Introduction The SUSY EW Fine-Tuning Problem No-Scale *F-SU*(5) No-Scale MSSM The Super-Natural Supersymmetry and Its Generalizations Conclusion

The Super-Natural Supersymmetry

Tianjun Li

Institute of Theoretical Physics, Chinese Academy of Sciences

October 30, 2015

- < ≣ →

<ロ> <同> <同> <三> < 回> < 回> < 三>

Introduction The SUSY EW Fine-Tuning Problem No-Scale F-SU(5) No-Scale MSSM The Super-Natural Supersymmetry and Its Generalizations Conclusion

References:

- T. Leggett, T. Li, J. A. Maxin, D. V. Nanopoulos and J. W. Walker, arXiv:1403.3099 [hep-ph]; Phys. Lett. B 740, 66 (2015) [arXiv:1408.4459 [hep-ph]].
- G. Du, T. Li, D. V. Nanopoulos and S. Raza, Phys. Rev. D 92, no. 2, 025038 (2015) [arXiv:1502.06893 [hep-ph]].
- R. Ding, T. Li, F. Staub and B. Zhu, arXiv:1510.01328 [hep-ph].
- ► T. Li, S. Raza, X. Wang, 1510.06851.
- Papers in preparations.

イロト イヨト イヨト イヨト

Outline

Introduction

The SUSY EW Fine-Tuning Problem

No-Scale \mathcal{F} -SU(5)

No-Scale MSSM

The Super-Natural Supersymmetry and Its Generalizations

Conclusion

< ≣ >

Outline

Introduction

The SUSY EW Fine-Tuning Problem

No-Scale \mathcal{F} -SU(5)

No-Scale MSSM

The Super-Natural Supersymmetry and Its Generalizations

Conclusion

< ≣⇒

<ロ> <同> <同> <三> < 回> < 回> < 三>

The Standard Model

The Standard Model (SM) is a model that describes the elementary particles in the nature and the fundamental interactions between them.

Image: Image:

< ≣ >

Introduction

The SUSY EW Fine-Tuning Problem No-Scale *F-SU*(5) No-Scale MSSM The Super-Natural Supersymmetry and Its Generalizations Conclusion

Fundamental Interactions

Interactions	Invariant	Symmetry	Fields	Spin
Gravity	Diffeomorphism		Graviton	2
Strong	Gauge	<i>SU</i> (3) _C	Gluon	1
Weak	Gauge	$SU(2)_L$	W^{\pm}, W^{0}	1
Hypercharge	Gauge	$U(1)_Y$	B^0	1

<ロ> (日) (日) (日) (日) (日)

Properties for the theories

Gauge theory is renormalizable, and described by quantum field theory which is consistent with both quantum mechanics and special relativity. However, gravity theory is non-renormalizable, and we do not have a correct quantum gravity theory.

Elementary Particles

Three families of SM fermions:

Quarks:
$$Q_1 = \begin{pmatrix} U & U & U \\ D & D & D \end{pmatrix}_L$$
, $(U & U & U)_R$, $(D & D & D)_R$.

Leptons :
$$L_1 = \left(\begin{array}{c} \nu \\ E \end{array} \right)_L$$
, E_R .

One Higgs doublet

$$H = \left(\begin{array}{c} H^0 \\ H^- \end{array}\right) \ .$$

イロト イヨト イヨト イヨト

Lagrangian

$$\begin{split} \mathcal{L}_{MSM} &= -\frac{1}{2g_s^2} \mathrm{Tr} \, G_{\mu\nu} \, G^{\mu\nu} - \frac{1}{2g^2} \mathrm{Tr} \, W_{\mu\nu} \, W^{\mu\nu} \\ &- \frac{1}{4g'^2} B_{\mu\nu} B^{\mu\nu} + i \frac{\theta}{16\pi^2} \mathrm{Tr} \, G_{\mu\nu} \, \tilde{G}^{\mu\nu} + M_{Pl}^2 R \\ &+ |D_{\mu}H|^2 + \bar{Q}_i i \not D Q_i + \bar{U}_i i \not D U_i + \bar{D}_i i \not D D_i \\ &+ \bar{L}_i i \not D L_i + \bar{E}_i i \not D E_i - \frac{\lambda}{2} \left(H^{\dagger} H - \frac{v^2}{2} \right)^2 \\ &- \left(h_u^{ij} Q_i U_j \tilde{H} + h_d^{ij} Q_i D_j H + h_l^{ij} L_i E_j H + c.c. \right) \;, \end{split}$$

where $\tilde{H} \equiv i\sigma_2 H^*$. The SM has 20 parameters (19 without gravity): 3 gauge couplings, 1 Planck scale, 1 strong CP phase, 6 quark masses, 3 charged lepton mass, 3 CKM mixing angles, 1 CKM CP phase, 2 Higgs parameters.

Introduction The SUSY EW Fine-Tuning Problem No-Scale *F*-SU(5) No-Scale MSSM The Super-Natural Supersymmetry and Its Generalizations Conclusion

The Higgs potential is

$$V_{\rm Higgs} ~=~ \frac{\lambda}{2} \left(H^{\dagger} H - \frac{v^2}{2} \right)^2 ~. \label{eq:VHiggs}$$

At minimum, Higgs field has a non-zero VEV

$$\langle H^0 \rangle = rac{v}{\sqrt{2}}$$

All the gauge symmetries, under which H^0 is charged, are broken after Higgs mechanism.

- ∢ ≣ ▶

Symmetry Breaking

- $SU(2)_L \times U(1)_Y$ is broken down to the $U(1)_{\rm EM}$ symmetry.
- W^{\pm} and Z^{0} become massive, and γ is massless

$$Z^0 = \cos \theta_W W^0 - \sin \theta_W B^0 , \quad \gamma = \sin \theta_W W^0 + \cos \theta_W B^0$$

- The SM quarks and leptons obtain masses via Yukawa couplings, except the neutrinos.
- Higgs boson with mass around 125.5 GeV.

