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Blowup Equations for Refined Topological Strings

I Donaldson theory of 4-d manifold X . F = ∗F
I Topological quantum field theory in 4-d, partition function ZX .

I Blowup equation: ZX̃ on blowup geometry X̃ = X#P2.

I Supersymmetric Yang-Mills theory, special case of Donaldson
theory on R4
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I Omega background Nekrasov,03’ for SYM.

(z1, z2) ∼ (e iε1z1, e
iε2z2)

I Refined partition. For SU(N) gauge group Nakajima &
Yoshioka,03’
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2
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q
)
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(1)

I This turn out to be 0 or Zm(ε1, ε2, ~a; q)
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I Topological string ∼ M theory

Z top.string(X ) = ZM theory
BPS (S1 × X × R4)

I Compactified on X with AN type singularities fibered on P1,
gives 4-d gauge theory.

BPS contents ∼ gravitational corrections of 4-d gauge theory

I Lift to 5d with extra S1

Z topological string = Z 5-d gauge
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I Blowup equation for refined topological string should exist
and even have more things.

∑
n∈Zg

(−1)|n|Z(ε1 − ε2, ε2, t + iRε2)Z(ε1, ε2 − ε1, t + iRε1)

Z(ε1, ε2, t)
= Λ(tm, ε1, ε2),

where R = C · n + r.

I Modular property of top.string ⇒ Λ is modular invariant
⇒Solve r completely.
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Property of blowup equations and summary

I Solve partition function recursively. Better than holomorphic
anomaly equation.

I Modular property lead to blowup equation on general points
of moduli space.

I Existence for compact CY3?
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I The holomorphic anomaly equation BCOV 92’

I W (ti , t̄ī ) = e
∑∞

g=2 g
2g−2
s Fg (ti ,t̄ī ) is the wave function of the

quantization of xi = ti , pi space.

I BCOV as a quantization condition.

I Wave function is invariant under symplectic transformations
of phase space parameters (xi , pi ) → Modular invariant.
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I |Z 〉 is invariant, but 〈ti |Z 〉 indeed have changed.

I Fg (ti ) = limt̄ī→∞Fg (ti , t̄ī )

I Different polarization Z (ti ) = e
∑∞

g=0 g
2g−2
s Fg (ti )

I For g >= 2, Fg (ti , t̄ī ) is a weight 0 unholomorphic form, and
Fg (ti ) is a weight 0 holomorphic quasi-modular form. ABK 06’

I Also true after refinement.
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A modular form of weight k for the modular group

SL(2,Z) =

{(
a b
c d

)∣∣∣∣ a, b, c , d ∈ Z, ad − bc = 1

}
is a complex-valued function f on the upper half-plane
H = z ∈ C , Im(z) > 0, satisfying the following three conditions:

I f is a holomorphic function on H.

I For any z ∈ H and any matrix in SL(2,Z ) as above, we have:

f

(
az + b

cz + d

)
= (cz + d)k f (z)

I f is required to be holomorphic as z → i∞.
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I k is even

I Every modular form is product of Eisenstein series E4,E6.

I The second Eisenstein series E2 transform like a modular
form, but with extra terms appear.

I Quasi-modular forms are defined as product of E2,E4,E6 and
their sums.

I Division and root of (quasi-)modular forms may define a form
with negative or rational weight, it is no more holomorphic,
but with not bad behavior. We may abuse the name modular
form include this kind of forms.
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(2)
∑
n ∈Zg

exp

(
1

2
R2∂2

t F
(0,0)(t) + F (0,1)(t)− F (1,0)(t) + inπ

)
= 1,

For local Calabi-Yau
eF

(1,0)(t)−F (0,1)(t)

is always weight 1/2.
Every modular form of weight 1/2 is a linear combination of unary
theta series.
weight match for all identities ⇒ weight 0
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An example: Local P2

I Simplest local Calabi-Yau described by toric diagram with
genus one mirror curve.

I Non-lagrangian gauge theory.

modular group of local P2 is Γ(3) ∈ SL(2,Z). It has generators

a := θ3

[
1
6
1
6

]
, b := θ3

[
1
6
1
2

]
, c := θ3

[
1
6
5
6

]
, d := θ3

[
1
2
1
6

]
,

with all weight 3/2. We also introduce Dedekind η function satisfy
η12 = i

33/2 abcd .
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F (0,1) = −1

6
log(dη3), F (1,0) =

1

6
log(η3/d),

and
F (0,1) − F (1,0) = log(η(τ)).

Since R for this model is R = 3n + 1/2. The the first equation (2)
indicate ∑

n

(−1)ne
1
2

(n+1/6)23∗2πiτ = η(τ), (3)

the Euler identity, or the Pentagonal number theorem.∑
n

1

2
(3n + 1/2)(−1)ne

1
2

(n+1/6)23∗2πiτ =
b

2i
+

d

2
√

3
.

∑
n

(n + 1/2)(−1)ne
1
2

(n+1/2)2∗6πiτ =
d

3
√

3
.
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I The blowup equation is quasi-modular of weight 0 for
arbitrary choice of r.

I For special choice of r, if Λ is a finite series ⇒ weight 0
modular form.

I Product of quasi-modular objects become modular!

I Modular ⇒ defined Λ and fix r completely.
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Finite series, weight 0 = Λ is a constant.

Λ = Λ(tm, ε1, ε2)

I will show how this condition is used to determine r.
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The free energy have the genus expansion

F (t, ε1, ε2) =
1

ε1ε2
(aijkti tj tk) + ci ti +O(eti ).

Λ(tm, ε1, ε2, r) = λ(ε1, ε2, r)
∑
n∈I

(−1)|n|e−i(ε1+ε2)aijkRiRjRk− 1
6
aijkRiRj tk ,

I = {n ∈ Zg |∀k , f k(n) ≡
∑
i ,j

aijkRiRj = f k(0)}. (4)

Ia = {0, nj = δaj}, a = 1, · · · , g . (5)
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Conclusion

I From modular properties, we fix the expression of the blowup
equations.

I A compact expression for the blowup equation near conifold
points.

I More test and generalizations?


