2017-2020)

EPSCoR-1458952 (2015-2020)

- Part 1: When Neutron Stars Collide!
 - GW170817 / GRB170817A: How two bright stars lived and died

- Part 1: When Neutron Stars Collide!
 - GW170817 / GRB170817A: How two bright stars lived and died

- Part 2: Extracting Science from the Observations
 - The importance and challenges of modeling gravitational wave and multimessenger sources

- Part 1: When Neutron Stars Collide!
 - GW170817 / GRB170817A: How two bright stars lived and died

- Part 2: Extracting Science from the Observations
 - The importance and challenges of modeling gravitational wave and multimessenger sources
- Part 3: A Promising New Approach!
 - Addressing challenges to unlock next-generation models of multimessenger sources

- Part 1: When Neutron Stars Collide!
 - GW170817 / GRB170817A: How two bright stars lived and died

- Part 2: Extracting Science from the Observations
 - The importance and challenges of modeling gravitational wave and multimessenger sources
- Part 3: A Promising New Approach!
 - Addressing challenges to unlock next-generation models of multimessenger sources

A long time ago in a galaxy far,

far away....

~130M years ago

A long time ago in a galaxy far, far away....

NGC 4993

GW170817 GRB170817A

http://www6.flamingtext.com/logo/Design-Death-Star

What is a Neutron Star? A: A large ball of neutrons

Atom: mostly empty space

Imagine nucleus @ 30cm diameter
 →electrons ~5km away!

What is a Neutron Star? A: A large ball of neutrons

Atom: mostly empty space

Imagine nucleus @ 30cm diameter
 →electrons ~5km away!

What is a Neutron Star? A: A large ball of neutrons

Atom: mostly empty space

- Imagine nucleus @ 30cm diameter
 - →electrons ~5km away!
 - →nuclei, NSs are **SUPER** dense

 Like all stars, heat from fusion pushes out, gravity pulls in

- Like all stars, heat from fusion pushes out, gravity pulls in
- Massive stars burn bright & hot; fusion up to nickel & iron

 Growing nickel-iron core pushes back outer layers (e-degen pressure)

- Growing nickel-iron core pushes back outer layers (e-degen pressure)
 - ... at ~1.4Msun, grav. <u>collapse</u>;
 <u>electrons</u> combine with <u>protons</u>

- Growing nickel-iron core pushes back outer layers (e-degen pressure)
 - ... at ~1.4Msun, grav. <u>collapse</u>;
 <u>electrons combine with protons</u> Newborn neutron star!

- Growing nickel-iron core pushes back outer layers (e-degen pressure)
 - ∴ at ~1.4Msun, grav. collapse;
 electrons combine with protons → Newborn neutron star!

Neutron stars are *tiny*, compared to average dist between stars.

2/3 of the stars in the Universe closely orbit another star
 "Binary star system"

2/3 of the stars in the Universe closely orbit another star
 "Binary star system"

- To get binary neutron stars:
 - Start with binary star system with two massive stars

- To get binary neutron stars:
 - Start with binary star system with two massive stars
 - More massive star dies first: Supernova!

- To get binary neutron stars:
 - Start with binary star system with two massive stars
 - More massive star dies first: Supernova!
 - O Move through debris cloud ⇒ friction ⇒ closer orbit!

- To get binary neutron stars:
 - Start with binary star system with two massive stars
 - More massive star dies first: Supernova!
 - O Move through debris cloud ⇒ friction ⇒ closer orbit!

- To get binary neutron stars:
 - Start with binary star system with two massive stars
 - More massive star dies first: Supernova!
 - O Move through debris cloud ⇒ friction ⇒ closer orbit!

- To get binary neutron stars:
 - Start with binary star system with two massive stars
 - More massive star dies first: Supernova!
 - O Move through debris cloud ⇒ friction ⇒ closer orbit!

- To get binary neutron stars:
 - Start with binary star system with two massive stars
 - More massive star dies first: Supernova!
 - O Move through debris cloud ⇒ friction ⇒ closer orbit!

NS

Moving toward you

Moving away from you

- To get binary neutron stars:
 - Later, less-massive star goes supernova, same process

NS

Moving toward you

- To get binary neutron stars:
 - Later, less-massive star goes supernova, same process

NS

- To get binary neutron stars:
 - Later, less-massive star goes supernova, same process

- To get binary neutron stars:
 - Later, less-massive star goes supernova, same process

- To get binary neutron stars:
 - Later, less-massive star goes supernova, same process

- To get binary neutron stars:
 - Later, less-massive star goes supernova, same process

 This two-supernova process has led to two neutron stars orbiting very closely

NS NS

Newton's theory of gravity

• Point-like masses can orbit forever, never colliding

Newton's theory of gravity

• Point-like masses can orbit forever, never colliding

Einstein's theory of gravity

Relativity theory: At fastest, information propagates at c

Lovelace et al.,

Newton's theory of gravity

• Point-like masses can orbit forever, never colliding

Einstein's theory of gravity

- Relativity theory: At fastest, information propagates at c
 - including information about changing gravitational fields!

