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Implication of GW170817 on
gravity theories @ late time

• |(cgw– cg)/ cg| < 10-15

• Horndeski theoy (scalar-tensor theory with 2nd-order eom):
Among 4 free functions, G4(f,X) & G5(f,X) are strongly constrained. Still 
G2(f,X) & G3(f,X) are free.

• Generalized Proca theory (vector-tensor theory):
Among 6 (or more) free functions, G4(X) & G5(X) are strongly constrained. 
Still G2(X,F,Y,U), G3(X), G6(X), g5(X) are free.

• Horava-Lifshitz theory (renormalizable quantum gravity):
The coefficient of R(3) is strongly constrained
 IR fixed point with cgw = cg? How to speed up the RG flow?

• Ghost condensation (simplest Higgs phase of gravity):
No additional constraint

• Massive gravity (simplest modification of GR):
Upper bound on graviton mass ≈ 10-22eV
Much weaker than the requirement from acceleration

c.f. “All” gravity theories (including general relativity):
The cosmological constant is strongly constrained ≈ 10-120.
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• Renormalizability

• Gravity is highly non-

linear and thus non-

renormalizable
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Horava-Lifshitz gravity

• HL gravity realizes z=3 scaling @ UV and thus is power-

counting renormalizable

• Renormalizability was recently proved with any number 

of spacetime dimensions [Barvinsky, et al. 2016]

• Ostrogradsky ghost is absent and thus HL gravity is likely 

to be unitary

• In 2+1 dimensions HL gravity is asymptotically free. 

• Lorentz-invariance is broken @ UV

• Lorentz-invariant IR fixed-point is generic [Chadha & 

Nielsen 1983] (and may apply to GW as well; cf. |cgw
2 – cg

2| 

< 10-15 from GW170817) but running is slow (logarithmic)

• SUSY or/and strong dynamics can speed-up the RG 

running towards Lorentz-invariant IR fixed-point



Cosmological implications

• The z=3 scaling solves the horizon problem and 
leads to (almost) scale-invariant cosmological 
perturbations without inflation (Mukohyama 2009).

• Higher curvature terms lead to regular bounce
(Calcagni 2009, Brandenberger 2009).

• Higher curvature terms (1/a6, 1/a4) might make the 
flatness problem milder (Kiritsis&Kofinas 2009).

• The initial condition with z=3 scaling may actually 
solve the flatness problem. (Bramberger, Coates, 
Magueijo, Mukohyama, Namba and Watanabe 2017)

• Absence of local Hamiltonian constraint leads to 
DM as integration “constant” (Mukohyama 2009).
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Primordial Fluctuations



Horizon Problem

& Scale-Invariance
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Horizon @ decoupling

<< Correlation Length of CMB

3.8 x 105 light years

<< 1.4 x 1010 light years
(1 light year ~ 1018 cm)

Scale-invariant spectrum

 ~ constant



Usual story

• w2 >> H2 : oscillate               H = (da/dt) / a

w2 << H2 : freeze                  a : scale factor
oscillation  freeze-out  iff d(H2/ w2)/dt > 0
w2 =k2/a2 leads to d2a/dt2 > 0

Generation of super-horizon fluctuations requires 
accelerated expansion, i.e. inflation.
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Generation of super-horizon fluctuations requires 
accelerated expansion, i.e. inflation.

• Scaling law 
t   b t  (E  b-1E)
x  b x
f b-1 f

Scale-invariance requires almost const. H, i.e. 
inflation.
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New story with z=3

• oscillation  freeze-out  iff d(H2/ w2)/dt > 0

w2 =M-4k6/a6 leads to d2(a3)/dt2 > 0

OK for a~tp with p > 1/3

Mukohyama 2009
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• Tensor perturbation Ph ~ M2/MPl
2
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ln L

ln a
H >> M H << M

Horizon exit and re-entry

pa t
1/3 < p < 1



New Mechanism of 
Primordial Fluctuations

New Quantum Gravity

✔ Horizon Problem Solved

✔ Scale-Invariance Guaranteed

✔ Slight scale-dependence calculable

✔ Predicts relatively large non-Gaussianity



Cosmological implications
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“Vainshtein screening” in

projectable (N=N(t)) HL gravity
• Perturbative expansion breaks down in the l

 1+0 limit.

• Non-perturbative analysis shows continuity 

and GR is recovered in the l 1+0 limit.

Lkin = KijKij – lK2



Screening scalar graviton

“Canonically normalized” scalar graviton 

decouples from the rest of the world.

Analogue of Vainshtein screening
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“Vainshtein screening” in

projectable (N=N(t)) HL gravity
• Perturbative expansion breaks down in the l

 1+0 limit.

• Non-perturbative analysis shows continuity 

and recovery of GR+DM in the l 1+0 limit.
✓Spherically-sym, static, vacuum (Mukohyama 2010)

✓Spherically-sym, dynamical, vacuum (Mukohyama 201?)

✓Spherically-sym, static, with matter (Mukohyama 201?)

✓General super-horizon perturbations with matter (Izumi-

Mukohyama 2011; Gumrukcuoglu-Mukohyama-Wang 2011)
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• “Vainshtein radius” can be pushed to infinity 

in the l 1+0 limit. 
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cc & flatness problems

• L does not decay  cc problem “Why is 

L as small as 8Gr now?”

• K/a2 decays but only slowly  flatness 

problem “Why is K/a2 smaller than 8Gr

now?”
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Two ways to tackle 

flatness problem

• If r does not decay for an extended period 

then flatness problem solved  Inflation

• If K/a2 << 8Gr initially then flatness 

problem solved  Quantum cosmology



Two ways to tackle 

flatness problem

• If r does not decay for an extended period 

then flatness problem solved  Inflation

• If K/a2 << 8Gr initially then flatness 

problem solved  Quantum cosmology

We shall consider the second possibility.



Usual story

• Initial condition set by e.g. quantum tunneling

• O(4) symmetric instanton

 T ~ L, where T ~ 1/H, L ~ a/|K|1/2

• Three terms in 3H2 = 8Gr – 3K/a2

are of the same order initially.

• Flatness problem exists unless inflation 

occurs.



New story with z=3

• Initial condition set by e.g. quantum tunneling

• Instanton with z=3 anisotropic scaling, which 

we call an anisotropic instanton

 T ∝ L3, where T ~ 1/H, L ~ a/|K|1/2

 T ~ M2L3

• T << L if L << 1/M

• Flatness problem may be solved if the 

anisotropic instanton is small. 



Summary
• Horava-Lifshitz gravity is renormalizable and likely to 

be unitary, and thus is a candidate for UV complete 

theory of quantum gravity.

• Lorentz-invariance can be restored at IR fixed-point. 

SUSY or/and strong dynamics can speed-up the RG 

running to match with phenomenology.

• It is likely that GR (+DM) is recovered in the l 1 

limit due to nonlinear effects. [c.f. Vainshtein effect]

• Horizon problem can be solved and (almost) scale-

invariant cosmological perturbations can be 

generated without inflation.

• Flatness problem can be solved by equipartition in 

highly trans-Planckian regime.