The SM explains existing experimental data very well, including electroweak precision tests.

The Standard Model

 Fine-tuning problems cosmological constant problem; gauge hierarchy problem; strong CP problem; SM fermion masses and mixings; ...

Image: A matrix and a matrix

- < ∃ >

The Standard Model

- Fine-tuning problems
 cosmological constant problem; gauge hierarchy problem;
 strong CP problem; SM fermion masses and mixings; ...
- Aesthetic problems interaction and fermion unification; gauge coupling unification; charge quantization; too many parameters; ...

Introduction

The SUSY EW Fine-Tuning Problem No-Scale *F-SU*(5) No-Scale MSSM The Super-Natural Supersymmetry and Its Generalizations Conclusion

Gauge Hierarchy Problem

$$-\mathcal{L} = \lambda_f H \overline{f} f + \lambda_S |H|^2 |S|^2$$
.

$$\Delta m_H^2 = -rac{|\lambda_f|^2}{8\pi^2}\Lambda_{\mathrm{UV}}^2 + rac{\lambda_S}{16\pi^2}\Lambda_{\mathrm{UV}}^2 \; .$$

◆□→ ◆□→ ◆三→ ◆三→

Introduction

The SUSY EW Fine-Tuning Problem No-Scale *F-SU*(5) No-Scale MSSM The Super-Natural Supersymmetry and Its Generalizations Conclusion

Gauge Hierarchy Problem

イロト イヨト イヨト イヨト

Solutions

- Techicolor: the Higgs is a condensation of new fermions.
 Point: no fundamental scalar.
- Larger extra dimension(s): Arkani-Hamed-Dimopoulos-Dvali (ADD) and Randall-Sundrum (RS). Point: the high-dimensional Planck scale is close to the TeV.
- Supersymmetry.
- Little Higgs model, effective theories for compositeness, the anthropic solution, etc.

Supersymmetry

 A supersymmetry transformation turns a bosonic state into a fermionic state, and vice versa.

 $Q|\mathrm{Boson}
angle = |\mathrm{Fermion}
angle, \qquad \qquad Q|\mathrm{Fermion}
angle = |\mathrm{Boson}
angle.$

► Algebra: supersymmetry generator Q is a fermionic operator with spin-1/2.

$$\begin{split} \{Q, Q^{\dagger}\} &= P^{\mu}, \\ \{Q, Q\} &= \{Q^{\dagger}, Q^{\dagger}\} = 0, \\ [P^{\mu}, Q] &= [P^{\mu}, Q^{\dagger}] = 0. \end{split}$$

 Each supermultiplet contains an equal number of fermion and boson degrees of freedom.

The Supersymmetry Standard Model

- Four-dimesional N = 1 supersymmetry: Kähler potential, superpotential, gauge kinetic function.
- ► A chiral SM fermion has a complex scalar partner.
- ► A gauge boson has a spin 1/2 partner.
- ► A graviton has a spin 3/2 partner.

The Supersymmetry Standard Model

- Two Higgs doublet.
- R symmetry: $R = (-1)^{3B-L+2s}$.
- The SM particle are even while the supersymmetric particles are odd.
- ► Dark matter: neutralino, sneutrino, gravitino, etc.
- Solution to the proton decay problem.

Introduction The SUSY EW Fine-Tuning Problem No-Scale *F-SU*(5) No-Scale MSSM The Super-Natural Supersymmetry and Its Generalizations Conclusion

Names		spin 0	spin 1/2	$SU(3)_C, SU(2)_L, U(1)_Y$	
squarks	Q	$(\widetilde{u}_L \ \widetilde{d}_L)$	$(u_L \ d_L)$	$(3, 2, \frac{1}{6})$	
quarks	Ū	\widetilde{u}_R^*	u_R^{\dagger}	$(\overline{3}, 1, -\frac{2}{3})$	
	\overline{d}	\widetilde{d}_R^*	d_R^{\dagger}	$(\overline{3}, 1, \frac{1}{3})$	
sleptons	L	$(\widetilde{\nu} \ \widetilde{e}_L)$	(νe_L)	$(1, 2, -\frac{1}{2})$	
leptons	ē	\widetilde{e}_R^*	e_R^{\dagger}	(1 , 1 , 1)	
Higgs	H _u	$(H_{u}^{+} H_{u}^{0})$	$\left(\widetilde{H}_{u}^{+} \ \widetilde{H}_{u}^{0} \right)$	$(1, 2, +\frac{1}{2})$	
Higgsinos	H _d	$(H^0_d \ H^d)$	$\left \begin{pmatrix} \widetilde{H}_d^0 & \widetilde{H}_d^- \end{pmatrix} \right $	$({f 1}, {f 2}, -{1\over 2})$	

Table: Chiral supermultiplets in the Minimal Supersymmetric Standard Model. The spin-0 fields are complex scalars, and the spin-1/2 fields are left-handed two-component Weyl fermions.

<ロ> (日) (日) (日) (日) (日)

Introduction
The SUSY EW Fine-Tuning Problem
No-Scale \mathcal{F} -SU(5)
No-Scale MSSM
The Super-Natural Supersymmetry and Its Generalizations
Conclusion

Names	spin $1/2$	spin 1	$SU(3)_C, SU(2)_L, U(1)_Y$	
gluino, gluon	Ĩ	g	(8 , 1 , 0)	
winos, W bosons	\widetilde{W}^{\pm} \widetilde{W}^{0}	$W^{\pm} W^{0}$	(1 , 3 , 0)	
bino, B boson	\widetilde{B}^{0}	B^0	(1,1,0)	

Table: Gauge supermultiplets in the Minimal Supersymmetric Standard Model.