Lovelace et al.,

Newton's theory of gravity

• Point-like masses can orbit forever, never colliding

Einstein's theory of gravity

- Relativity theory: At fastest, information propagates at c
 - including information about changing gravitational fields!
 - Gravitational waves carry this information

Lovelace et al.,

Newton's theory of gravity

• Point-like masses can orbit forever, never colliding

- Relativity theory: At fastest, information propagates at c
 - o including information about changing gravitational fields!
 - Gravitational waves carry this information
 - Relativistic effect ⇒ stronger for objects near c

Lovelace et al.,

Newton's theory of gravity

• Point-like masses can orbit forever, never colliding

- Relativity theory: At fastest, information propagates at c
 - including information about changing gravitational fields!
 - Gravitational waves carry this information
 - Relativistic effect ⇒ stronger for objects near c
 - Information propagates by xfer of energy & momentum

Lovelace et al.,

Newton's theory of gravity

Point-like masses can orbit forever, never colliding

- Relativity theory: At fastest, information propagates at c
 - including information about changing gravitational fields!
 - **Gravitational waves** carry this information
 - Relativistic effect \Rightarrow stronger for objects near *c*
 - Information propagates by xfer of energy & momentum
 - ⇒Binary gets closer ⇒ v_{orb} increases ⇒ stronger GWs

Lovelace et al.,

Newton's theory of gravity

Point-like masses can orbit forever, never colliding

- Relativity theory: At fastest, information propagates at c
 - including information about changing gravitational fields!
 - Gravitational waves carry this information
 - Relativistic effect ⇒ stronger for objects near c
 - Information propagates by xfer of energy & momentum
 - ⇒Binary gets closer ⇒ v_{orb} increases ⇒ stronger GWs

Lovelace et al.,

⇒ relativistic death spiral to collision!

Outline

- Part 1: When Neutron Stars Collide!
 - GW170817 / GRB170817A: How two bright stars lived and died

- Part 2: Extracting Science from the Observations
 - The importance and challenges of modeling gravitational wave and multimessenger sources
- Part 3: A Promising New Approach!
 - Addressing challenges to unlock next-generation models of multimessenger sources

Importance of modeling gravitational wave and multimessenger sources

 Example: LIGO detects a gravitational wave from a black hole or neutron star binary

Importance of modeling gravitational wave and multimessenger sources

- \$1B+ Question: What *exactly* caused this and *how*?
 - Answer can provide deep insights into extreme gravity & extreme matter, testing theories beyond current limits
 - To advance science, must compare observations with theoretical predictions
 - Theoretical predictions need to span observ. & theor. uncertainties

Gravitational-wave driven "Relativistic death spiral"

 Gravitational-wave driven <u>"Relativistic death spiral"</u>

Time axis ⇒
(spans ~200ms)

Wave amplitude ↑
(wave strain, arb. units)

 Gravitational-wave driven <u>"Relativistic death spiral"</u>

These waves encode info about masses, spins, and composition of NSs

Time axis

(spans ~200ms)

Wave amplitude

(wave strain, arb. units)

 Gravitational-wave driven <u>"Relativistic death spiral"</u>

⟨→ (Very) early inspiral:
Perturbative solutions
to Einstein gravity (GR)

Time axis

(spans ~200ms)

Wave amplitude

(wave strain, arb. units)

 Gravitational-wave driven <u>"Relativistic death spiral"</u>

Late inspiral: Perturb. theory breaks down; Only full GR solutions

⟨→ (Very) early inspiral:
Perturbative solutions
to Einstein gravity (GR)

Time axis

(spans ~200ms)

Wave amplitude

(wave strain, arb. units)

 Gravitational-wave driven <u>"Relativistic death spiral"</u>

Late inspiral: Perturb. theory breaks down;
Only full GR solutions

⟨→ (Very) early inspiral:
Perturbative solutions
to Einstein gravity (GR)

Time axis

(spans ~200ms)

Wave amplitude

(wave strain, arb. units)

Next: modeling merger

Inspiral

Lovelace et al., CQG 29, 045003 (2012) (modified)

Z. Etienne (2019)

045003 (2012) (modified)

Lovelace et al., CQG 29, 045003 (2012) (modified)

Magnetized BNS merger Z. Etienne (2019)

Reformulate Einstein's theory of gravity for the computer

- 1. Stability, even when simulating BHs
- 2. Reliability: numerical errors small and well-understood

Reformulate Einstein's theory of gravity for the computer

- 1. **Stability**, even when simulating BHs
- 2. Reliability: numerical errors small and well-understood

GR Equations are complex; Solving the 2-body problem (two orbiting point masses) in

GR took <u>90 years</u> (1915-2005)

Reformulate Einstein's theory of gravity for the computer

- 1. **Stability**, even when simulating BHs
- 2. Reliability: numerical errors small and well-understood

GR Equations are complex; Solving the 2-body problem (two orbiting point masses) in GR took <u>90 years</u> (1915-2005)

$$G_{\mu\nu} = 8\pi T_{\mu\nu}$$

Reformulate Einstein's theory of gravity for the computer

- 1. **Stability**, even when simulating BHs
- 2. Reliability: numerical errors small and well-understood

