Horava-Lifshitz cosmology revisited

Shinji Mukohyama (YITP, Kyoto U)

Based on arXiv:1709.07084 (PRD97, 043512 (2018)) w/ S.Bramberger, A.Coates, J.Magueijo, R.Namba, Y.Watanabe Also on CQG27 (2010) 223101 & JCAP0906 (2009) 001

Implication of GW170817 on gravity theories @ late time

- $|(c_{gw}-c_{\gamma})/c_{\gamma}| < 10^{-15}$
- Horndeski theoy (scalar-tensor theory with 2^{nd} -order eom): Among 4 free functions, $G_4(\phi,X)$ & $G_5(\phi,X)$ are strongly constrained. Still $G_2(\phi,X)$ & $G_3(\phi,X)$ are free. $X=-\partial^\mu\phi\partial_\mu\phi$
- Generalized Proca theory (vector-tensor theory): Among 6 (or more) free functions, $G_4(X) \& G_5(X)$ are strongly constrained. Still $G_2(X,F,Y,U)$, $G_3(X)$, $G_6(X)$, $g_5(X)$ are free. $X = -A^{\mu}A_{\mu}$
- Horava-Lifshitz theory (renormalizable quantum gravity): The coefficient of $R^{(3)}$ is strongly constrained \rightarrow IR fixed point with $c_{gw} = c_{\gamma}$? How to speed up the RG flow?
- Ghost condensation (simplest Higgs phase of gravity): No additional constraint
- Massive gravity (simplest modification of GR):
 Upper bound on graviton mass ≈ 10⁻²²eV
 Much weaker than the requirement from acceleration
- c.f. "All" gravity theories (including general relativity):
 The cosmological constant is strongly constrained ≈ 10⁻¹²⁰.

Implication of GW170817 on gravity theories @ late time

- $|(c_{gw}-c_{\gamma})/c_{\gamma}| < 10^{-15}$
- Horndeski theoy (scalar-tensor theory with 2^{nd} -order eom): Among 4 free functions, $G_4(\phi,X)$ & $G_5(\phi,X)$ are strongly constrained. Still $G_2(\phi,X)$ & $G_3(\phi,X)$ are free. $X=-\partial^\mu\phi\partial_\mu\phi$
- Generalized Proca theory (vector-tensor theory): Among 6 (or more) free functions, $G_4(X) \& G_5(X)$ are strongly constrained. Still $G_2(X,F,Y,U)$, $G_3(X)$, $G_6(X)$, $g_5(X)$ are free. $X = -A^{\mu}A_{\mu}$
- Horava-Lifshitz theory (renormalizable quantum gravity):
 The coefficient of R⁽³⁾ is strongly constrained
 → IR fixed point with c_{gw} = c_γ? How to speed up the RG flow?
- Ghost condensation (simplest Higgs phase of gravity): No additional constraint
- Massive gravity (simplest modification of GR):
 Upper bound on graviton mass ≈ 10⁻²²eV
 Much weaker than the requirement from acceleration
- c.f. "All" gravity theories (including general relativity):
 The cosmological constant is strongly constrained ≈ 10⁻¹²⁰.

Horava-Lifshitz cosmology revisited

Shinji Mukohyama (YITP, Kyoto U)

Based on arXiv:1709.07084 (PRD97, 043512 (2018)) w/ S.Bramberger, A.Coates, J.Magueijo, R.Namba, Y.Watanabe Also on CQG27 (2010) 223101 & JCAP0906 (2009) 001

$$I \supset \int dt dx^3 \dot{\phi}^2$$

$$I \supset \int dt dx^3 \dot{\phi}^2$$

Scaling dim of φ

t
$$\rightarrow$$
 b t (E \rightarrow b⁻¹E)
x \rightarrow b x
 $\phi \rightarrow$ b^s ϕ
1+3-2+2s = 0
s = -1