문 문 문

A ■

Gauge Coupling Unification for the SM and MSSM

The Supersymmetric Standard Models

- Solving the gauge hierarchy problem
- Gauge coupling unification
- Radiatively electroweak symmetry breaking
- Natural dark matter candidates
- Electroweak baryogenesis
- Electroweak precision: R parity

Introduction

The SUSY EW Fine-Tuning Problem No-Scale *F-SU*(5) No-Scale MSSM The Super-Natural Supersymmetry and Its Generalizations Conclusion

Problems in the MSSM:

- μ problem: $\mu H_u H_d$
- Little hierarchy problem
- CP violation and EDMs
- ► FCNC
- Dimension-5 proton decays

Image: A matrix and a matrix

< ≣ >

The Grand Unified Theories: SU(5), and SO(10)

- Unification of the gauge interactions, and unifications of the SM fermions
- Charge quantization
- Gauge coupling unification in the MSSM, and Yukawa unification
- Radiative electroweak symmetry breaking due to the large top quark Yukawa coupling
- Weak mixing angle at weak scale M_Z
- Neutrino masses and mixings by seesaw mechanism

Introduction The SUSY EW Fine-Tuning Problem No-Scale *F-SU*(5) No-Scale MSSM The Super-Natural Supersymmetry and Its Generalizations Conclusion

- Gauge symmetry breaking
- Doublet-triplet splitting problem
- Proton decay problem
- Fermion mass problem: $m_e/m_\mu = m_d/m_s$

→ 三→

String Models:

- Calabi-Yau compactification of heterotic string theory
- Orbifold compactification of heterotic string theory
 Grand Unified Theory (GUT) can be realized naturally through the elegant E₈ breaking chain:

 $E_8 \supset E_6 \supset SO(10) \supset SU(5)$

D-brane models on Type II orientifolds

N stacks of D-branes gives us U(N) gauge symmetry: Pati-Salam Models

Free fermionic string model builing

Realistic models with clean particle spectra can only be constructed at the Kac-Moody level one: the Standard-like models, Pati-Salam models, and flipped SU(5) models.

<ロ> <同> <同> <同> < 同> < 同>

F-Theory Model Building:

- ► The models are constructed locally, and then the gravity should decoupled, *i.e.*, $M_{\rm GUT}/M_{\rm Pl}$ is a small number.
- ► The SU(5) and SO(10) gauge symmetries can be broken by the $U(1)_Y$ and $U(1)_X/U(1)_{B-L}$ fluxes.
- Gauge mediated supersymmetry breaking can be realized via instanton effects. Gravity mediated supersymmetry breaking predicts the gaugino mass relation.
- ► All the SM fermion Yuakwa couplings can be generated in the SU(5) and SO(10) models.
- The doublet-triplet splitting problem, proton decay problem, µ problem as well as the SM fermion masses and mixing problem can be solved.

- ► The most promising new physics beyond the Standard Model.
- Gauge coupling unification strongly suggests the Grand Unified Theories (GUTs), and the SUSY GUTs can be constructed from superstring theory.

Supersymmetry is a bridge between the low energy phenomenology and high-energy fundamental physics.

Outline

Introduction

The SUSY EW Fine-Tuning Problem

No-Scale \mathcal{F} -SU(5)

No-Scale MSSM

The Super-Natural Supersymmetry and Its Generalizations

Conclusion

< □ > < □ > < □

< ≣ >

Introduction The SUSY EW Fine-Tuning Problem No-Scale 7-5U(5) No-Scale MSSM The Super-Natural Supersymmetry and Its Generalizations Conclusion

Higgs boson mass in the MSSM:

- ► The SM-like Higgs boson mass is around 126 GeV.
- The tree-level Higgs boson mass is smaller than M_Z .
- The Higgs boson mass is enhanced by the top quarks/squarks loop corrections.
- The maximal stop mixing is needed to relax the fine-tuning.

The LHC Supersymmetry Search Contraints:

- The gluino and squark mass low bounds are around 1.7 TeV in the CMSSM/mSUGRA
- The gluino mass low bound is around 1.3 TeV.
- ► The stop/sbottom mass low bounds are around 600 GeV.
- ► If the LSP is heavy enough, all the bounds will be gone.

Introduction The SUSY EW Fine-Tuning Problem No-Scale J-SU(5) No-Scale MSSM The Super-Natural Supersymmetry and Its Generalizations Conclusion