GR Equations are complex; Solving the 2-body problem (two orbiting point masses) in GR took <u>90 years</u> (1915-2005)

$$G_{\mu\nu} = 8\pi T_{\mu\nu}$$

$$\begin{split} \partial_{t}\bar{\gamma}_{ij} &= \left[\beta^{k}\partial_{k}\bar{\gamma}_{ij} + \partial_{i}\beta^{k}\bar{\gamma}_{kj} + \partial_{j}\beta^{k}\bar{\gamma}_{ik}\right] + \frac{2}{3}\bar{\gamma}_{ij}\left(\alpha\bar{A}_{k}^{k} - \bar{D}_{k}\beta^{k}\right) - 2\alpha\bar{A}_{ij} \;, \\ \partial_{t}\bar{A}_{ij} &= \left[\beta^{k}\partial_{k}\bar{A}_{ij} + \partial_{i}\beta^{k}\bar{A}_{kj} + \partial_{j}\beta^{k}\bar{A}_{ik}\right] - \frac{2}{3}\bar{A}_{ij}\bar{D}_{k}\beta^{k} - 2\alpha\bar{A}_{ik}\bar{A}^{k}_{j} + \alpha\bar{A}_{ij}K \\ &\quad + e^{-4\phi}\left\{-2\alpha\bar{D}_{i}\bar{D}_{j}\phi + 4\alpha\bar{D}_{i}\phi\bar{D}_{j}\phi + 4\bar{D}_{(i}\alpha\bar{D}_{j)}\phi - \bar{D}_{i}\bar{D}_{j}\alpha + \alpha\bar{R}_{ij}\right\}^{\mathrm{TF}} \;, \\ \partial_{t}\phi &= \left[\beta^{k}\partial_{k}\phi\right] + \frac{1}{6}\left(\bar{D}_{k}\beta^{k} - \alpha K\right) \;, \\ \partial_{t}K &= \left[\beta^{k}\partial_{k}K\right] + \frac{1}{3}\alpha K^{2} + \alpha\bar{A}_{ij}\bar{A}^{ij} - e^{-4\phi}\left(\bar{D}_{i}\bar{D}^{i}\alpha + 2\bar{D}^{i}\alpha\bar{D}_{i}\phi\right) \;, \\ \partial_{t}\bar{\Lambda}^{i} &= \left[\beta^{k}\partial_{k}\bar{\Lambda}^{i} - \partial_{k}\beta^{i}\bar{\Lambda}^{k}\right] + \bar{\gamma}^{jk}\hat{D}_{j}\hat{D}_{k}\beta^{i} + \frac{2}{3}\Delta^{i}\bar{D}_{j}\beta^{j} + \frac{1}{3}\bar{D}^{i}\bar{D}_{j}\beta^{j} \\ &\quad - 2\bar{A}^{ij}\left(\partial_{j}\alpha - 6\partial_{j}\phi\right) + 2\alpha\bar{A}^{jk}\Delta^{i}_{jk} - \frac{4}{3}\alpha\bar{\gamma}^{ij}\partial_{j}K \end{split}$$

$$\partial_{t}\alpha &= \left[\beta^{i}\partial_{i}\alpha\right] - 2\alpha K \\ \partial_{t}\beta^{i} &= \left[\beta^{j}\partial_{j}\beta^{i}\right] + B^{i} \qquad \mathbf{Most popular formulation} \\ \partial_{t}B^{i} &= \left[\beta^{j}\partial_{j}B^{i}\right] + \frac{3}{4}\partial_{0}\bar{\Lambda}^{i} - \eta B^{i} \end{split}$$

Reformulate Einstein's theory of gravity for the computer

- 1. **Stability**, even when simulating BHs
- 2. Reliability: numerical errors small and well-understood

Model all the necessary physical processes

• E.g., gamma-ray bursts thought to originate from magnetized fluid dynamics around BH+disk remnant

- E.g., gamma-ray bursts thought to originate from magnetized fluid dynamics around BH+disk remnant
 - a. Gravitational fields (general relativity)
 - b. Hydrodynamics + magnetic fields (GRMHD/GRFFE)
 - c. Neutrinos
 - d. Photons

Model all the necessary physical processes

- E.g., gamma-ray bursts thought to originate from magnetized fluid dynamics around BH+disk remnant
 - a. **Gravitational fields** (general relativity)
 - b. Hydrodynamics + magnetic fields (GRMHD/GRFFE)
 - c. **Neutrinos** (crudely)
 - d. Photons

Current state-of-the-art

Reformulate Einstein's theory of gravity for the computer

- 1. Stability, even when simulating BHs
- 2. Reliability: numerical errors small and well-understood

Model all the necessary physical processes

- E.g., gamma-ray bursts thought to originate from magnetized fluid dynamics around BH+disk remnant
 - a. **Gravitational fields** (general relativity)
 - b. Hydrodynamics + magnetic fields (GRMHD/GRFFE)
 - c. Neutrinos
 - d. Photons

Reformulate Einstein's theory of gravity for the computer

- 1. Stability, even when simulating BHs
- 2. Reliability: numerical errors small and well-understood

Model all the necessary physical processes

- E.g., gamma-ray bursts thought to originate from magnetized fluid dynamics around BH+disk remnant
 - a. **Gravitational fields** (general relativity)
 - b. **Hydrodynamics** + **magnetic fields** (GRMHD/GRFFE)
 - c. Neutrinos
 - d. Photons

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)

Outline

- Part 1: When Neutron Stars Collide!
 - GW170817 / GRB170817A: How two bright stars lived and died

- Part 2: Extracting Science from the Observations
 - The importance and challenges of modeling gravitational wave and multimessenger sources
- Part 3: A Promising New Approach!
 - Addressing challenges to unlock next-generation models of multimessenger sources

- 1. Resolve sharp, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)

Address (~5 orders of mag) disparity in physical scales

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)
 - Simulations performed on <u>numerical grids</u>
 - Numerical solution stored at each grid point
 - Need <u>denser</u> grids to model <u>sharper</u> features

So why not just use dense grids everywhere?