$$I \supset \int dt dx^3 \dot{\phi}^2$$

$$\int dt dx^3 \phi^n$$

$$\propto E^{-(1+3+ns)}$$

Scaling dim of φ

t
$$\rightarrow$$
 b t (E \rightarrow b⁻¹E)
x \rightarrow b x
 $\phi \rightarrow$ b^s ϕ
1+3-2+2s = 0
s = -1

$$I \supset \int dt dx^3 \dot{\phi}^2$$

$$\propto E^{-(1+3+ns)}$$

 $dtdx^3\phi^n$

Scaling dim of φ
 t → b t (E → b⁻¹E)
 x → b x

$$n \leq 4$$

$$1+3-2+2s=0$$

$$s = -1$$

 $\phi \rightarrow p_{s} \phi$

$$I \supset \int dt dx^3 \dot{\phi}^2$$

Scaling dim of φ

$$t \rightarrow b t (E \rightarrow b^{-1}E)$$

$$x \rightarrow b x$$

$$\phi \rightarrow p_s \phi$$

$$1+3-2+2s=0$$

$$s = -1$$

$$\int dt dx^3 \phi^n$$

$$\propto E^{-(1+3+ns)}$$

Renormalizability

$$n \leq 4$$

 Gravity is highly nonlinear and thus nonrenormalizable

$$I \supset \int dt dx^3 \dot{\phi}^2$$

$$I \supset \int dt dx^3 \dot{\phi}^2$$

Anisotropic scaling

t
$$\rightarrow$$
 b^z t (E \rightarrow b^{-z}E)
x \rightarrow b x
 ϕ \rightarrow b^s ϕ
z+3-2z+2s = 0
s = -(3-z)/2

$$I \supset \int dt dx^3 \dot{\phi}^2$$

Anisotropic scaling

t
$$\rightarrow$$
 b^z t (E \rightarrow b^{-z}E)
x \rightarrow b x
 ϕ \rightarrow b^s ϕ
z+3-2z+2s = 0
s = -(3-z)/2

• s = 0 if z = 3

$$I \supset \int dt dx^3 \dot{\phi}^2$$

 $\int dt dx^3 \phi^n$

Anisotropic scaling

$$t \rightarrow b^z t (E \rightarrow b^{-z}E)$$

$$x \rightarrow b x$$

$$\phi \rightarrow b^s \phi$$

$$z+3-2z+2s = 0$$

$$s = -(3-z)/2$$

•
$$s = 0 \text{ if } z = 3$$

$$\propto E^{-(z+3+ns)/z}$$

$$I \supset \int dt dx^3 \dot{\phi}^2$$

Anisotropic scaling

$$t \rightarrow b^z t (E \rightarrow b^{-z}E)$$

 $x \rightarrow b x$

$$\phi \rightarrow b^s \phi$$

$$z+3-2z+2s = 0$$

$$s = -(3-z)/2$$

•
$$s = 0$$
 if $z = 3$

$$\int dt dx^3 \phi^n$$

$$\propto E^{-(z+3+ns)/z}$$

 For z = 3, any nonlinear interactions are renormalizable!

$$I \supset \int dt dx^3 \dot{\phi}^2$$

Anisotropic scaling

$$t \rightarrow b^z t (E \rightarrow b^{-z}E)$$

 $x \rightarrow b x$

$$\phi \rightarrow b^s \phi$$

$$z+3-2z+2s = 0$$

$$s = -(3-z)/2$$

•
$$s = 0$$
 if $z = 3$

$$\int dt dx^3 \phi^n$$

$$\propto E^{-(z+3+ns)/z}$$

- For z = 3, any nonlinear interactions are renormalizable!
- Gravity becomes renormalizable!?