Model	e, μ, τ, γ	Jets	E_{T}^{miss}	∫£ dt[fb⁻	Mass limit		Reference
							1
MSUGRACMSSM	0	2-6 jets 2-6 jets	Yes	20.3	6.8 1.7	iev m(q)=m(g)	1405.7875
$qq, q \rightarrow qT_1$	1	2-6 jets 0.1 int	Yes	20.3	850 GeV	m(t1)=0 GeV, m(1* gen. 4)=m(2** gen. 4)	1405.7875
<pre>qqy, q→qf₁ (compressed)</pre>		2.6 loto	Tes	20.3	250 GeV	$m(q) \cdot m(r_1) = m(c)$	1411.1328
5 88.8-499 ⁴ 1	1	2 G loto	Vac	20.3	s 1.33 Tev 1.2 ToV	mit porter	1400.7875
gg, g→qqx1→qqm~x1	2	0.2 joto				m(*1)<300 GeV, m(*1)=0.5(m(*1)=m(g))	1501.02555
OMOD (/ NI OD)	12-010	0.2 jats	Vac	20.2	16 7	M hand -20	1407.0803
GGM (high NLSP)	2.		Yes	20.3	1 28 TeV		ATLAS.CONF.201
GGM (wing NLSP)	1		Vac	4.8	619 GeV	million to the V	ATLAS.CONF.201
GGM (highsing high NLSP)	,	1.6	Vac	4.0	000 GoV	m(r)) so care	1211 1167
GGM (biogsing NLSP)	2 = 11 (2)	0.3 jats	Yes	5.8	690 GeV	miNLSP1>200 GeV	ATLAS.CONF.201
Gravition I SP	0	monoliet	Yas	20.3	865 GeV	m(G) >1.8 x 10 ⁻¹ eV m(3) - m(3) - 1.5 TeV	1502.01518
 	0	3 b	Yes	20.1	8 1.25 TeV	m(i)<400 GeV	1407.0600
ž→n ²	0	7-10 jets	Yes	20.3	2 1.1 TeV	m(R) <350 GeV	1308.1841
	0-1 e, µ	3 b	Yes	20.1	8 1.34 TeV	m(t)-<400 GeV	1407.0600
$\tilde{g} \rightarrow b \delta \chi_1^*$	0-1 e, µ	3 b	Yes	20.1	e 1.3 TeV	m(t))<300 GeV	1407.0600
$h_1h_1, h_1 \rightarrow h_1^{0}$	0	2 b	Yes	20.1	100-620 GeV	m(f))<90 GeV	1308.2631
$\hat{\mathbf{Q}} = h_1 h_1 \cdot h_1 \rightarrow t \hat{\mathbf{x}}^{\dagger}$	2 e, µ (SS)	0.3 6	Yes	20.3	275-440 GeV	m(8 ⁺)=2 m(8 ⁺)	1404.2500
$\frac{1}{2}$ $\tilde{h}\tilde{h},\tilde{h}\rightarrow b\tilde{X}^{\dagger}$	1-2 e. µ	1-2 b	Yes	4.7	110-167 GeV 230-460 GeV	$m(\hat{t}_{1}^{*}) = 2m(\hat{t}_{1}^{0}), m(\hat{t}_{1}^{0})+55 \text{ GeV}$	1209.2102, 1407.
8 $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow Wh\tilde{\pi}^0_1 \text{ or } t\tilde{\pi}^0_1$	2 e. µ	0-2 jets	Yes	20.3	7 90-191 GeV 215-530 GeV	m(2))=1 GeV	1403.4853, 1412.
$\tilde{\mathbf{Q}}_{1}$ $I_{1}I_{1}, I_{1} \rightarrow \tilde{\alpha}_{1}^{0}$	0-1 e. µ	1.2 b	Yes	20	210-640 GeV	m(t ⁰)+1 GeV	1407.0583,1406.1
$\tilde{\mathbf{v}}$ $\tilde{h}\tilde{h}, \tilde{h} \rightarrow c\tilde{\tilde{\mathbf{v}}}$	0 1	nono-jet/c-te	9 Yes	20.3	71 90-240 GeV	m(7_1)-m(2_1^0)<85GeV	1407.0608
i ₁ i ₁ (natural GMSB)	2 e, µ (Z)	1 b	Yes	20.3	150-580 GeV	m(t ⁰)>150 GeV	1403.5222
$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 e, µ (Z)	1 b	Yes	20.3	290-600 GeV	m(F_1)<200 GeV	1403.5222
Lolo Intr	2	0	Vas	20.3	90.325 GeV	mich-0.GeV	1403.5294
$\tilde{\mathcal{X}}_{1}^{+}\tilde{\mathcal{X}}_{1}^{-}, \tilde{\mathcal{X}}_{1}^{+} \rightarrow \tilde{\ell}_{\mathcal{Y}}(\ell \bar{\mathcal{Y}})$	2 e. µ	0	Yes	20.3	140-465 GeV	m(2))=0 GeV m(7, 9)=0.5(m(2))+m(2)))	1403.5294
$\tilde{X}_{1}^{\dagger}\tilde{X}_{1}^{\dagger}\tilde{X}_{1}^{\dagger}, \tilde{X}_{1}^{\dagger} \rightarrow \tilde{T}r(\tau\tilde{r})$	2 т		Yes	20.3	100-350 GeV	$m(\tilde{t}_{1}^{0})=0$ GeV, $m(\tau, \tau)=0.5(m(\tilde{t}_{1}^{+})+m(\tilde{t}_{1}^{0}))$	1407.0350
$\hat{\mathbf{e}}_{\hat{x}_1^* \hat{x}_2^0 \rightarrow \hat{l}_1 \hat{r}_1^0 l(\hat{v}_1), (\hat{r}_1^0 l(\hat{v}_2))}$	3 e.µ	0	Yes	20.3	2, 2, 2 700 GeV	(\$`)+m(\$'), m(\$')+0, m(\$, \$)+0.5(m(\$')+m(\$'))	1402.7029
$\tilde{X}_{1}^{+}\tilde{X}_{1}^{0} \rightarrow W \tilde{X}_{1}^{0} Z \tilde{X}_{1}^{0}$	2-3 e. µ	0-2 jets	Yes	20.3	420 GeV	m(t [*] ₁)=m(t ⁰ ₂), m(t ⁰ ₁)=0, sleptons decoupled	1403.5294, 1402.
$\tilde{X}_{1}^{\pm}\tilde{X}_{2}^{0} \rightarrow W \tilde{X}_{1}^{0}h \tilde{X}_{1}^{0}, h \rightarrow b \bar{b}/W W/\pi \tau$	yy e. µ. y	0-2 b	Yes	20.3	250 GeV	m(t2)+m(t2), m(t2)+0, sleptons decoupled	1501.07110
$\tilde{\chi}_{2}^{0}\tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R}\ell$	4 e.µ	0	Yes	20.3	620 GeV m	$(\hat{\tau}_{2}^{0}) = m(\hat{\tau}_{2}^{0}), m(\hat{\tau}_{1}^{0}) = 0, m(\hat{\tau}, \hat{\tau}) = 0.5(m(\hat{\tau}_{2}^{0}) + m(\hat{\tau}_{1}^{0}))$	1405.5086
Direct X ⁺ X ⁻ prod. Jonn-lived X ⁺	Disapo, trk	1 iet	Vas	20.3	270 GeV	m(2) 1-m(2) 1-140 MeV -(2) 1-0.2 m	1310,3675
Stable, stopped # R-hadron	0	1-5 iets	Yes	27.9	812 GeV	m(2)+100 GeV 10 (scrib)/1000 s	1310,6584
Stable # R-hadron	28			19.1	1 27 TeV		1411 6795
GMSB, stable $\hat{\tau}, \hat{\chi}_{1}^{0} \rightarrow \hat{\tau}(\hat{e}, \hat{a}) + \tau(e$.u) 1-2 µ			19.1	537 GeV	10 <tarj5<50< td=""><td>1411.6795</td></tarj5<50<>	1411.6795
GMSB. $\tilde{x}_{1}^{0} \rightarrow \gamma G$, long-lived \tilde{x}_{1}^{0}	2 7		Yes	20.3	435 GeV	2 <r(2)<3 model<="" ns.="" sps8="" td=""><td>1409.5542</td></r(2)<3>	1409.5542
άζι, χ ⁰ →σαμ (BPV)	1 µ, displ. vti	c		20.3	1.0 TeV	1.5 <vr<156 br(µ)+1,="" m(t<sup="" mm,="">0)=108 GeV</vr<156>	ATLAS-CONF-201
IEV and the View of the	2					N	
$\omega + p_p \rightarrow r_l + \lambda, r_l \rightarrow \epsilon + \mu$. e. µ			4.6	1.51 16	A 1010 A 10200	1212.1272
$Lr \lor pp \rightarrow r_r + X, r_r \rightarrow e(\mu) + \tau$	1 e, µ + t 2(00)			4.6	1.1 IEV		1212.1272
DIIINAI PLY CMSSM	ε	0-36	THIS	20.3	1.35 IEV	magamentes, e e contra e contr	1404,2500
$x_1x_1, x_1 \rightarrow wx_1, x_1 \rightarrow wx_p, e\mu\nu_p$	35447		TelS Vinc	20.3	750 GeV	m(r)>0.20m(r)), A ₁₂₁ #0	1405.5086
$\chi_1 \chi_1, \chi_1 \rightarrow W \chi_1^-, \chi_1^- \rightarrow \tau \tau \bar{\nu}_{\sigma}, \sigma \tau \bar{\nu}_{\tau}$	0 = , µ + T	6.7 inte	THIS	20.3	400 GEV	mpro anno anno anno anno anno anno anno an	405.5086
8-999 8-154 5-164	2(99)	jets	16.0	00.0	916 GeV	multipersitieness legge	1404.750
	× =,μ (00)	0-38	THIS	20.3	8 850 GeV		1404.250
her Scalar charm, $\tilde{c} \rightarrow c \tilde{k}_{1}^{0}$	0	2 c	Yes	20.3	2 490 GeV	m(t ⁰ ₁)<200 GeV	1501.01325
	-		_				J

'Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus for theoretical signal cross section uncertainty.

Tianjun Li

ITP-CAS

Introduction The SUSY EW Fine-Tuning Problem No-Scale \mathcal{F} -SU(5) No-Scale MSSM The Super-Natural Supersymmetry and Its Generalizations Conclusion

イロン イヨン イヨン イヨン

Introduction **The SUSY EW Fine-Tuning Problem** No-Scale \mathcal{F} -SU(5) No-Scale MSSM The Super-Natural Supersymmetry and Its Generalizations Conclusion

Tianjun Li ITP-CAS

イロト イヨト イヨト イヨト

Introduction The SUSY EW Fine-Tuning Problem No-Scale *F-SU*(5) No-Scale MSSM The Super-Natural Supersymmetry and Its Generalizations Conclusion

▲□→ ▲圖→ ▲厘→ ▲厘→

Э

イロト イヨト イヨト イヨト

Fine-Tuning Definition I:

Electroweak symmetry breaking condition

$$\mu^2 + \frac{1}{2}M_Z^2 = \frac{\overline{m}_{\mathcal{H}_d}^2 - \overline{m}_{\mathcal{H}_u}^2 \tan^2\beta}{\tan^2\beta - 1}$$

Fine-tuning Definition I¹: the quantitative measure Δ_{FT} for fine-tuning is the maximum of the logarithmic derivative of M_Z with respect to all the fundamental parameters a_i at the GUT scale

$$\Delta_{\mathrm{FT}} = \mathrm{Max}\{\Delta_i^{\mathrm{GUT}}\}, \quad \Delta_i^{\mathrm{GUT}} = \left|\frac{\partial \mathrm{ln}(M_Z)}{\partial \mathrm{ln}(a_i^{\mathrm{GUT}})}\right|$$

Fine-Tuning Definition II

Higgs potential:

$$V = \overline{m}_h^2 |h|^2 + rac{\lambda_h}{4} |h|^4$$
 .

Higgs boson mass

$$m_h^2 = -2\overline{m}_h^2 \;, \;\; \overline{m}_h^2 \;\; \simeq \;\; |\mu|^2 + m_{H_u}^2|_{
m tree} + m_{H_u}^2|_{
m rad} \;.$$

► The fine-tuning measure ²:

$$\Delta_{
m FT} \equiv rac{2 \delta \overline{m}_h^2}{m_h^2} \; .$$

Fine-Tuning Definition II

- The μ term or effective μ term is smaller than 400 GeV.
- ► The squar root $M_{\tilde{t}} \equiv \sqrt{m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2}$ of the sum of the two stop mass squares is smaller than 1.2 TeV.
- ► The gluino mass is lighter than 1.5 TeV.

Fine-Tuning Definition III

 The minimization condition for electroweak symmetry breaking

$$rac{M_Z^2}{2} = rac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan^2eta}{ an^2eta - 1} - \mu^2 \; .$$

The fine-tuning measure ³

$$\Delta_{\rm FT} \equiv {
m Max}\{rac{2C_i}{M_Z^2}\} \; .$$

³H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev and X. Tata, Phys. Rev. D **87**, no. 11, 115028 (2013) [arXiv:1212.2655 [hep-ph]].

Comments on Fine-Tuning

- Fine-Tuning Definition III is weak.
- ► Fine-Tuning Definition II is medium.
- Fine-Tuning Definition I is strong.

∢ ≣⇒

Supersymmetric SMs:

- Natural supersymmetry ⁴.
- Supersymmetric models with a TeV-scale squarks that can escape/relax the missing energy constraints: *R* parity violation ⁵; compressed supersymmetry ⁶; stealth supersymmetry ⁷; etc.