Address (~5 orders of mag) disparity in physical scales

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)
 - Simulations performed on <u>numerical grids</u>
 - Numerical solution stored at each grid point
 - Need <u>denser</u> grids to model <u>sharper</u> features

So why not just use dense grids everywhere?
A: Wasteful and impractical; supercomputers are not "super" enough.

Address (~5 orders of mag) disparity in physical scales

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)
 - Simulations performed on <u>numerical grids</u>
 - Numerical solution stored at each grid point
 - Need <u>denser</u> grids to model <u>sharper</u> features

Fewer grid points = *lower computational cost*

Less computational cost unlocks

- More simulations, and/or
- More physical realism

Address (~5 orders of mag) disparity in physical scales

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)
 - Simulations performed on <u>numerical grids</u>
 - Numerical solution stored at each grid point
 - Need <u>denser</u> grids to model <u>sharper</u> features

Fewer grid points = *lower computational cost*

Less computational cost unlocks

- More simulations, and/or
- More physical realism

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)

- **/**
- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)

Modeling Challenges Address (~5 orders of mag) disparity in physical scales

- Model long-wavelength gravitational waves far away
 - Push outer boundary very far away (due to approx. BCs)

32 dx

Modeling Challenges Address (~5 orders of mag) disparity in physical scales

- ✓ 1. Resolve sharp, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
 - 3. Push outer boundary very far away (due to approx. BCs)

Modeling Challenges Address (~5 orders of mag) disparity in physical scales Resolve **sharp**, rapidly changing grav fields near BHs and NSs Model long-wavelength gravitational waves far away

Modeling Challenges ∆ddress (~5 orders of mag) disparity in physical scales Resolve **sharp**, rapidly changing grav fields near BHs and NSs Model long-wavelength gravitational waves far away Push outer boundary very far away (due to approx. BCs) **AMR** Adaptive Mesh Refinement (Most Popular Method in NR) 4 dx 8 dx 16 dx 32 dx

Modeling Challenges Address (~5 orders of mag) disparity in physical scales

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model **long-wavelength** gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)

Modeling Challenges Address (~5 orders of mag) disparity in physical scales

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model **long-wavelength** gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)

32 dx

- 1. Resolve sharp, rapidly changing grav fields near BHs and NSs
- 2. Model **long-wavelength** gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)

Address (~5 orders of mag) disparity in physical scales

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)

AMR Inefficiencies

Address (~5 orders of mag) disparity in physical scales

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)

AMR Inefficiencies

Address (~5 orders of mag) disparity in physical scales

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)

AMR Inefficiencies

Address (~5 orders of mag) disparity in physical scales

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)

Address (~5 orders of mag) disparity in physical scales

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)

AMR Inefficiencies

- 1. Black holes & neutron stars: nearly spherical/axisymmetric
 - ⇒ grav/matter fields drop off strongly in radial direction
 - ⇒ need highest sampling in *r* direction

Address (~5 orders of mag) disparity in physical scales

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)

AMR Inefficiencies

- 1. Black holes & neutron stars: nearly spherical/axisymmetric
 - grav/matter fields drop off strongly in *radial* direction
 - ⇒ need highest sampling in *r* direction
 - Cartesian AMR grids: x, y, & z directions are all radial!
 - ⇒ need high sampling in all directions

Address (~5 orders of mag) disparity in physical scales

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)

2 dx

AMR Inefficiencies

- Black holes & neutron stars: nearly spherical/axisymmetric
 - ⇒ grav/matter fields drop off strongly in *radial* direction
 ⇒ need highest sampling in *r* direction
 - Cartesian AMR grids: x, y, & z directions are all radial!
 - ⇒ need high sampling in all directions
 - Spherical grids: ~5x more efficient;
 - need high sampling only in r direction

Address (~5 orders of mag) disparity in physical scales

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)

AMR Inefficiencies

- 2. Gravitational waves far away nearly spherical
 - ⇒ grav. waves vary most strongly in *radial* direction
 - ⇒ need highest sampling in r direction

Address (~5 orders of mag) disparity in physical scales

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)

AMR Inefficiencies

- 2. Gravitational waves far away nearly spherical
 - ⇒ grav. waves vary most strongly in *radial* direction
 - ⇒ need highest sampling in *r* direction
 - Cartesian AMR grids: x, y, & z directions are all radial!
 - ⇒ need high sampling in all directions
 - Spherical grids: ~5x more efficient;
 - need high sampling only in r direction

Address (~5 orders of mag) disparity in physical scales

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)

AMR Inefficiencies

- 3. Grav & matter fields are mostly smooth
 - Cartesian AMR grids:
 - 2x jumps in resolution between boxes
 - Boxes have sharp corners
 - Bi-spherical-like grids: another ~4x efficiency boost
 - Smooth, logarithmic *r* coordinate from NSs
 - Uniform angular coordinates

Modeling Challenges

Address (~5 orders of mag) disparity in physical scales

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)

Modeling Challenges

Address (~5 orders of mag) disparity in physical scales

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)

Modeling Challenges

Address (~5 orders of mag) disparity in physical scales

- 1. Resolve **sharp**, rapidly changing grav fields near BHs and NSs
- 2. Model long-wavelength gravitational waves far away
- 3. Push outer boundary very far away (due to approx. BCs)

AMR Grids Adaptive Mesh Refinement (Most Popular Method in NR) 4 dx 8 dx

New BiSphere Grids

~20x more efficient sampling for compact binary simulations

- Exploits near-symmetries (~5x)
- Smooth transitions in resolution (~4x)

- Formulate general relativity in <u>single</u> log-radial spherical polar coordinates;
 must be as numerically stable & robust as Cartesian
 - a. Ordinary spherical polar: done!