Horava-Lifshitz gravity

- HL gravity realizes z=3 scaling @ UV and thus is powercounting renormalizable
- Renormalizability was recently proved with any number of spacetime dimensions [Barvinsky, et al. 2016]
- Ostrogradsky ghost is absent and thus HL gravity is likely to be unitary
- In 2+1 dimensions HL gravity is asymptotically free.
- Lorentz-invariance is broken @ UV
- Lorentz-invariant IR fixed-point is generic [Chadha & Nielsen 1983] (and may apply to GW as well; cf. $|c_{gw}^2 c_{\gamma}^2|$ < 10^{-15} from GW170817) but running is slow (logarithmic)
- SUSY or/and strong dynamics can speed-up the RG running towards Lorentz-invariant IR fixed-point

- The z=3 scaling solves the horizon problem and leads to (almost) scale-invariant cosmological perturbations without inflation (Mukohyama 2009).
- Higher curvature terms lead to regular bounce (Calcagni 2009, Brandenberger 2009).
- Higher curvature terms (1/a⁶, 1/a⁴) might make the flatness problem milder (Kiritsis&Kofinas 2009).
- The initial condition with z=3 scaling may actually solve the flatness problem. (Bramberger, Coates, Magueijo, Mukohyama, Namba and Watanabe 2017)
- Absence of local Hamiltonian constraint leads to DM as integration "constant" (Mukohyama 2009).

- The z=3 scaling solves the horizon problem and leads to (almost) scale-invariant cosmological perturbations without inflation (Mukohyama 2009).
- Higher curvature terms lead to regular bounce (Calcagni 2009, Brandenberger 2009).
- Higher curvature terms (1/a⁶, 1/a⁴) might make the flatness problem milder (Kiritsis&Kofinas 2009).
- The initial condition with z=3 scaling may actually solve the flatness problem. (Bramberger, Coates, Magueijo, Mukohyama, Namba and Watanabe 2017)
- Absence of local Hamiltonian constraint leads to DM as integration "constant" (Mukohyama 2009).

- The z=3 scaling solves the horizon problem and leads to (almost) scale-invariant cosmological perturbations without inflation (Mukohyama 2009).
- Higher curvature terms lead to regular bounce (Calcagni 2009, Brandenberger 2009).
- Higher curvature terms (1/a⁶, 1/a⁴) might make the flatness problem milder (Kiritsis&Kofinas 2009).
- The initial condition with z=3 scaling may actually solve the flatness problem. (Bramberger, Coates, Magueijo, Mukohyama, Namba and Watanabe 2017)
- Absence of local Hamiltonian constraint leads to DM as integration "constant" (Mukohyama 2009).

Where are we from?

Where are we from?

Primordial Fluctuations

Horizon Problem & Scale-Invariance

Horizon @ decoupling

< Correlation Length of CMB

3.8 x 10⁵ light years

<< 1.4 x 10¹⁰ light years

(1 light year ~ 10¹⁸ cm)

Scale-invariant spectrum

∆ ~ constant

$$\langle \zeta_{\vec{k}}\zeta_{\vec{k}'}\rangle = (2\pi)^3 \delta^3(\vec{k} + \vec{k}') \frac{\Delta}{|\vec{k}|^3}$$

Usual story

```
    ω² >> H² : oscillate H = (da/dt) / a
    ω² << H² : freeze a : scale factor</li>
    oscillation → freeze-out iff d(H²/ω²)/dt > 0
    ω² =k²/a² leads to d²a/dt² > 0
    Generation of super-horizon fluctuations requires accelerated expansion, i.e. inflation.
```

Usual story

- ω² >> H²: oscillate H = (da/dt) / a
 ω² << H²: freeze a : scale factor
 oscillation → freeze-out iff d(H²/ω²)/dt > 0
 ω² =k²/a² leads to d²a/dt² > 0
 Generation of super-horizon fluctuations requires accelerated expansion, i.e. inflation.

$$\phi \rightarrow b^{-1} \phi$$

Scale-invariance requires almost const. H, i.e. inflation.