⁴S. Dimopoulos and G. F. Giudice, Phys. Lett. B **357**, 573 (1995) [hep-ph/9507282]; A. G. Cohen, D. B. Kaplan and A. E. Nelson, Phys. Lett. B **388**, 588 (1996) [hep-ph/9607394].

⁵R. Barbier, C. Berat, M. Besancon, M. Chemtob, A. Deandrea, E. Dudas, P. Fayet and S. Lavignac *et al.*, Phys. Rept. **420**, 1 (2005) [hep-ph/0406039].

⁶T. J. LeCompte and S. P. Martin, Phys. Rev. D 84, 015004 (2011) [arXiv:1105.4304 [hep-ph]]; Phys. Rev. D 85, 035023 (2012) [arXiv:1111.6897 [hep-ph]].

Supersymmetric SMs:

- Supersymmetric models with sub-TeV squarks that decrease the cross sections: supersoft supersymmetry ⁸.
- Displaced Supersymmetry ⁹.
- Double Invisible Supersymmetry ¹⁰.

⁸G. D. Kribs and A. Martin, arXiv:1203.4821 [hep-ph], and references therein.

⁹P. W. Graham, D. E. Kaplan, S. Rajendran and P. Saraswat, JHEP **1207**, 149 (2012) [arXiv:1204.6038 [hep-ph]].

¹⁰ J. Guo, Z. Kang, J. Li, T. Li and Y. Liu, arXiv:1312.2821 [hep-ph]; D. S. M. Alves, J. Liu and N. Weiner, arXiv:1312.4965 [hep-ph].

Outline

Introduction

The SUSY EW Fine-Tuning Problem

No-Scale \mathcal{F} -SU(5)

No-Scale MSSM

The Super-Natural Supersymmetry and Its Generalizations

Conclusion

< ≣⇒

< □ > < □ > < □

Flipped $SU(5) \times U(1)_X$ Models: ¹³

- Doublet-triplet splitting via missing partner mechanism ¹¹.
- ► No dimension-five proton decay problem.
- Little hierarchy problem in string models: $M_{
 m String} \sim 20 \times M_{
 m GUT}$

$$M_{
m String}~=~g_{
m String} imes 5.27 imes 10^{17}~{
m GeV}$$
 .

► Testable flipped SU(5) × U(1)_X models: TeV-scale vector-like particles ¹².

¹¹I. Antoniadis, J. R. Ellis, J. S. Hagelin and D. V. Nanopoulos, Phys. Lett. B **194**, 231 (1987).

¹²J. Jiang, T. Li and D. V. Nanopoulos, Nucl. Phys. B **772**, 49 (2007).

Flipped $SU(5) \times U(1)_X$ Models:

- Free-fermionic string construction ¹⁴.
- ► F-theory model building ¹⁵.
- Heterotic String Constructions: Calabi-Yau ¹⁶; Orbifold ¹⁷.
- Orbifold GUTs ¹⁸.

¹⁴ J. L. Lopez, D. V. Nanopoulos and K. j. Yuan, Nucl. Phys. B **399**, 654 (1993).

¹⁵C. Beasley, J. J. Heckman and C. Vafa, JHEP **0901**, 059 (2009); J. Jiang, T. Li, D. V. Nanopoulos and D. Xie, Phys. Lett. B **677**, 322 (2009); Nucl. Phys. B **830**, 195 (2010).

¹⁶A. E. Faraggi, R. S. Garavuso and J. M. Isidro, Nucl. Phys. B **641**, 111 (2002)

¹⁷J. E. Kim and B. Kyae, Nucl. Phys. B **770**, 47 (2007).

¹⁸S. M. Barr and I. Dorsner, Phys. Rev. D **66**, 065013 (2002). <

\mathcal{F} -SU(5) Models

- ► The gauge group SU(5) × U(1)_X can be embedded into SO(10) model.
- Generator $U(1)_{Y'}$ in SU(5)

$$T_{\mathrm{U}(1)_{\mathrm{Y}'}} = \mathrm{diag}\left(-\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}, \frac{1}{2}, \frac{1}{2}\right) \; .$$

Hypercharge

$$Q_Y = \frac{1}{5} \left(Q_X - Q_{Y'} \right) \; .$$

イロト イヨト イヨト イヨト

æ

SM fermions

$$F_i = (\mathbf{10}, \mathbf{1}), \ \bar{f_i} = (\mathbf{\bar{5}}, -\mathbf{3}), \ \bar{l_i} = (\mathbf{1}, \mathbf{5}),$$

$$F_i = (Q_i, D_i^c, N_i^c), \ \overline{f}_i = (U_i^c, L_i), \ \overline{l}_i = E_i^c \ .$$

Higgs particles:

$$H = (\mathbf{10}, \mathbf{1}), \ \overline{H} = (\overline{\mathbf{10}}, -\mathbf{1}), \ h = (\mathbf{5}, -\mathbf{2}), \ \overline{h} = (\mathbf{\overline{5}}, \mathbf{2}),$$
$$H = (Q_H, D_H^c, N_H^c), \ \overline{H} = (\overline{Q}_{\overline{H}}, \overline{D}_{\overline{H}}^c, \overline{N}_{\overline{H}}^c),$$
$$h = (D_h, D_h, D_h, H_d), \ \overline{h} = (\overline{D}_{\overline{h}}, \overline{D}_{\overline{h}}, \overline{D}_{\overline{h}}, H_u).$$
Elip

$$U \leftrightarrow D \ , \ N \leftrightarrow E \ , \ H_d \leftrightarrow H_u \ .$$

Symmetry breaking:

Superpotential

$$W_{\rm GUT} = \lambda_1 H H h + \lambda_2 \overline{H H h} + \Phi(\overline{H} H - M_{\rm H}^2)$$
.

- ► There is only one F-flat and D-flat direction along the N_H^c and \overline{N}_H^c directions: $\langle N_H^c \rangle = \langle \overline{N}_H^c \rangle = M_H$.
- The doublet-triplet splitting due to the missing partner mechanism
- ► No dimension-5 proton decay problem.