Baumgarte, Montero, Cordero-Carrión, Müller (PRD 87, 044026, 2012), built upon covariant BSSN formulation of Brown (PRD 79, 104029, 2009)

b. Generic-radius spherical polar (incl. log-radial): done!

Ruchlin, Etienne, Baumgarte (PRD 97, 064036, 2018)

- Formulate general relativity in <u>single</u> log-radial spherical polar coordinates;
 must be as numerically stable & robust as Cartesian
 - a. Ordinary spherical polar: done!

Baumgarte, Montero, Cordero-Carrión, Müller (PRD 87, 044026, 2012)

b. Generic-radius spherical polar (incl. log-radial): done!

Ruchlin, Etienne, Baumgarte (PRD 97, 064036, 2018)

- Need approach for performing simulation on two such coordinate systems, which co-move with orbiting binary system
 - a. <u>Interpolate between spheres; make spheres "orbit"</u>
 - b. Adjust directions of vectors & tensors when interpolating

- Formulate general relativity in <u>single</u> log-radial spherical polar coordinates;
 must be as numerically stable & robust as Cartesian
 - a. Ordinary spherical polar: done!

Baumgarte, Montero, Cordero-Carrión, Müller (PRD 87, 044026, 2012)

b. Generic-radius spherical polar (incl. log-radial): done!

Ruchlin, Etienne, Baumgarte (PRD 97, 064036, 2018)

- Need approach for performing simulation on two such coordinate systems, which co-move with orbiting binary system
 - a. <u>Interpolate between spheres; make spheres "orbit"</u>
 - b. Adjust directions of vectors & tensors when interpolating

Finding from wave test:
Numerical errors small and
converge to zero at expected rate

- Formulate general relativity in <u>single</u> log-radial spherical polar coordinates;
 must be as numerically stable & robust as Cartesian
 - a. Ordinary spherical polar: done!

Baumgarte, Montero, Cordero-Carrión, Müller (PRD 87, 044026, 2012)

b. Generic-radius spherical polar (incl. log-radial): done!

Ruchlin, Etienne, Baumgarte (PRD 97, 064036, 2018)

- Need approach for performing simulation on two such coordinate systems, which co-move with orbiting binary system
 - a. Interpolate between spheres; make spheres "orbit": done! (late Jan 2019)
 - b. Adjust directions of vectors & tensors when interpolating

- Formulate general relativity in <u>single</u> log-radial spherical polar coordinates;
 must be as numerically stable & robust as Cartesian
 - a. Ordinary spherical polar: done!

Baumgarte, Montero, Cordero-Carrión, Müller (PRD 87, 044026, 2012)

b. Generic-radius spherical polar (incl. log-radial): done!
Ruchlin, Etienne, Baumgarte (PRD 97, 064036, 2018)

- a. Interpolate between spheres; make spheres "orbit": done! (late Jan 2019)
- b. Adjust directions of vectors & tensors when interpolating

Finding from BH collision test:
Numerical errors small and
converge to zero at expected rate

- Formulate general relativity in <u>single</u> log-radial spherical polar coordinates;
 must be as numerically stable & robust as Cartesian
 - a. Ordinary spherical polar: done!

Baumgarte, Montero, Cordero-Carrión, Müller (PRD 87, 044026, 2012)

b. Generic-radius spherical polar (incl. log-radial): done!

Ruchlin, Etienne, Baumgarte (PRD 97, 064036, 2018)

- Need approach for performing simulation on two such coordinate systems, which co-move with orbiting binary system
 - a. Interpolate between spheres; make spheres "orbit": done! (late Jan 2019)
 - b. Adjust directions of vectors & tensors when interpolating

(basis transforms; Jacobians): done! (late Jan 2019 + 3d

- Formulate general relativity in <u>single</u> log-radial spherical polar coordinates;
 must be as numerically stable & robust as Cartesian
 - a. Ordinary spherical polar: done!

 Baumgarte Montero Cordero-Carrión Müller ()

Baumgarte, Montero, Cordero-Carrión, Müller (PRD 87, 044026, 2012)

b. Generic-radius spherical polar (incl. log-radial): done!
Ruchlin, Etienne, Baumgarte (PRD 97, 064036, 2018)

- Need approach for performing simulation on two such coordinate systems, which co-move with orbiting binary system
 - a. Interpolate between spheres; make spheres "orbit": done! (late Jan 2019)
 - b. Adjust directions of vectors & tensors when interpolating

(basis transforms; Jacobians): done!

(late Jan 2019 + 3d

NS

Two black holes merge, gravitational waves detected The \$1B question: What exactly caused this?

Two black holes merge, gravitational waves detected The \$1B question: What exactly caused this?

- Inferring source properties from grav. waves tough
 - Black hole binaries: 7 dims of parameters!
 - All existing full-GR simulation catalogs:
 - ~3000 theoretical gravitational waveforms
 - About 3 points per dimension
 - Enough for first detections (low SNR), but *not enough* moving forward!

Two black holes merge, gravitational waves detected The \$1B question: What exactly caused this?