Mukohyama 2009

• oscillation \rightarrow freeze-out iff d(H²/ ω ²)/dt > 0 ω ² =M-4k6/a6 leads to d²(a³)/dt² > 0 OK for a~t^p with p > 1/3

Mukohyama 2009

- oscillation \rightarrow freeze-out iff d(H²/ ω ²)/dt > 0 ω ² =M-4k6/a6 leads to d²(a³)/dt² > 0 OK for a~t^p with p > 1/3
- Scaling law

t
$$\rightarrow$$
 b³ t (E \rightarrow b⁻³E)
x \rightarrow b x
 $\phi \rightarrow$ b⁰ ϕ $\delta \phi \propto E^0 \sim H^0$

Scale-invariant fluctuations!

Mukohyama 2009

- oscillation \rightarrow freeze-out iff d(H²/ ω ²)/dt > 0 ω ² =M-4k⁶/a⁶ leads to d²(a³)/dt² > 0 OK for a~t^p with p > 1/3
- Scaling law

Scale-invariant fluctuations!

Tensor perturbation P_h ~ M²/M_{Pl}²

ln L

Horizon exit and re-entry

$$a \propto t^p$$

1/3 (M^2H)^{-1/3}

 $H \gg M$

 $H \ll M$

ln a

New Quantum Gravity

New Mechanism of Primordial Fluctuations

- Horizon Problem Solved.
- Scale-Invariance Guaranteed
- Slight scale-dependence calculable
- ✓ Predicts relatively large non-Gaussianity

- The z=3 scaling solves the horizon problem and leads to (almost) scale-invariant cosmological perturbations without inflation (Mukohyama 2009).
- Higher curvature terms lead to regular bounce (Calcagni 2009, Brandenberger 2009).
- Higher curvature terms (1/a⁶, 1/a⁴) might make the flatness problem milder (Kiritsis&Kofinas 2009).
- The initial condition with z=3 scaling may actually solve the flatness problem. (Bramberger, Coates, Magueijo, Mukohyama, Namba and Watanabe 2017)
- Absence of local Hamiltonian constraint leads to DM as integration "constant" (Mukohyama 2009).

"Vainshtein screening" in projectable (N=N(t)) HL gravity

- Perturbative expansion breaks down in the λ \rightarrow 1+0 limit. $L_{kin} = K^{ij}K_{ij} \lambda K^2$
- Non-perturbative analysis shows continuity and GR is recovered in the $\lambda \rightarrow 1+0$ limit.

Screening scalar graviton

$$L = \left[f \left(\frac{\zeta}{\lambda - 1} \right) + g \left(\zeta, \lambda \right) \right] \frac{M_{Pl}^2 \dot{\zeta}^2}{\lambda - 1} - V \left(\zeta, D_i \right) + \text{matter}$$

$$\text{Subleading Independent of } \lambda$$

$$\text{Local in time, no time derivative}$$
No time derivative

Non-local in space, each term has the same # of spatial derivatives in denominator and numerator

$$\lambda \rightarrow 1$$
 $L \sim \dot{\zeta}_c^2$ + matter

"Canonically normalized" scalar graviton decouples from the rest of the world.

Analogue of Vainshtein screening

"Vainshtein screening" in projectable (N=N(t)) HL gravity

- Perturbative expansion breaks down in the λ \rightarrow 1+0 limit. $L_{kin} = K^{ij}K_{ii} \lambda K^2$
- Non-perturbative analysis shows continuity and recovery of GR+DM in the $\lambda \rightarrow 1+0$ limit.
 - ✓ Spherically-sym, static, vacuum (Mukohyama 2010)
 - ✓ Spherically-sym, dynamical, vacuum (Mukohyama 201?)
 - ✓ Spherically-sym, static, with matter (Mukohyama 201?)
 - ✓ General super-horizon perturbations with matter (Izumi-Mukohyama 2011; Gumrukcuoglu-Mukohyama-Wang 2011)