- ∢ ≣ ▶

\mathcal{F} -SU(5) Models

- To achieve the string scale gauge coupling unification, we introduce sets of vector-like particles in complete SU(5) × U(1)_X multiplets, whose contributions to the one-loop beta functions of the U(1)_Y, SU(2)_L and SU(3)_C gauge symmetries, Δb₁, Δb₂ and Δb₃ respectively, satisfy Δb₁ < Δb₂ = Δb₃.
- To avoid the Landau pole problem for the gauge couplings, we can only introduce the following two sets of vector-like particles around the TeV scale, which could be observed at the LHC

$$Z1: XF = (\mathbf{10}, \mathbf{1}) \equiv (XQ, XD^{c}, XN^{c}), \overline{XF} = (\overline{\mathbf{10}}, -\mathbf{1});$$

$$Z2: XF, \overline{XF}, XI = (\mathbf{1}, -\mathbf{5}), \overline{XI} = (\mathbf{1}, \mathbf{5}) \equiv XE^{c}.$$

 $Figure: \ \ {\rm Gauge \ coupling \ unification \ in \ the \ \ Type \ \ IA \ model.}$

・ロン ・四と ・ヨン ・ヨン

æ

No-Scale Supergravity ¹⁹:

- The vacuum energy vanishes automatically due to the suitable Kähler potential.
- ► At the minimum of the scalar potential, there are flat directions which leave the gravitino mass M_{3/2} undertermined.
- The super-trace quantity $\mathrm{Str}\mathcal{M}^2$ is zero at the minimum.

$$K = -3\ln(T + \overline{T} - \sum_{i} \overline{\Phi}_{i} \Phi_{i}).$$

¹⁹E. Cremmer, S. Ferrara, C. Kounnas and D. V. Nanopoulos, Phys. Lett. B **133**, 61 (1983); A. B. Lahanas and D. V. Nanopoulos, Phys. Rept. **145**, 1 (1987). □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷

No-Scale Supergravity:

- ▶ mSUGRA/CMSSM: $M_{1/2}$, M_0 , A, tan β , sign(μ).
- ▶ No-scale boundary condition: $M_{1/2} \neq 0$, $M_0 = A = B_\mu = 0$
- Natural solution to CP violation and FCNC problem.
- ► Disfavored by phenomenology: $M_0 = 0$ at traditional GUT scale.
- ▶ No-scale *F*-*SU*(5)

No-scale supergravity can be realized in the compactification of the weakly coupled heterotic string theory 20 and the compactification of M-theory on S^1/Z_2 at the leading order 21 .

²⁰E. Witten, Phys. Lett. B **155**, 151 (1985).

²¹T. Li, J. L. Lopez and D. V. Nanopoulos, Phys. Rev. D 56, 2602 (1997).□ → < (□) → (□)

 \mathcal{F} -SU(5)

- These models can be realized in heterotic string constructions, free fermionic string constructions, and F-theory model building.
- These models may be tested in the next LHC run.
- ► The Higgs boson mass can be around 126 GeV.
- ► The proton decay p → e⁺π⁰ from the heavy gauge boson exchange is within the reach of the future DUSEL and Hyper-Kamiokande experiments for a majority of the most plausible parameter space.
- The dark matter is within the reach of the XENON1T experiment.

イロト イヨト イヨト イヨト

Miracle of Vector-Like Particles

- ► String scale gauge coupling unification.
- Dimension-six proton decay.
- ► Lifting the lightest CP-even Higgs boson mass.
- Special sparticle spectra.

∢ ≣⇒

Question: Super-Natural Supersymmetry

Can we propose the Super-Natural Supersymmetric SMs whose EENZ or BG fine-tuning measure will be automatically 1 or order 1 $(\mathcal{O}(1))$?

< 17 >

No-Scale Supergravity

Scalar Potential

$$V = e^{K} \left((K^{-1})^{i}_{\overline{j}} D_{i} W D^{\overline{j}} \overline{W} - 3|W|^{2} \right)$$

.

where $(K^{-1})_{\bar{j}}^{i}$ is the inverse of the Kähler metric $K_{i}^{\bar{j}} = \partial^{2} K / \partial \Phi^{i} \partial \bar{\Phi}_{\bar{j}}$, and $D_{i} W = W_{i} + K_{i} W$.

Automatically vanishing scalar potential

$$\mathcal{K} = -3 \ln (T + \overline{T} - \sum_i \overline{\Phi}_i \Phi_i) \; .$$

Natural Solution to the Fine-Tuning Problem

Fine-Tuning Definition:

$$\Delta_{\mathrm{FT}} = \mathrm{Max}\{\Delta_i^{\mathrm{GUT}}\} \;, \;\;\; \Delta_i^{\mathrm{GUT}} = \left|rac{\partial \mathrm{ln}(M_Z)}{\partial \mathrm{ln}(a_i^{\mathrm{GUT}})}
ight| \;.$$

Natural Solution:

$$M_Z^n = f_n \left(\frac{M_Z}{M_{1/2}}\right) M_{1/2}^n .$$

$$\frac{\partial \ln(M_Z^n)}{\partial \ln(M_{1/2}^n)} \simeq \frac{M_{1/2}^n}{M_Z^n} \frac{\partial M_Z^n}{\partial M_{1/2}^n} \simeq \frac{1}{f_n} f_n \simeq \mathcal{O}(1) \ .$$

イロト イヨト イヨト イヨト

æ

No-Scale \mathcal{F} -SU(5)

•
$$\mu$$
 problem ²²:

$$\mu \propto M_{1/2} \propto M_{3/2}$$
 .

- All the mass parameters are proportional to $M_{1/2}$
- Natural solution ²³

$$\mu\simeq M_{1/2}$$
 .

 $^{^{22}\}mbox{G. F.}$ Giudice and A. Masiero, Phys. Lett. B 206, 480 (1988).