- Inferring source properties from grav. waves tough
 - Black hole binaries: 7 dims of parameters!
 - All existing full-GR simulation catalogs:
 - ~3000 theoretical gravitational waveforms
 - About 3 points per dimension
 - Enough for first detections (low SNR), but *not enough* moving forward!
- BH binary sims need 4 supercomputing nodes
- BiSpheres grids use 1/20x memory
 - □ Can fit simulation on desktop!

Two black holes merge, gravitational waves detected The \$1B question: What exactly caused this?

- Inferring source properties from grav. waves tough
 - Black hole binaries: 7 dims of parameters!
 - All existing full-GR simulation catalogs:
 - ~3000 theoretical gravitational waveforms
 - About 3 points per dimension
 - Enough for first detections (low SNR), but *not enough* moving forward!

BlackHoles@Home

https://blackholesathome.net

- BiSphere: BH binary sims on desktop computer
- Like SETI@Home, public helps with science
 - Expect at least 20k waveforms in first year

Beyond BlackHoles@Home

https://blackholesathome.net

Implement BiSpheres grids with neutron star binaries

- Neutron star binary simulations need supercomputers!
 - BiSpheres grids should scale on modern supercomputers far better than Cartesian AMR
 - Use efficiency boost to, e.g.,
 - model physical processes lacking in current state-of-the-art simulations

Baumgarte, Montero, Cordero-Carrión, Müller (PRD 87, 044026, 2012)

- 1. Tensor components can be singular (→0 or ∞) at coord singularities
 - Use cell-centered grids to avoid exact overlap with singularities
 - Singular pieces are multiplicative and known analytically:
 - i. Scale out singular pieces & handle spatial derivs analytically
 - ii. Promote rescaled tensors to evolved quantities

Baumgarte, Montero, Cordero-Carrión, Müller (PRD 87, 044026, 2012)

- Tensor components can be singular (→0 or ∞) at coord singularities
 - Use cell-centered grids to avoid exact overlap with singularities
 - Singular pieces are multiplicative and known analytically:
 - i. Scale out singular pieces & handle spatial derivs analytically
 - ii. Promote rescaled tensors to evolved quantities
- Example: Smooth spacetime quantity Λⁱ
 - Cartesian: all components regular; no coord singularities

```
\bar{\Lambda}^x = [\text{smooth}]

\bar{\Lambda}^y = [\text{smooth}]

\bar{\Lambda}^z = [\text{smooth}]
```

Baumgarte, Montero, Cordero-Carrión, Müller (PRD 87, 044026, 2012)

Tensor components can be singular (→0 or ∞) at coord singularities

- Use cell-centered grids to avoid exact overlap with singularities
- Singular pieces are multiplicative and known analytically:
 - i. Scale out singular pieces & handle spatial derivs analytically
 - ii. Promote rescaled tensors to evolved quantities
- Example: Smooth spacetime quantity Λⁱ
 - Cartesian: all components regular; no coord singularities
 - Spherical: e.g., φ component diverges at coord singularity
 - Idea: where needed, only take numer.
 derivatives of smooth part, λ^φ
 - Perform *exact* differentiation on singular terms like $1/(r \sin \theta)$

$$\bar{\Lambda}^x = [\text{smooth}]$$
 $\bar{\Lambda}^y = [\text{smooth}]$
 $\bar{\Lambda}^z = [\text{smooth}]$

$$\bar{\Lambda}^{\phi} = \frac{1}{r \sin \theta} \times [\text{smooth part}]$$

$$= \frac{1}{r \sin \theta} \times \lambda^{\phi}$$

Baumgarte, Montero, Cordero-Carrión, Müller (PRD 87, 044026, 2012)

1. Tensor components can be singular (→0 or ∞) at coord singularities

- Use cell-centered grids to avoid exact overlap with singularities
- Singular pieces are multiplicative and known analytically:
 - i. Scale out singular pieces & handle spatial derivs analytically
 - ii. Promote rescaled tensors to evolved quantities

2. Divergent multiplicative terms in RHSs of equations

E.g., 1D scalar wave equation:

$$\partial_t^2 u = \partial_r^2 u + \left| \frac{2}{r} \partial_r u \right|$$

- 2/r term "stiffens" the equation
- Even with cell-centered grids, RK2 timestepping is unstable
 - i. Can use PIRK2 (original formulation), but
 - ii. Ordinary RK4 works just fine in 3+1 NR (discovered later)

Baumgarte, Montero, Cordero-Carrión, Müller (PRD 87, 044026, 2012)

1. Tensor components can be singular (→0 or ∞) at coord singularities

- Use cell-centered grids to avoid exact overlap with singularities
- Singular pieces are multiplicative and known analytically:
 - i. Scale out singular pieces & handle spatial derivs analytically
 - ii. Promote rescaled tensors to evolved quantities

2. Divergent multiplicative terms in RHSs of equations

o E.g., 1D scalar wave equation:

$$\partial_t^2 u = \partial_r^2 u + \left| \frac{2}{r} \partial_r u \right|$$

- o 2/r term "stiffens" the equation
- Even with cell-centered grids, RK2 timestepping is unstable
 - i. Can use PIRK2 (original formulation), but
 - ii. Ordinary RK4 works just fine in 3+1 NR (discovered later)

Net result: Stability & convergence properties on par with Cartesian grids

SENR/NRPy+: Code Validation

http://blackholesathome.net

- Black hole simulation
 - Wormhole initial data
 - o Cylindrical coordinates
 - Fourth-order finite differencing
- Excellent convergence
 - at t = 5M, in region unaffected by outer boundary (at r=10M)

SENR/NRPy+:

BH Spectroscopy from Head-on BH Collision

- Dual black hole simulation
 - Brill-Lindquist initial data
 - Moving puncture gauge
 - Sinh-spherical coordinates
 - Moderate resolution

BH perturbation theory prediction

Agreement to ~7 decades!

http://blackholesathome.net

SENR/NRPy+:

BH Spectroscopy from Head-on BH Collision

- Dual black hole simulation
 - Brill-Lindquist initial data
 - Moving puncture gauge
 - Sinh-spherical coordinates
 - Moderate resolution

BH perturbation theory prediction

Agreement to ~7 decades!