"Vainshtein screening" in projectable (N=N(t)) HL gravity

- Perturbative expansion breaks down in the λ \rightarrow 1+0 limit. $L_{kin} = K^{ij}K_{ii} \lambda K^2$
- Non-perturbative analysis shows continuity and recovery of GR+DM in the $\lambda \rightarrow 1+0$ limit.
 - ✓ Spherically-sym, static, vacuum (Mukohyama 2010)
 - ✓ Spherically-sym, dynamical, vacuum (Mukohyama 201?)
 - ✓ Spherically-sym, static, with matter (Mukohyama 201?)
 - ✓ General super-horizon perturbations with matter (Izumi-Mukohyama 2011; Gumrukcuoglu-Mukohyama-Wang 2011)
- "Vainshtein radius" can be pushed to infinity in the λ → 1+0 limit.

- The z=3 scaling solves the horizon problem and leads to (almost) scale-invariant cosmological perturbations without inflation (Mukohyama 2009).
- Higher curvature terms lead to regular bounce (Calcagni 2009, Brandenberger 2009).
- Higher curvature terms (1/a⁶, 1/a⁴) might make the flatness problem milder (Kiritsis&Kofinas 2009).
- The initial condition with z=3 scaling may actually solve the flatness problem. (Bramberger, Coates, Magueijo, Mukohyama, Namba and Watanabe 2017)
- Absence of local Hamiltonian constraint leads to DM as integration "constant" (Mukohyama 2009).

cc & flatness problems

$$3H^2 = 8\pi G\rho - \frac{3K}{a^2} + \Lambda$$

- Λ does not decay → cc problem "Why is Λ as small as 8πGρ now?"
- K/a² decays but only slowly → flatness problem "Why is K/a² smaller than 8πGρ now?"

cc & flatness problems

$$3H^2 = 8\pi G\rho - \frac{3K}{a^2} + \Lambda$$

- K/a² decays but only slowly → flatness problem "Why is K/a² smaller than 8πGρ now?"

We shall consider the flatness problem.

Two ways to tackle flatness problem

$$3H^2 = 8\pi G\rho - \frac{3K}{a^2}$$

- If ρ does not decay for an extended period then flatness problem solved → Inflation
- If K/a² << 8πGρ initially then flatness problem solved → Quantum cosmology

Two ways to tackle flatness problem

$$3H^2 = 8\pi G\rho - \frac{3K}{a^2}$$

- If ρ does not decay for an extended period then flatness problem solved → Inflation
- If K/a² << 8πGρ initially then flatness problem solved → Quantum cosmology

We shall consider the second possibility.

Usual story

- Initial condition set by e.g. quantum tunneling
- O(4) symmetric instanton

```
\rightarrow T ~ L, where T ~ 1/H, L ~ a/|K|<sup>1/2</sup>
```

- Three terms in $3H^2 = 8\pi G\rho 3K/a^2$ are of the same order initially.
- Flatness problem exists unless inflation occurs.

- Initial condition set by e.g. quantum tunneling
- Instanton with z=3 anisotropic scaling, which we call an anisotropic instanton
 - \rightarrow T \propto L³, where T \sim 1/H, L \sim a/|K|^{1/2} \rightarrow T \sim M²L³
- T << L if L << 1/M
- Flatness problem may be solved if the anisotropic instanton is small.

Summary

- Horava-Lifshitz gravity is renormalizable and likely to be unitary, and thus is a candidate for UV complete theory of quantum gravity.
- Lorentz-invariance can be restored at IR fixed-point.
 SUSY or/and strong dynamics can speed-up the RG running to match with phenomenology.
- It is likely that GR (+DM) is recovered in the $\lambda \rightarrow 1$ limit due to nonlinear effects. [c.f. Vainshtein effect]
- Horizon problem can be solved and (almost) scaleinvariant cosmological perturbations can be generated without inflation.
- Flatness problem can be solved by equipartition in highly trans-Planckian regime.