²³ T. Leggett, T. Li, J. A. Maxin, D. V. Nanopoulos and J. W. Walker, arXiv:1403.3099 [hep=ph]. + 🖹 🕨 🚊 🔊 🔍 🖓

Tianjun Li ITP-CAS

æ

Tianjun Li ITP-CAS

Tianjun Li ITP-CAS

Figure: The Z-boson mass is shown as a function of the dimensionless parameter c for seven different values of $M_{1/2}$.

Figure: Depiction of the correlation between the Z-boson mass M_Z , top quark mass m_t , Higgs boson mass m_h , and gluino mass $m_{\tilde{g}}$, as a function

Outline

Introduction

The SUSY EW Fine-Tuning Problem

No-Scale \mathcal{F} -SU(5)

No-Scale MSSM

The Super-Natural Supersymmetry and Its Generalizations

Conclusion

< ≣⇒

- In the *F*-SU(5), there is a mass parameter: vector-like particle mass M_V.
- The MSSM with no-scale supergravity and Giudice-Masiero mechanism.
- Problem: the light stau is the lightest supersymmetric particle (LSP).
- ► Solution: axino as the LSP.

Figure: $\mu(GUT)$ (left-vertical axis) and EWFT measure Δ_{EENZ} (right-vertical axis) versus $M_{1/2}$.

Э

Figure: Plot in the tan β - M_Z plane.

・ロト ・回ト ・ヨト

< ∃>

æ

Figure: The green, purple, orange and black points represent $m_{\tilde{g}}$, $m_{\tilde{t}_1}$, $m_{\tilde{u}_1}$ and $m_{\tilde{b}_1}$, respectively.

< ≣⇒

< 🗗 🕨

Figure: The dark green, blue, red, and brown lines represent $m_{\tilde{\chi}_1^{\pm}}$, $m_{\tilde{\chi}_1^{0}}$, $m_{\tilde{\tau}_1}$, $m_{\tilde{e}_1}$, respectively.

< ∃⇒

Figure: The viable parameter spaces in $M_{1/2} - \tan \beta$ plane.

Image: A mathematical states and a mathem

< ∃⇒

Figure: The viable parameter spaces in $M_{1/2} - \tan \beta$ plane.

Image: A mathematical states and a mathem

< ≣⇒

æ

Figure: $m_{\tilde{\tau}_1}$ versus Ωh^2 .

・ロト ・回ト ・ヨト ・ヨト

æ

	Point 1	Point 2	Point 3
$M_{1/2}$	1865.849	2725.144	4588.77
m_0	0.0	0.0	0.0
A_0	0.0	0.0	0.0
aneta	28.129	30.594	33.822
<i>B</i> 0(GUT)	0.599	0.251	-0.716
μ (GUT)	1991	2788	4431
$B_{0}(\text{ewsb})$	92	118	4292
μ (ewsb)	1970	2735	166
m _h	123	125	127
m _H	2054	2816	4321
m _A	2054	2815	4321
$m_{H^{\pm}}$	2056	2816	4322

	Point 1	Point 2	Point 3
$m_{\tilde{\chi}^0_{1,2}}$	820, 1520	1219, 2238	2100, 3802
$m_{\tilde{\chi}^0_{34}}$	1978, 1985	2747, 2753	4310, 4317
$m_{ ilde{\chi}^{\pm}_{1,2}}$	1520, 1985	2238, 2753	3802, 4317
m _ĝ	3895	5546	9030
$m_{\tilde{u}_{L,R}}$	3505, 3358	4968, 4746	8035, 7604
$m_{\tilde{t}_{1,2}}$	2786, 3225	3957, 4554	6411, 7343
$m_{\tilde{d}_{L,R}}$	3506, 3356	4968, 4717	8035, 7604
$m_{\tilde{b}_{1,2}}$	3205, 3247	4530, 4574	7268, 7364
$m_{ ilde{ u}_{1,2}}$	1199	1737	2889
$m_{ ilde{ u}_3}$	1177	1701	2819
m _{ẽL.R}	1202, 679	1739, 987	2890, 1653
$m_{ ilde{ au}_{1,2}}$	587,1184	841, 1705	1374, 2822

< □ > < □ > < □ > < □ > < □ > < □ > = □

Outline

Introduction

The SUSY EW Fine-Tuning Problem

No-Scale \mathcal{F} -SU(5)

No-Scale MSSM

The Super-Natural Supersymmetry and Its Generalizations

Conclusion

・ロト ・回ト ・ヨト

- < ≣ →

The Super-Natural Supersymmetry and Its Generalizations

- The Kähler potential and superpotential can be calculated in principle or at least inspired from a fundamental theory such as string theory with suitable compactifications. In other words, one cannot add arbitrary high-dimensional terms in the Kähler potential and superpotential.
- There is one and only one chiral superfield or modulus whose F-term breaks supersymmetry. And all the supersymmetry breaking soft terms are obtained from the above Kähler potential and superpotential.
- All the other mass parameters, if there exist such as the µ term in the MSSM, must arise from supersymmetry breaking.

The Super-Natural Supersymmetry and Its Generalizations

- ► The EW Symmetry Breaking and Determination of *M*_{*} from *Z* Boson Mass.
- ► New µ Problem in the MSSM and *F*-SU(5) Model. Solution: M-theory inspired NMSSM.
- Symmetry for Super-Natural Supersymmetry: scale symmetry.
- Multi F-Term SUSY Breakings.
- Effective Super-Natural SUSY.

Outline

Introduction

The SUSY EW Fine-Tuning Problem

No-Scale \mathcal{F} -SU(5)

No-Scale MSSM

The Super-Natural Supersymmetry and Its Generalizations

Conclusion

< ≣⇒

<ロ> <同> <同> <三>

The Super-Natural Supersymmetry

- The EENZ or BG fine-tuning measure is automatically $\mathcal{O}(1)$.
- ► The MSSM and *F*-*SU*(5) Model with no-scale supergravity and Giudice mechanism.
- The NMSSM with M-theory inspired supergravity.
- Gauge mediations.

Thank You Very Much for Your Attention!

<ロ> <同> <同> <同> < 同>

- ∢ ≣ ▶