Only ~4 decades of agreement

Research Seminar: Ongoing/Planned Projects

- Add neutrino & photon physics to IllinoisGRMHD 80NSSC18K0538 (ISFM, 2017-2020) 80NSSC18K1488 (TCAN, 2018-2021)
- BiSpheres grids for GR fields + moving-mesh Voronoi tessellations for hydro, MHD, and radiation
 - Project with Phil Chang, UWM
- BlackHoles@Home outreach opportunities
- Measuring G; big data, modeling
 PHY-1757005 (Grav expmt, 2017-2020)
- LIGO proposal: greatly improved GW approximants
- Make simulations with BiSphere grids >50x faster,
 submit PRL, begin BlackHoles@Home
 PHY-1806596 (Grav theory, 2018-2021)

Original GRMHD code of Illinois NR group

- Highly robust
- Written by experts, for experts
- Takes ~3 years to master

IllinoisGRMHD

- Same robustness
- Well documented
- ~months to master

Community

- Released in 2014, part of the Einstein Toolkit
- 14 research groups around the world use IllinoisGRMHD, and growing
- 5 publications using IllinoisGRMHD, two not from our group
 - New patches from users add new features & expedite development!
- IllinoisGRMHD Working Group of the Einstein Toolkit
 - User-support telecons every ~month

https://illinoisgrmhd.net

Einstein Toolkit as Funding Source (NSF-CSSI)

 I will be Co-PI on next grant in 2019. E.g., use Toolkit's infrastructure to develop BiSpheres grids for massively parallel BNS simulations

Adding Neutrino Physics to BNS Simulations: IllinoisGRMHD + Pandurata

80NSSC18K0538 (ISFM, 2017-2020) 80NSSC18K1488 (TCAN, 2018-2021)

- Pandurata: a Monte Carlo code for radiation transport in full GR
- IllinoisGRMHD: a GRMHD code for modeling, e.g., binary neutron star mergers with magnetic fields
- Idea: combine Pandurata & IllinoisGRMHD to incorporate live photon & neutrino feedback into magnetized BNS simulations
- **Difficulty**: N interpolations must be performed to track N photons/neutrinos at each step in their trajectories
 - Approach: Reduce cost of interpolations (reuse interp stencils) using BiSpheres-like grids
- Progress:
 - Interpolation routines ready to go! Pandurata being modified so that all photons/neutrinos propagated in lockstep with IllinoisGRMHD simulation

MANGA - A Moving Mesh Solver for ChaNGa

Philip Chang (UWM), Sean Couch (MSU), Shane Davis (UVa), Zach Etienne (WVU), Yan-Fei Jiang (KITP), Logan Prust (UWM), Tom Quinn (UW), James Wadsley (McMaster)

MANGA - A Moving Mesh Solver for ChaNGa

Current Features

- Hydrodynamics on Voronoi Mesh, Self-gravity, Entropy or Energy solving (Chang, Quinn & Wadsley 2017)
- Multistepping (Chang & Prust, in preparation)
- Radiation Hydrodynamics (Chang, Davis \& Jiang, submitted)
- Quiet Problem Generator reduced Poisson noise
- MHD constrained transport scheme, not fully tested (Chang, in prep)

Future Goals (1-2 years)

- Relativity GRHydro on a moving Voronoi mesh (w. Z. Etienne)
- Point source radiation (w. T. Abel)

Binary Mergers of NS/NS and NS/BH in Full GR

Core collapse supernova

Theor Support for Measuring G Experiment

PHY-1757005 (Grav expmt, 2017-2020)

- Magnetically-suspended microsphere in harmonic trap oscillates
- Oscillation phase changes if field masses added -> G!

- Magnetically-suspended microsphere in harmonic trap oscillates
- Oscillation phase changes if field masses added -> G!
- Data: 8.6M frames of data in 24h, each image x-correlated
 - "Big Data"! Need supercomputer.
- Modeling: Geometry of field masses to minimize anharmonicity

- BH binary on desktop now, but ~50x too slow
 - About 3x can be gained through software optimz.
- Problem:
 - Simulation timestep ∝ min dist between gridpoints
 - Spherical coords focus gridpoints at r=0, z-axis

- BH binary on desktop now, but ~50x too slow
 - About 5x can be gained through software optimz.
- Problem:

 - Spherical coords focus gridpoints at r=0, z-axis
- Well-known problem! Multiple solutions:
 - Yin-yang grids (~10x faster) Kageyama & Sato 2004

- BH binary on desktop now, but ~50x too slow
 - About 5x can be gained through software optimz.
- Problem:
 - Simulation timestep ∝ min dist between gridpoints
 - Spherical coords focus gridpoints at r=0, z-axis
- Well-known problem! Multiple solutions:
 - O Yin-yang grids (~10x faster) Kageyama & Sato 2004
 - Replace data inside BHs (~40x faster, only BHs) Etienne, Faber, Liu, Shapiro, Baumgarte, 2007

- BH binary on desktop now, but ~50x too slow
 - About 5x can be gained through software optimz.
- Problem:
 - Simulation timestep ∝ min dist between gridpoints
 - Spherical coords focus gridpoints at r=0, z-axis
- Well-known problem! Multiple solutions:
 - O Yin-yang grids (~10x faster) Kageyama & Sato 2004
 - Replace data inside BHs (~40x faster, only BHs) Etienne, Faber, Liu, Shapiro, Baumgarte, 2007
 - High-res Cartesian filter/grid at r=0 (~100x faster)

- Scientific theories = our best understanding of Nature
 - Built upon careful observations and experiments

- Scientific theories = our best understanding of Nature
 - Built upon careful observations and experiments
- Testing theories necessary to improve our understanding
 - Testing = comparing theories' predictions with new observations
 - New observations need new telescopes, more sensitive experiments

- Scientific theories = our best understanding of Nature
 - Built upon careful observations and experiments
- Testing theories necessary to improve our understanding
 - Testing = comparing theories' predictions with new observations
 - New observations need new telescopes, more sensitive experiments

Multimessenger astrophysics:

- Different processes produce GWs, light, neutrinos
- Each "messenger" provides unique info about system
- Test theories of gravity & nuclear physics beyond current observations

- Scientific theories = our best understanding of Nature
 - Built upon careful observations and experiments
- Testing theories necessary to improve our understanding
 - Testing = comparing theories' predictions with new observations
 - New observations need new telescopes, more sensitive experiments
- Multimessenger astrophysics:
 - o Different processes produce GWs, light, neutrinos
 - Each "messenger" provides unique info about system
 - Test theories of gravity & nuclear physics beyond current observations

My job: provide theoretical predictions needed to advance science

- Different processes produce GWs, light, neutrinos
 - Each "messenger" provides unique info about system

- Different processes produce GWs, light, neutrinos
 - Each "messenger" provides unique info about system

- Unique info = better constraint on or refutation of theory
 - Leading to deeper understanding of Nature!

- Different processes produce GWs, light, neutrinos
 - Each "messenger" provides unique info about system

- Unique info = better constraint on or refutation of theory
 - Leading to deeper understanding of Nature!
- Theoretical predictions (based in simulations) must incorporate needed physics and span both observational and theoretical uncertainties

Modeling Challenges

Model all the necessary physical processes

- E.g., gamma-ray bursts thought to originate from magnetized fluid dynamics around BH+disk remnant
 - **Gravitational fields** (general relativity)
 - <u>Hydrodynamics + magnetic fields</u> (GRMHD/GRFFE)
 - **Neutrinos**
 - **Photons**

GR
$$\partial_{j} \left(\sqrt{\gamma} B^{j} \right) = 0$$

$$\nabla \cdot B = 0$$
 Newtonian $\partial_t B = \nabla \times (v \times B)$

$$\partial_t (\sqrt{\gamma} B^i) + \partial_j \left[\sqrt{\gamma} (\mathbf{v}^j B^i - \mathbf{v}^i B^j) \right] = 0$$

Fluid equations

$$\partial_t \rho_* + \partial_i (\rho_* \mathbf{v}^i) = 0$$

$$\partial_t \rho + \nabla \cdot (\rho v) = 0$$

$$\partial_t \rho_* + \partial_j (\rho_* V^s) = 0$$

$$\partial_{t}S_{i} + \partial_{j}\left(\alpha\sqrt{\gamma}T^{j}_{i}\right) = \frac{1}{2}\alpha\sqrt{\gamma}T^{\alpha\beta}\partial_{i}g_{\alpha\beta} \qquad \rho\left(\partial_{t}v + v \cdot \nabla v\right) = -\nabla\left(P + \frac{B^{2}}{8\pi}\right) + \frac{B \cdot \nabla B}{4\pi} - \rho\nabla\Phi$$

$$\rho\left(\partial_{t}\varepsilon + v \cdot \nabla\varepsilon\right) + P\nabla\cdot v = 0$$

$$\partial_t \tau + \partial_j \left(-n_\mu \alpha \sqrt{\gamma} T^{\mu i} - \rho_* \mathbf{v}^j \right) = s$$

SENR/NRPy+:

BH Spectroscopy from Head-on BH Collision

- Dual black hole simulation
 - Brill-Lindquist initial data
 - Moving puncture gauge
 - o Sinh-spherical coordinates
 - Moderate resolution

- BH perturbation theory prediction
 Agreement to ~ 7 decades!
- Increase FD order, grids fixed
 - Nearly exp. convergence in WFs

Advancing Multimessenger Astrophysics with Next-Generation Black Hole and Neutron Star Binary Merger Simulations Zach Etienne

Acknowledgements

NASA awards
80NSSC18K0538 (ISFM, 2017-2020)
80NSSC18K1488 (TCAN, 2018-2021)

PHY-1806596 (Grav theory, 2018-2021)

PHY-1806396 (Grav triedry, 2016-2021)
PHY-1607405 (LIGO research, 2016-2019)
PHY-1912497 (LIGO research, 2019-2021)
PHY-1757005 (Grav expmt, 2017-2020)

EPSCoR-1458952 (2015-2020)

